Schematic 4-designs

Renata Vlahović Kruc
(joint work with Vedran Krčadinac)

Combinatorics 2022
Mantua, Italy

May 31, 2022

[^0]
Introduction

A t - (v, k, λ) design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.

Introduction

A t - (v, k, λ) design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.
The number of blocks is denoted by $b=|\mathcal{B}|$.

Introduction

A t - (v, k, λ) design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.
The number of blocks is denoted by $b=|\mathcal{B}|$.
The degree of a design is the number of distinct block intersection numbers:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right| .
$$

Introduction

A $t-(v, k, \lambda)$ design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.
The number of blocks is denoted by $b=|\mathcal{B}|$.
The degree of a design is the number of distinct block intersection numbers:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right| .
$$

A design of degree d can have at most $\binom{v}{d}$ blocks, i.e. $b \leq\binom{ v}{d}$.
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

Introduction

$$
\begin{aligned}
d=1 & \rightsquigarrow t=2 \\
& \rightsquigarrow \text { symmetric designs }(v=b) \\
& \rightsquigarrow \text { the block intersection number is } \lambda
\end{aligned}
$$

Introduction

```
d=1}\rightsquigarrowt=
    symmetric designs ( }v=b\mathrm{ )
    \mathrm{ the block intersection number is }\lambda
    d=2}\rightsquigarrow\mathrm{ quasi-symmetric designs
    \mathrm{ the block intersection numbers are denoted by }x<y
    m
```


Introduction

$$
\begin{aligned}
d=1 & \rightsquigarrow t=2 \\
& \rightsquigarrow \text { symmetric designs }(v=b) \\
& \rightsquigarrow \text { the block intersection number is } \lambda \\
d=2 & \rightsquigarrow \text { quasi-symmetric designs } \\
& \rightsquigarrow \text { the block intersection numbers are denoted by } x<y \\
& \rightsquigarrow t \leq 4 \\
& t=4 \quad 4-(23,7,1), x=1, y=3 \text { and its complement }
\end{aligned}
$$

Introduction

$d=1 \rightsquigarrow t=2$
\rightsquigarrow symmetric designs ($v=b$)
\rightsquigarrow the block intersection number is λ
$d=2 \rightsquigarrow$ quasi-symmetric designs
\rightsquigarrow the block intersection numbers are denoted by $x<y$
$\rightsquigarrow t \leq 4$

$$
\begin{array}{ll}
t=4 & 4-(23,7,1), x=1, y=3 \text { and its complement } \\
t=3 & x=0 \\
& 3-(4 \lambda+3,2 \lambda+1, \lambda) \\
& 3-\left((\lambda+2)\left(\lambda^{2}+4 \lambda+2\right), \lambda^{2}+3 \lambda+1, \lambda\right) \\
& 3-(496,40,3), x=0, y=4 \\
& x>0 \\
& 3-(23,7,5) \text { and its residual } 3-(22,7,4), x=1, y=3
\end{array}
$$

Introduction

$d=1 \rightsquigarrow t=2$
\rightsquigarrow symmetric designs ($v=b$)
\rightsquigarrow the block intersection number is λ
$d=2 \rightsquigarrow$ quasi-symmetric designs
\rightsquigarrow the block intersection numbers are denoted by $x<y$
$\rightsquigarrow t \leq 4$
$t=4 \quad 4-(23,7,1), x=1, y=3$ and its complement
$t=3 \quad x=0$
$3-(4 \lambda+3,2 \lambda+1, \lambda)$
$3-\left((\lambda+2)\left(\lambda^{2}+4 \lambda+2\right), \lambda^{2}+3 \lambda+1, \lambda\right)$
$3-(496,40,3), x=0, y=4$
$x>0$
$3-(23,7,5)$ and its residual $3-(22,7,4), x=1, y=3$
$t=2 \quad$ many feasible parameters and many known examples

Introduction

$d=3 \rightsquigarrow t \leq 6$
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

Introduction

$$
d=3 \rightsquigarrow t \leq 6
$$

D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

$$
t=6 \quad \text { do not exist }
$$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

Introduction

$$
d=3 \rightsquigarrow t \leq 6
$$

D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

$$
t=6 \quad \text { do not exist }
$$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

$$
t=5 \quad 5-(24,8,1), x=0, y=2, z=4 \text { and its complement }
$$

Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.

