

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Schematic 4-designs *

Renata Vlahović Kruc

(joint work with Vedran Krčadinac)

Combinatorics 2022 Mantua, Italy

May 31, 2022

* This work has been supported by Croatian Science Foundation under project 9752.

∃ ⊳

A t- (v, k, λ) design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.

프 > 프

A t- (v, k, λ) design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.

The number of blocks is denoted by $b = |\mathcal{B}|$.

< E >

1

A t- (v, k, λ) design is a set V of v points and a family \mathcal{B} of k-subsets of V, called blocks, with the property that any t-subset of points is contained in exactly λ blocks.

The number of blocks is denoted by $b = |\mathcal{B}|$.

The **degree** of a design is the number of distinct block intersection numbers:

$$d = |\{|B_1 \cap B_2| : B_1, B_2 \in \mathcal{B}, B_1 \neq B_2\}|.$$

4 E b

イロト 不得下 不良下 不良下 一度

A *t*-(*v*, *k*, λ) design is a set *V* of *v* points and a family \mathcal{B} of *k*-subsets of *V*, called blocks, with the property that any *t*-subset of points is contained in exactly λ blocks.

The number of blocks is denoted by $b = |\mathcal{B}|$.

The **degree** of a design is the number of distinct block intersection numbers:

$$d = |\{|B_1 \cap B_2| : B_1, B_2 \in \mathcal{B}, B_1 \neq B_2\}|.$$

A design of degree d can have at most $\binom{v}{d}$ blocks, i.e. $b \leq \binom{v}{d}$.

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

$$d = 1 \implies t = 2$$

$$\Rightarrow \text{ symmetric designs } (v = b)$$

$$\Rightarrow \text{ the block intersection number is } \lambda$$

1

イロト イ理ト イヨト イヨト

$$d=1 \rightsquigarrow t=2$$

- \rightsquigarrow symmetric designs (v = b)
- \leadsto the block intersection number is λ

$d = 2 \rightsquigarrow$ quasi-symmetric designs

 \rightsquigarrow the block intersection numbers are denoted by x < y $\rightsquigarrow t \le 4$

프 > 프

 $d = 1 \implies t = 2$ $\Rightarrow \text{ symmetric designs } (v = b)$ $\Rightarrow \text{ the block intersection number is } \lambda$ $d = 2 \implies \text{quasi-symmetric designs}$ $\Rightarrow \text{ the block intersection numbers are denoted by } x < y$ $\Rightarrow t \le 4$ t = 44 - (23, 7, 1), x = 1, y = 3 and its complement

୬ ବ (୦ 3

 $d = 1 \implies t = 2$ $\Rightarrow \text{ symmetric designs } (v = b)$ $\Rightarrow \text{ the block intersection number is } \lambda$ $d = 2 \implies \text{quasi-symmetric designs}$ $\Rightarrow \text{ the block intersection numbers are denoted by } x < y$ $\Rightarrow t \le 4$ t = 4 t = 4 t = 3x = 0

$$\begin{array}{l} = 3 \\ = 3 \\ 3 \cdot (4\lambda + 3, 2\lambda + 1, \lambda) \\ 3 \cdot ((\lambda + 2)(\lambda^2 + 4\lambda + 2), \lambda^2 + 3\lambda + 1, \lambda) \\ 3 \cdot (496, 40, 3), \ x = 0, \ y = 4 \\ x > 0 \\ 3 \cdot (23, 7, 5) \text{ and its residual } 3 \cdot (22, 7, 4), \ x = 1, \ y = 3 \end{array}$$

(日)

