## A census of 2-(27, 6, 5) designs

#### Filip Martinović Joint work with: Marco Buratti and Anamari Nakić

University of Zagreb

Combinatorics 2024, June 3



Faculty of Electri Engineering and Computing



supported by Croatian Science Foundation project IP-2020-02-9752

#### Definition

A  $(v, k, \lambda)$  design is a pair D = (P, B) where P is a set of v points and B is a multiset of k-subsets of P (blocks) such that every 2-subset of P is contained in exactly  $\lambda$  blocks.

- <u>full automorphism group</u>: the group Aut(D) of all permutations on P leaving B invariant
- automorphism group: any subgroup of Aut(D)



#### Definition

- Let (G, +) be a group of order v (not necessarily commutative)
- Let  $B \subseteq G$  be a subset of G
- Let Stab(B) be the G-stabilizer of B
- Let Orb(B) be the orbit of B under G

The list of differences from B is the multiset

$$\Delta B = \{x - y : x, y \in B, x \neq y\}$$

The list of partial differences is

$$\partial B = rac{1}{|Stab(B)|} \Delta B$$

#### Definition

A multiset  $\{B_1, ..., B_t\}$  of k-subsets of G is a  $(v, k, \lambda)$ -difference family if every nonidentity element of G occurs  $\lambda$  times in  $\partial B_1 \cup ... \cup \partial B_t$ .

#### Theorem

If  $\{B_1, ..., B_t\}$  is a family  $(v, k, \lambda)$  difference family in G, then  $\bigcup_i Orb(B_i)$  is the block multiset of a  $(v, k, \lambda)$  design with point set G.

#### Definition

We say that a  $(v, k, \lambda)$ -design is <u>1-rotational</u> if it admits a group of automorphisms acting sharply transitively on all but one point.

#### Definition

- Let  $\infty \notin G$
- Let  $B \subseteq G$

• We define the list of partial differences of

$$\partial(B \cup \{\infty\}) = \partial B \cup \frac{|B|}{|Stab(B)|} \{\infty\}$$

#### Definition

A multiset  $\{B_1, ..., B_t\}$  of k-subsets of  $G \cup \{\infty\}$  is a <u>1-rotational</u>  $(v, k, \lambda)$ <u>difference family</u> if every nonzero element of  $G \cup \{\infty\}$  occurs  $\lambda$  times in  $\partial B_1 \cup ... \cup \partial B_t$ .

#### Theorem

If  $\{B_1, ..., B_t\}$  is a 1-rotational  $(v, k, \lambda)$  difference family in G, then  $\bigcup_i Orb(B_i)$  is the block multiset of a 1-rotational  $(v, k, \lambda)$  design with point set  $G \cup \{\infty\}$ .



- In this talk  $G = \mathbb{Z}_{26}$
- $\infty \notin G$
- ullet we necessarily have 5 base blocks one of which contains  $\infty$





# $30 + 30 + 30 + 15 + 25 = 5 \cdot |\mathbb{Z}_{26} \setminus \{0\} \cup \{\infty\}|$

Filip Martinović (University of Zagreb)



# Generally

• 
$$\partial B = \partial (B + g)$$
  
•  $Orb(B) = Orb(B + g)$   
for all  $g \in G$  and  $B \subseteq G$ 

### Number of parameters: 21

Filip Martinović (University of Zagreb)

- representative for each base block (of type ABC, D or E)
- all possible lists of partial differences from all the representatives
- combinations of lists of partial differences that complete to a multiset equal to  $(\mathbb{Z}_{26} \setminus \{0\}) \cup \{\infty\}$  repeated 5 times
- for each obtained combination look up representative base blocks that produce lists of partial differences in this combination
- number of constructable difference families:  $142923488 \sim 1.43 \cdot 10^8$

- some of the designs obtained from these difference families are isomorphic
- we expect at least 30% of the designs repeated up to isomorphism
- $\bullet\,$  we assume that we would end up with around  $\simeq 10^7$  non-isomorphic designs
- $\bullet$  random construction yielded about 150000 non-isomorphic designs all with full automorphism group  $\mathbb{Z}_{26}$
- rich automorphism groups are rare!

#### Further construction

For a = 1, 5, 7, 17 and b, c, d, e, f distinct:

$$X_0 = \{ 0, b, c, d, e, f \}$$
  

$$X_1 = \{ 0, 3b, 3c, 3d, 3e, 3f \}$$
  

$$X_2 = \{ 0, 9b, 9c, 9d, 9e, 9f \}$$
  

$$Y = \{ 1, 3, 9, 14, 16, 22 \}$$
  

$$Z = \{ a, 3a, 9a, 0, 13, \infty \}$$

#### Remark

#### 4140 difference families with this construction

Filip Martinović (University of Zagreb)

230 non-isomorphic designs

- 1 design with full automorphism group of order 2106
   (a, b, c, d, e, f) = (1, 7, 19, 21, 22, 25)
- 229 non-isomorphic designs with full automorphism group of order 78
- Hanani design (a, b, c, d, e, f) = (1, 3, 6, 10, 15, 22)
- Handbook design (a, b, c, d, e, f) = (17, 1, 5, 6, 11, 23)
- these two are non-isomorphic!
- $\geq 150000$  non-isomorphic designs with full automorphism group  $\mathbb{Z}_{26}$

### References

Colbourn, Charles J. and Jeffrey H. Dinitz (editors): *Handbook of combinatorial designs*.

Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007, ISBN 978-1-58488-506-1; 1-58488-506-8.

Hanani, Haim: Balanced incomplete block designs and related designs. Discrete Math., 11:255–369, 1975, ISSN 0012-365X,1872-681X. https://doi.org/10.1016/0012-365X(75)90040-0.

### Thank you for your attention!