Introduction

$$
d=3 \rightsquigarrow t \leq 6
$$

D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

$$
t=6 \quad \text { do not exist }
$$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

$$
t=5 \quad 5-(24,8,1), x=0, y=2, z=4 \text { and its complement }
$$

Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.

$$
t=4 \quad ? ? ?
$$

Introduction

Theorem.

The blocks of a t-design of degree d and $t \leq 2 d-2$ form a symmetric association scheme with d classes.
P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973), vi+97 pp.

Introduction

Theorem.

The blocks of a t-design of degree d and $t \leq 2 d-2$ form a symmetric association scheme with d classes.
P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973), vi+97 pp.
$\rightsquigarrow 4$-designs of degree $d=3$ form a symmetric association scheme with 3 classes
\rightsquigarrow SCHEMATIC 4-DESIGNS

Introduction

Theorem.

The blocks of a t-design of degree d and $t \leq 2 d-2$ form a symmetric association scheme with d classes.
P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973), vi+97 pp.
$\rightsquigarrow 4$-designs of degree $d=3$ form a symmetric association scheme with 3 classes
\rightsquigarrow SCHEMATIC 4-DESIGNS

GOAL: determine all admissible parameters of schematic $4-(v, k, \lambda)$ designs with intersection numbers x, y and $z(v \leq 1000)$

Parameters of the association scheme

What is an association scheme?

An association scheme with d classes on the set X is a set of graphs G_{0}, \ldots, G_{d} with vertex set X such that:

Parameters of the association scheme

What is an association scheme?

An association scheme with d classes on the set X is a set of graphs G_{0}, \ldots, G_{d} with vertex set X such that:

- G_{0} is the graph with every vertex of X adjacent to itself and no other adjacencies,

Parameters of the association scheme

What is an association scheme?

An association scheme with d classes on the set X is a set of graphs G_{0}, \ldots, G_{d} with vertex set X such that:

- G_{0} is the graph with every vertex of X adjacent to itself and no other adjacencies,
- if x and y are distinct elements of X, there is exactly one graph G_{i} in which $\{x, y\}$ is an edge,

Parameters of the association scheme

What is an association scheme?

An association scheme with d classes on the set X is a set of graphs G_{0}, \ldots, G_{d} with vertex set X such that:

- G_{0} is the graph with every vertex of X adjacent to itself and no other adjacencies,
- if x and y are distinct elements of X, there is exactly one graph G_{i} in which $\{x, y\}$ is an edge,
■ for every edge $\{x, y\}$ of G_{l}, where $x, y \in X$, the number of vertices $z \in X$ such that $\{x, z\}$ is an edge of G_{i} and $\{y, z\}$ is an edge of G_{j} depend only of the indices i, j, l. This number is denoted by $p_{i j}^{\prime}$ and is called an intersection number of the association scheme.

Parameters of the association scheme

Let (V, \mathcal{B}) be a 4 - (v, k, λ) design with three block intersection numbers $x<y<z$.

Let G_{1}, G_{2}, G_{3} be graphs with the blocks of \mathcal{B} as vertices and blocks being adjacent if they intersect in x, y or z points, respectively.

Let G_{0} be the graph with every block of \mathcal{B} adjacent to itself and no other adjacencies.

Parameters of the association scheme

Let (V, \mathcal{B}) be a 4-($v, k, \lambda)$ design with three block intersection numbers $x<y<z$.

Let G_{1}, G_{2}, G_{3} be graphs with the blocks of \mathcal{B} as vertices and blocks being adjacent if they intersect in x, y or z points, respectively.

Let G_{0} be the graph with every block of \mathcal{B} adjacent to itself and no other adjacencies.
\rightsquigarrow the graphs $G_{0}, G_{1}, G_{2}, G_{3}$ form a symmetric association scheme (for every edge $\left\{B_{1}, B_{2}\right\}$ of G_{ℓ} the number of vertices $B_{3} \in \mathcal{B}$ such that $\left\{B_{1}, B_{3}\right\}$ is an edge of G_{i} and $\left\{B_{2}, B_{3}\right\}$ is an edge of G_{j} depends only on the indices i, j, ℓ. This number is denoted by $p_{i j}^{\ell}$ and is called an intersection number of the association scheme.)