 $d = 1 \rightsquigarrow t = 2$ \rightarrow symmetric designs (v = b) \rightsquigarrow the block intersection number is λ $d = 2 \rightarrow$ quasi-symmetric designs \rightsquigarrow the block intersection numbers are denoted by x < y $\rightarrow t < 4$ t = 4 4-(23, 7, 1), x = 1, y = 3 and its complement t = 3 x = 0 $3-(4\lambda+3,2\lambda+1,\lambda)$ $3-((\lambda+2)(\lambda^2+4\lambda+2),\lambda^2+3\lambda+1,\lambda)$ 3-(496, 40, 3), x = 0, y = 4x > 03-(23,7,5) and its residual 3-(22,7,4), x = 1, y = 3

t = 2 many feasible parameters and many known examples

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

$$d = 3 \rightsquigarrow t \leq 6$$

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

- 王 ト - 王

$$d=3 \rightsquigarrow t \leq 6$$

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

t = 6 do not exist

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

Э

< E >

$$d=3 \rightsquigarrow t \leq 6$$

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

t = 6 do not exist

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

t = 5 5-(24, 8, 1), x = 0, y = 2, z = 4 and its complement

Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

< 三→ 三三

$$d = 3 \rightsquigarrow t \leq 6$$

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

t = 6 do not exist

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

t = 5 5-(24, 8, 1), x = 0, y = 2, z = 4 and its complement

Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

t = 4 ???

→ 프 → - 프

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Theorem.

The blocks of a *t*-design of degree *d* and $t \le 2d - 2$ form a symmetric association scheme with *d* classes.

P. J. Cameron, *Near-regularity conditions for designs*, Geometriae Dedicata **2** (1973), 213–223.

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. **10** (1973), vi+97 pp.

Theorem.

The blocks of a *t*-design of degree *d* and $t \le 2d - 2$ form a symmetric association scheme with *d* classes.

P. J. Cameron, *Near-regularity conditions for designs*, Geometriae Dedicata **2** (1973), 213–223.

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. **10** (1973), vi+97 pp.

→ 4-designs of degree d = 3 form a symmetric association scheme with 3 classes → SCHEMATIC 4-DESIGNS

4 E b

イロト 不得下 不良下 不良下 一度

Theorem.

The blocks of a *t*-design of degree *d* and $t \le 2d - 2$ form a symmetric association scheme with *d* classes.

P. J. Cameron, *Near-regularity conditions for designs*, Geometriae Dedicata **2** (1973), 213–223.

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. **10** (1973), vi+97 pp.

→ 4-designs of degree d = 3 form a symmetric association scheme with 3 classes → SCHEMATIC 4-DESIGNS

GOAL: determine all admissible parameters of schematic 4-(v, k, λ) designs with intersection numbers x, y and z ($v \le 1000$)

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

What is an association scheme?

An **association scheme** with *d* classes on the set *X* is a set of graphs $G_0, ..., G_d$ with vertex set *X* such that:

3 3 1

What is an association scheme?

An association scheme with d classes on the set X is a set of graphs $G_0, ..., G_d$ with vertex set X such that:

• G_0 is the graph with every vertex of X adjacent to itself and no other adjacencies,

∃ >

What is an association scheme?

An **association scheme** with *d* classes on the set *X* is a set of graphs $G_0, ..., G_d$ with vertex set *X* such that:

- *G*₀ is the graph with every vertex of *X* adjacent to itself and no other adjacencies,
- if x and y are distinct elements of X, there is exactly one graph G_i in which $\{x, y\}$ is an edge,

What is an association scheme?

An **association scheme** with *d* classes on the set *X* is a set of graphs $G_0, ..., G_d$ with vertex set *X* such that:

- *G*₀ is the graph with every vertex of *X* adjacent to itself and no other adjacencies,
- if x and y are distinct elements of X, there is exactly one graph G_i in which $\{x, y\}$ is an edge,
- for every edge $\{x, y\}$ of G_i , where $x, y \in X$, the number of vertices $z \in X$ such that $\{x, z\}$ is an edge of G_i and $\{y, z\}$ is an edge of G_j depend only of the indices *i*, *j*, *l*. This number is denoted by p_{ij}^l and is called an *intersection number* of the association scheme.

< ∃ >

イロト 不得下 不足下 不足下 一足

Let (V, \mathcal{B}) be a 4- (v, k, λ) design with three block intersection numbers x < y < z.

Let G_1 , G_2 , G_3 be graphs with the blocks of \mathcal{B} as vertices and blocks being adjacent if they intersect in x, y or z points, respectively.

