A census of $2-(27,6,5)$ designs

Filip Martinović
Joint work with: Marco Buratti and Anamari Nakić

University of Zagreb

Combinatorics 2024, June 3

Basic notions

Definition

A (v, k, λ) design is a pair $D=(P, B)$ where P is a set of v points and B is a multiset of k-subsets of P (blocks) such that every 2 -subset of P is contained in exactly λ blocks.

- full automorphism group: the group $\operatorname{Aut}(D)$ of all permutations on P leaving B invariant
- automorphism group: any subgroup of $\operatorname{Aut}(D)$

Example of a 2-(7, 3, 1) design

Basic notions

Definition

- Let $(G,+)$ be a group of order v (not necessarily commutative)
- Let $B \subseteq G$ be a subset of G
- Let $\operatorname{Stab}(B)$ be the G-stabilizer of B
- Let $\operatorname{Orb}(B)$ be the orbit of B under G

The list of differences from B is the multiset

$$
\Delta B=\{x-y: x, y \in B, x \neq y\}
$$

The list of partial differences is

$$
\partial B=\frac{1}{|\operatorname{Stab}(B)|} \Delta B
$$

Basic notions

> Definition
> A multiset $\left\{B_{1}, \ldots, B_{t}\right\}$ of k-subsets of G is a (v, k, λ)-difference family if every nonidentity element of G occurs λ times in $\partial B_{1} \cup \ldots \cup \partial B_{t}$.

Theorem
If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a family (v, k, λ) difference family in G, then $\bigcup_{i} \operatorname{Orb}\left(B_{i}\right)$ is the block multiset of a (v, k, λ) design with point set G.

Basic notions

Definition

We say that a (v, k, λ)-design is 1 -rotational if it admits a group of automorphisms acting sharply transitively on all but one point.

Definition

- Let $\infty \notin G$
- Let $B \subseteq G$
- We define the list of partial differences of

$$
\partial(B \cup\{\infty\})=\partial B \cup \frac{|B|}{|\operatorname{Stab}(B)|}\{\infty\}
$$

Basic notions

Definition

A multiset $\left\{B_{1}, \ldots, B_{t}\right\}$ of k-subsets of $G \cup\{\infty\}$ is a 1 -rotational (v, k, λ) difference family if every nonzero element of $G \cup\{\infty\}$ occurs λ times in $\overline{\partial B_{1} \cup \ldots \cup \partial B_{t}}$.

Theorem
If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a 1-rotational (v, k, λ) difference family in G, then $\bigcup_{i} \operatorname{Orb}\left(B_{i}\right)$ is the block multiset of a 1-rotational (v, k, λ) design with point set $G \cup\{\infty\}$.

1-rotational $(27,6,5)$ difference families

Previous results

Hanani design ${ }^{a}$ and Handbook design ${ }^{b}$

449	oo 280	
450	2711726	D\#512* [1042]

[^0]- In this talk $G=\mathbb{Z}_{26}$
- $\infty \notin G$
- we necessarily have 5 base blocks one of which contains ∞

1-rotational $(27,6,5)$ difference families

1-rotational $(27,6,5)$ difference families

$$
30+30+30+15+25=5 \cdot\left|\mathbb{Z}_{26} \backslash\{0\} \cup\{\infty\}\right|
$$

$$
\begin{aligned}
& \{, \quad, \quad, \quad\} \quad S t a b=\{0\} \\
& \{, \quad, \quad, \quad\} \quad S t a b=\{0\} \\
& \{, \quad, \quad, \quad\} \quad S t a b=\{0\} \\
& \{\quad, \quad, \quad, \quad\} \operatorname{Stab}=\{0,13\} \\
& \{, \quad, \quad, \infty\} \quad S t a b=\{0\}
\end{aligned}
$$

1-rotational $(27,6,5)$ difference families

1-rotational $(27,6,5)$ difference families

$$
\left.\begin{array}{lrrrrr}
A=\{ & a_{0}, & a_{1}, & a_{2}, & a_{3}, & a_{4}, \\
B=\{ & a_{5}
\end{array}\right\}
$$

Reducing repeating cases

Generally

- $\partial B=\partial(B+g)$
- $\operatorname{Orb}(B)=\operatorname{Orb}(B+g)$
for all $g \in G$ and $B \subseteq G$