Parameters of the association scheme

We first determine the degree $n_{i}=p_{i i}^{0}$ of vertices in G_{i}. Obviously, $n_{0}=1$.
Let $B_{0} \in \mathcal{B}$ be a fixed block. Then n_{1}, n_{2}, n_{3} are the numbers of blocks B intersecting B_{0} in x, y, or z points, respectively.

Parameters of the association scheme

We first determine the degree $n_{i}=p_{i i}^{0}$ of vertices in G_{i}. Obviously, $n_{0}=1$.
Let $B_{0} \in \mathcal{B}$ be a fixed block. Then n_{1}, n_{2}, n_{3} are the numbers of blocks B intersecting B_{0} in x, y, or z points, respectively.

By double-counting pairs (I, B), where $I \subseteq B_{0}$ is a set of i points and $B \neq B_{0}$ is a block containing I, we get the equation

$$
\begin{equation*}
\binom{x}{i} n_{1}+\binom{y}{i} n_{2}+\binom{z}{i} n_{3}=\binom{k}{i}\left(\lambda_{i}-1\right) . \tag{1}
\end{equation*}
$$

Parameters of the association scheme

We first determine the degree $n_{i}=p_{i i}^{0}$ of vertices in G_{i}. Obviously, $n_{0}=1$.
Let $B_{0} \in \mathcal{B}$ be a fixed block. Then n_{1}, n_{2}, n_{3} are the numbers of blocks B intersecting B_{0} in x, y, or z points, respectively.
By double-counting pairs (I, B), where $I \subseteq B_{0}$ is a set of i points and $B \neq B_{0}$ is a block containing I, we get the equation

$$
\begin{equation*}
\binom{x}{i} n_{1}+\binom{y}{i} n_{2}+\binom{z}{i} n_{3}=\binom{k}{i}\left(\lambda_{i}-1\right) . \tag{1}
\end{equation*}
$$

Here, $\lambda_{i}=\lambda \cdot\binom{v-i}{4-i} /\binom{k-i}{4-i}$ is the number of blocks through any set of i points, for $i=0, \ldots, 4$.

The system of equations (1) for $i=0,1,2$ is linear in n_{1}, n_{2}, and n_{3}.

Parameters of the association scheme

Proposition.

The graphs G_{1}, G_{2}, G_{3} are regular with respective degrees

$$
\begin{align*}
& n_{1}=\frac{y z\left(\lambda_{0}-1\right)+(1-y-z) k\left(\lambda_{1}-1\right)+k(k-1)\left(\lambda_{2}-1\right)}{(y-x)(z-x)}, \\
& n_{2}=\frac{x z\left(\lambda_{0}-1\right)+(1-x-z) k\left(\lambda_{1}-1\right)+k(k-1)\left(\lambda_{2}-1\right)}{(x-y)(z-y)}, \tag{2}\\
& n_{3}=\frac{x y\left(\lambda_{0}-1\right)+(1-x-y) k\left(\lambda_{1}-1\right)+k(k-1)\left(\lambda_{2}-1\right)}{(x-z)(y-z)} .
\end{align*}
$$

Parameters of schematic 4-designs

Admissible parameters of schematic 4-designs with $v \leq 1000$:

Parameters of schematic 4-designs

Admissible parameters of schematic 4-designs with $v \leq 1000$:

- $5 \leq k \leq v / 2$
- $b \leq\binom{ v}{3}$ gives $\lambda \leq \frac{4}{v-3}\binom{k}{4}$
$\Longrightarrow 45398$ triples (v, k, λ) such that $\lambda_{0}, \lambda_{1}, \lambda_{2}$, and λ_{3} are integers

Parameters of schematic 4-designs

Admissible parameters of schematic 4-designs with $v \leq 1000$:

- $5 \leq k \leq v / 2$
- $b \leq\binom{ v}{3}$ gives $\lambda \leq \frac{4}{v-3}\binom{k}{4}$
$\Longrightarrow 45398$ triples (v, k, λ) such that $\lambda_{0}, \lambda_{1}, \lambda_{2}$, and λ_{3} are integers
- compute n_{1}, n_{2}, n_{3} by (2) for triples (v, k, λ) and for every choice of intersection numbers $0 \leq x<y<z<k$
$\Longrightarrow 16179978$ choices giving non-negative integer values of n_{1}, n_{2}, and n_{3}

Parameters of schematic 4-designs

Admissible parameters of schematic 4-designs with $v \leq 1000$:

- $5 \leq k \leq v / 2$
- $b \leq\binom{ v}{3}$ gives $\lambda \leq \frac{4}{v-3}\binom{k}{4}$
$\Longrightarrow 45398$ triples (v, k, λ) such that $\lambda_{0}, \lambda_{1}, \lambda_{2}$, and λ_{3} are integers
- compute n_{1}, n_{2}, n_{3} by (2) for triples (v, k, λ) and for every choice of intersection numbers $0 \leq x<y<z<k$
$\Longrightarrow 16179978$ choices giving non-negative integer values of n_{1}, n_{2}, and n_{3}
- the numbers must also satisfy equation (1) for $i=3,4$.
\Longrightarrow only 17 possibilities

Parameters of schematic 4-designs

No.	v	k	λ	x	y	z	n_{1}	n_{2}	n_{3}
1	11	5	1	1	2	3	15	20	30
2	23	8	4	0	2	4	15	280	210
3	23	11	48	3	5	7	165	792	330
4	24	8	5	0	2	4	30	448	280
5	31	15	39	5	7	9	168	450	280
6	47	11	8	1	3	5	1386	2475	462
7	71	35	264	14	17	20	1020	2450	1428
8	127	63	915	27	31	35	3472	7938	4464
9	199	99	2328	44	49	54	8820	19602	10780
10	199	99	18624	43	49	55	48125	204248	61250
11	287	143	4935	65	71	77	18744	40898	22152
12	391	195	9264	90	97	104	35308	76050	40740
13	511	255	15939	119	127	135	60960	130050	69088
14	647	323	25680	152	161	170	98532	208658	110124
15	659	329	390874	153	164	175	1011675	4182248	1156200
16	799	399	39303	189	199	209	151240	318402	167160
17	967	483	57720	230	241	252	222684	466578	243892

Parameters of the association scheme

KNOWN: the graphs $G_{0}, G_{1}, G_{2}, G_{3}$ form a symmetric association scheme

Parameters of the association scheme

KNOWN: the graphs $G_{0}, G_{1}, G_{2}, G_{3}$ form a symmetric association scheme
We denote the adjacency matrix of G_{i} by A_{i}. Obviously, $A_{0}=I$ (the $b \times b$ identity matrix). The number n_{i} is an eigenvalue of the matrix A_{i} corresponding to the all-ones eigenvector $[1, \ldots, 1]^{\top}$.

Parameters of the association scheme

KNOWN: the graphs $G_{0}, G_{1}, G_{2}, G_{3}$ form a symmetric association scheme
We denote the adjacency matrix of G_{i} by A_{i}. Obviously, $A_{0}=I$ (the $b \times b$ identity matrix). The number n_{i} is an eigenvalue of the matrix A_{i} corresponding to the all-ones eigenvector $[1, \ldots, 1]^{\top}$.

Next, we determine the remaining eigenvalues of the association scheme.
Let $p_{i}(j), j=0,1,2,3$ be the eigenvalues of A_{i}.
Then, $p_{0}(j)=1$ and $p_{i}(0)=n_{i}$ for $i, j \in\{0,1,2,3\}$. The degree of the eigenvalue $p_{i}(j)$ will be denoted by m_{j}.