Let G_0 be the graph with every block of \mathcal{B} adjacent to itself and no other adjacencies.

イロト 不得下 イヨト イヨト ニヨー

Let (V, \mathcal{B}) be a 4- (v, k, λ) design with three block intersection numbers x < y < z.

Let G_1 , G_2 , G_3 be graphs with the blocks of \mathcal{B} as vertices and blocks being adjacent if they intersect in x, y or z points, respectively.

Let G_0 be the graph with every block of \mathcal{B} adjacent to itself and no other adjacencies.

→ the graphs G_0, G_1, G_2, G_3 form a symmetric association scheme (for every edge $\{B_1, B_2\}$ of G_ℓ the number of vertices $B_3 \in \mathcal{B}$ such that $\{B_1, B_3\}$ is an edge of G_i and $\{B_2, B_3\}$ is an edge of G_j depends only on the indices i, j, ℓ . This number is denoted by p_{ij}^{ℓ} and is called an *intersection number* of the association scheme.)

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

We first determine the degree $n_i = p_{ii}^0$ of vertices in G_i . Obviously, $n_0 = 1$.

Let $B_0 \in \mathcal{B}$ be a fixed block. Then n_1 , n_2 , n_3 are the numbers of blocks B intersecting B_0 in x, y, or z points, respectively.

We first determine the degree $n_i = p_{ii}^0$ of vertices in G_i . Obviously, $n_0 = 1$.

Let $B_0 \in \mathcal{B}$ be a fixed block. Then n_1 , n_2 , n_3 are the numbers of blocks B intersecting B_0 in x, y, or z points, respectively.

By double-counting pairs (I, B), where $I \subseteq B_0$ is a set of *i* points and $B \neq B_0$ is a block containing *I*, we get the equation

$$\binom{x}{i}n_1 + \binom{y}{i}n_2 + \binom{z}{i}n_3 = \binom{k}{i}(\lambda_i - 1).$$
(1)

We first determine the degree $n_i = p_{ii}^0$ of vertices in G_i . Obviously, $n_0 = 1$.

Let $B_0 \in \mathcal{B}$ be a fixed block. Then n_1 , n_2 , n_3 are the numbers of blocks B intersecting B_0 in x, y, or z points, respectively.

By double-counting pairs (I, B), where $I \subseteq B_0$ is a set of *i* points and $B \neq B_0$ is a block containing *I*, we get the equation

$$\binom{x}{i}n_1 + \binom{y}{i}n_2 + \binom{z}{i}n_3 = \binom{k}{i}(\lambda_i - 1).$$
(1)

Here, $\lambda_i = \lambda \cdot {\binom{v-i}{4-i}} / {\binom{k-i}{4-i}}$ is the number of blocks through any set of *i* points, for $i = 0, \ldots, 4$.

The system of equations (1) for i = 0, 1, 2 is linear in n_1 , n_2 , and n_3 .

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Proposition.

The graphs G_1 , G_2 , G_3 are regular with respective degrees

$$n_{1} = \frac{yz(\lambda_{0}-1) + (1-y-z)k(\lambda_{1}-1) + k(k-1)(\lambda_{2}-1)}{(y-x)(z-x)},$$

$$n_{2} = \frac{xz(\lambda_{0}-1) + (1-x-z)k(\lambda_{1}-1) + k(k-1)(\lambda_{2}-1)}{(x-y)(z-y)},$$

$$n_{3} = \frac{xy(\lambda_{0}-1) + (1-x-y)k(\lambda_{1}-1) + k(k-1)(\lambda_{2}-1)}{(x-z)(y-z)}.$$
(2)

프 > 프

Parameters of schematic 4-designs

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Admissible parameters of schematic 4-designs with $v \le 1000$:

3.1

1

Parameters of schematic 4-designs

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Admissible parameters of schematic 4-designs with $v \leq 1000$:

•
$$5 \le k \le v/2$$

•
$$b \leq {\binom{v}{3}}$$
 gives $\lambda \leq \frac{4}{v-3} {\binom{k}{4}}$

 \implies 45 398 triples (v, k, λ) such that $\lambda_0, \lambda_1, \lambda_2$, and λ_3 are integers