1-rotational $(27,6,5)$ difference families

$$
\begin{aligned}
& A=\left\{\begin{array}{lllll}
0, & a_{1}, & a_{2}, & a_{3}, & a_{4},
\end{array} a_{5}\right\} \\
& B=\left\{\begin{array}{lllll}
0, & b_{1}, & b_{2}, & b_{3}, & b_{4}, \\
b_{5}
\end{array}\right\} \\
& C=\left\{\begin{array}{lllll}
0, & c_{1} & c_{2}, & \left.c_{3}, \quad c_{4}, \quad c_{5}\right\}
\end{array}\right. \\
& D=\left\{0, d_{1}, d_{2}, 13, d_{1}+13, d_{2}+13\right\} \\
& E=\left\{0, e_{1}, e_{2}, e_{3}, \quad e_{4}, \infty\right\}
\end{aligned}
$$

Number of parameters: 21

Computer construction

- representative for each base block (of type $A B C, D$ or E)
- all possible lists of partial differences from all the representatives
- combinations of lists of partial differences that complete to a multiset equal to $\left(\mathbb{Z}_{26} \backslash\{0\}\right) \cup\{\infty\}$ repeated 5 times
- for each obtained combination look up representative base blocks that produce lists of partial differences in this combination
- number of constructable difference families: $142923488 \sim 1.43 \cdot 10^{8}$

Notes on the computer construction (work in progress)

- some of the designs obtained from these difference families are isomorphic
- we expect at least 30% of the designs repeated up to isomorphism
- we assume that we would end up with around $\simeq 10^{7}$ non-isomorphic designs
- random construction yielded about 150000 non-isomorphic designs all with full automorphism group \mathbb{Z}_{26}
- rich automorphism groups are rare!

Further construction

For $a=1,5,7,17$ and b, c, d, e, f distinct:

$$
\left.\begin{array}{rl}
X_{0} & =\left\{\begin{array}{rrrrrr}
0, & b, & c, & d, & e, & f
\end{array}\right\} \\
X_{1} & =\left\{\begin{array}{llrrrr}
0, & 3 b, & 3 c, & 3 d, & 3 e, & 3 f
\end{array}\right\} \\
X_{2} & =\left\{\begin{array}{lrrrrr}
0, & 9 b, & 9 c, & 9 d, & 9 e, & 9 f
\end{array}\right\} \\
Y & =\left\{\begin{array}{lrrrrr}
1, & 3, & 9, & 14, & 16, & 22
\end{array}\right\} \\
Z & =\left\{\begin{array}{lllll}
a, & 3 a, & 9 a, & 0, & 13,
\end{array} \infty\right.
\end{array}\right\}
$$

Remark

- $3 X_{0}=X_{1} ; 3 X_{1}=X_{2} ; 3 X_{2}=X_{0}$
- $3 Y=Y$
- $3 Z=Z$

4140 difference families with this construction

Census of 1-rotational $(27,6,5)$ designs

230 non-isomorphic designs

- 1 design with full automorphism group of order 2106 $(a, b, c, d, e, f)=(1,7,19,21,22,25)$
- 229 non-isomorphic designs with full automorphism group of order 78
- Hanani design $(a, b, c, d, e, f)=(1,3,6,10,15,22)$
- Handbook design $(a, b, c, d, e, f)=(17,1,5,6,11,23)$
- these two are non-isomorphic!
≥ 150000 non-isomorphic designs with full automorphism group \mathbb{Z}_{26}

References

Colbourn, Charles J. and Jeffrey H. Dinitz (editors): Handbook of combinatorial designs.
Discrete Mathematics and its Applications (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, second edition, 2007, ISBN 978-1-58488-506-1; 1-58488-506-8.

雷 Hanani, Haim: Balanced incomplete block designs and related designs. Discrete Math., 11:255-369, 1975, ISSN 0012-365X,1872-681X. https://doi.org/10.1016/0012-365X(75) 90040-0.

Thank you for your attention!

[^0]: ${ }^{a}$ Haim Hanani: Balanced incomplete block designs and relatex designs. Discrete Math., 11:255-369, 1975
 ${ }^{b}$ Colbourn and Dinitz: Handbook of combinatorial designs. Discrete Mathematics and its Applications, 2nd edition, 2007