Parameters of the association scheme

Theorem

The association scheme of a 4-($v, k, \lambda)$ design with three intersection numbers $x<y<z$ has the following eigenvalues:

$$
\begin{align*}
& p_{1}(j)=\frac{y z \theta_{0}(j)+(1-y-z) \theta_{1}(j)+2 \theta_{2}(j)-(y-k)(z-k)}{(y-x)(z-x)}, \\
& p_{2}(j)=\frac{x z \theta_{0}(j)+(1-x-z) \theta_{1}(j)+2 \theta_{2}(j)-(x-k)(z-k)}{(x-y)(z-y)}, \tag{3}\\
& p_{3}(j)=\frac{x y \theta_{0}(j)+(1-x-y) \theta_{1}(j)+2 \theta_{2}(j)-(x-k)(y-k)}{(x-z)(y-z)}
\end{align*}
$$

with multiplicities

$$
m_{j}= \begin{cases}\binom{v}{j}-\binom{v}{j-1}, & \text { for } j=0,1,2, \\ b-\binom{v}{2}, & \text { for } j=3\end{cases}
$$

Parameters of the association scheme

Here, $\theta_{i}(j)$ are given by

$$
\theta_{i}(j)=\frac{b}{\binom{v}{k}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j}=\frac{\lambda}{\binom{v-4}{k-4}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j} .
$$

Parameters of the association scheme

Here, $\theta_{i}(j)$ are given by

$$
\theta_{i}(j)=\frac{b}{\binom{v}{k}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j}=\frac{\lambda}{\binom{v-4}{k-4}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j} .
$$

Also, the intersection numbers of the association scheme $p_{i j}^{l}$ must be non-negative integers. They can be computed from the eigenvalues by the formula

$$
\begin{equation*}
p_{i j}^{\ell}=\frac{1}{b n_{\ell}} \sum_{s=0}^{3} p_{i}(s) p_{j}(s) p_{\ell}(s) m_{s} . \tag{4}
\end{equation*}
$$

Parameters of schematic 4-designs

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

No.	v	k	λ	x	y	z	n_{1}	n_{2}	n_{3}
1	11	5	1	1	2	3	15	20	30
2	23	8	4	0	2	4	15	280	210
3	23	11	48	3	5	7	165	792	330
4	24	8	5	0	2	4	30	448	280
5	31	15	39	5	7	9	168	450	280
6	47	11	8	1	3	5	1386	2475	462
7	71	35	264	14	17	20	1020	2450	1428
8	127	63	915	27	31	35	3472	7938	4464
9	199	99	2328	44	49	54	8820	19602	10780
10	199	99	18624	43	49	55	48125	204248	61250
11	287	143	4935	65	71	77	18744	40898	22152
12	391	195	9264	90	97	104	35308	76050	40740
13	511	255	15939	119	127	135	60960	130050	69088
14	647	323	25680	152	161	170	98532	208658	110124
15	659	329	390874	153	164	175	1011675	4182248	1156200
16	799	399	39303	189	199	209	151240	318402	167160
17	967	483	57720	230	241	252	222684	466578	243892

Parameters of schematic 4-designs

\Longrightarrow There are 11 admissible parameter sets of schematic 4-designs with $v \leq 1000$.

No.	v	k	λ	x	y	z	Existence
1	11	5	1	1	2	3	\exists
2	23	8	4	0	2	4	\exists
3	23	11	48	3	5	7	\exists
4	24	8	5	0	2	4	\exists
5	47	11	8	1	3	5	\exists
6	71	35	264	14	17	20	$?$
7	199	99	2328	44	49	54	$?$
8	391	195	9264	90	97	104	$?$
9	647	323	25680	152	161	170	$?$
10	659	329	390874	153	164	175	$?$
11	967	483	57720	230	241	252	$?$

Parameters of schematic 4-designs

Five of the 11 parameter sets in table belong to the following family:

$$
\begin{aligned}
v & =8 n^{2}-1 \\
k & =4 n^{2}-1=(2 n-1)(2 n+1) \\
\lambda & =4 n^{4}-7 n^{2}+3=(n-1)(n+1)\left(4 n^{2}-3\right) \\
x & =2 n^{2}-n-1=(n-1)(2 n+1) \\
y & =2 n^{2}-1 \\
z & =2 n^{2}+n-1=(n+1)(2 n-1)
\end{aligned}
$$

Thank you for your attention!

[^0]: * This work has been supported by Croatian Science Foundation under project 9752.