Admissible parameters of schematic 4-designs with $v \le 1000$:

- $5 \le k \le v/2$
- $b \leq {\binom{v}{3}}$ gives $\lambda \leq \frac{4}{v-3} {\binom{k}{4}}$
- \implies 45 398 triples (v, k, λ) such that $\lambda_0, \lambda_1, \lambda_2$, and λ_3 are integers
- compute n₁, n₂, n₃ by (2) for triples (v, k, λ) and for every choice of intersection numbers 0 ≤ x < y < z < k</p>
- \implies 16179978 choices giving non-negative integer values of n_1 , n_2 , and n_3

A E N A E N

イロト 不得下 不足下 不足下 一足

Admissible parameters of schematic 4-designs with $v \le 1000$:

- $5 \le k \le v/2$
- $b \leq {\binom{v}{3}}$ gives $\lambda \leq \frac{4}{v-3} {\binom{k}{4}}$
- \implies 45 398 triples (v, k, λ) such that $\lambda_0, \lambda_1, \lambda_2$, and λ_3 are integers
- compute n₁, n₂, n₃ by (2) for triples (v, k, λ) and for every choice of intersection numbers 0 ≤ x < y < z < k</p>
- \implies 16179978 choices giving non-negative integer values of n_1 , n_2 , and n_3
- the numbers must also satisfy equation (1) for i = 3, 4.
- \implies only 17 possibilities

Parameters of schematic 4-designs

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

No.	V	k	λ	X	у	Ζ	<i>n</i> 1	<i>n</i> ₂	<i>n</i> 3
1	11	5	1	1	2	3	15	20	30
2	23	8	4	0	2	4	15	280	210
3	23	11	48	3	5	7	165	792	330
4	24	8	5	0	2	4	30	448	280
5	31	15	39	5	7	9	168	450	280
6	47	11	8	1	3	5	1386	2475	462
7	71	35	264	14	17	20	1020	2450	1428
8	127	63	915	27	31	35	3472	7938	4464
9	199	99	2328	44	49	54	8820	19602	10780
10	199	99	18624	43	49	55	48125	204248	61250
11	287	143	4935	65	71	77	18744	40898	22152
12	391	195	9264	90	97	104	35308	76050	40740
13	511	255	15939	119	127	135	60960	130050	69088
14	647	323	25680	152	161	170	98532	208658	110124
15	659	329	390874	153	164	175	1011675	4182248	1156200
16	799	399	39303	189	199	209	151240	318402	167160
17	967	483	57720	230	241	252	222684	466578	243892

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

KNOWN: the graphs G_0, G_1, G_2, G_3 form a symmetric association scheme

Renata Vlahović Kruc

∃ ⊳

KNOWN: the graphs G_0, G_1, G_2, G_3 form a symmetric association scheme

We denote the adjacency matrix of G_i by A_i . Obviously, $A_0 = I$ (the $b \times b$ identity matrix). The number n_i is an eigenvalue of the matrix A_i corresponding to the all-ones eigenvector $[1, \ldots, 1]^{\top}$.

イロト イポト イヨト イヨト 三日

KNOWN: the graphs G_0, G_1, G_2, G_3 form a symmetric association scheme

We denote the adjacency matrix of G_i by A_i . Obviously, $A_0 = I$ (the $b \times b$ identity matrix). The number n_i is an eigenvalue of the matrix A_i corresponding to the all-ones eigenvector $[1, \ldots, 1]^{\top}$.

Next, we determine the remaining eigenvalues of the association scheme.

Let $p_i(j)$, j = 0, 1, 2, 3 be the eigenvalues of A_i . Then, $p_0(j) = 1$ and $p_i(0) = n_i$ for $i, j \in \{0, 1, 2, 3\}$. The degree of the eigenvalue $p_i(j)$ will be denoted by m_j .

Theorem

The association scheme of a 4-(v, k, λ) design with three intersection numbers x < y < z has the following eigenvalues:

$$p_{1}(j) = \frac{yz\theta_{0}(j) + (1 - y - z)\theta_{1}(j) + 2\theta_{2}(j) - (y - k)(z - k)}{(y - x)(z - x)},$$

$$p_{2}(j) = \frac{xz\theta_{0}(j) + (1 - x - z)\theta_{1}(j) + 2\theta_{2}(j) - (x - k)(z - k)}{(x - y)(z - y)},$$

$$p_{3}(j) = \frac{xy\theta_{0}(j) + (1 - x - y)\theta_{1}(j) + 2\theta_{2}(j) - (x - k)(y - k)}{(x - z)(y - z)}$$
(3)

with multiplicities

$$m_j = \begin{cases} \binom{v}{j} - \binom{v}{j-1}, & \text{for } j = 0, 1, 2, \\ b - \binom{v}{2}, & \text{for } j = 3. \end{cases}$$

3

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Here, $\theta_i(j)$ are given by

$$\theta_i(j) = \frac{b}{\binom{v}{k}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j} = \frac{\lambda}{\binom{v-4}{k-4}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j}.$$

< ∃ ▶

Э

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Here, $\theta_i(j)$ are given by

$$\theta_i(j) = \frac{b}{\binom{v}{k}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j} = \frac{\lambda}{\binom{v-4}{k-4}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j}.$$

Also, the intersection numbers of the association scheme p_{ij}^{ℓ} must be non-negative integers. They can be computed from the eigenvalues by the formula

$$p_{ij}^{\ell} = \frac{1}{bn_{\ell}} \sum_{s=0}^{3} p_i(s) p_j(s) p_{\ell}(s) m_s.$$
(4)

Parameters of schematic 4-designs

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

No.	V	k	λ	X	y	Ζ	<i>n</i> 1	<i>n</i> ₂	<i>n</i> 3
1	11	5	1	1	2	3	15	20	30
2	23	8	4	0	2	4	15	280	210
3	23	11	48	3	5	7	165	792	330
4	24	8	5	0	2	4	30	448	280
5	31	15	39	5	7	9	168	450	280
6	47	11	8	1	3	5	1386	2475	462
7	71	35	264	14	17	20	1020	2450	1428
8	127	63	915	27	31	35	3472	7938	4464
9	199	99	2328	44	49	54	8820	19602	10780
10	199	99	18624	43	49	55	48125	204248	61250
11	287	143	4935	65	71	77	18744	40898	22152
12	391	195	9264	90	97	104	35308	76050	40740
13	511	255	15939	119	127	135	60960	130050	69088
14	647	323	25680	152	161	170	98532	208658	110124
15	659	329	390874	153	164	175	1011675	4182248	1156200
16	799	399	39303	189	199	209	151240	318402	167160
17	967	483	57720	230	241	252	222684	466578	243892

\Longrightarrow There are 11 admissible parameter sets of schematic 4-designs with $\nu \leq 1000.$

No.	V	k	λ	X	у	Ζ	Existence
1	11	5	1	1	2	3	Ξ
2	23	8	4	0	2	4	Ξ
3	23	11	48	3	5	7	Ξ
4	24	8	5	0	2	4	Ξ
5	47	11	8	1	3	5	Ξ
6	71	35	264	14	17	20	?
7	199	99	2328	44	49	54	?
8	391	195	9264	90	97	104	?
9	647	323	25680	152	161	170	?
10	659	329	390874	153	164	175	?
11	967	483	57720	230	241	252	?

Э

∃ >

Parameters of schematic 4-designs

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Five of the 11 parameter sets in table belong to the following family:

$$\begin{array}{rcl} v & = & 8n^2 - 1, \\ k & = & 4n^2 - 1 = (2n - 1)(2n + 1), \\ \lambda & = & 4n^4 - 7n^2 + 3 = (n - 1)(n + 1)(4n^2 - 3), \\ x & = & 2n^2 - n - 1 = (n - 1)(2n + 1), \\ y & = & 2n^2 - 1, \\ z & = & 2n^2 + n - 1 = (n + 1)(2n - 1). \end{array}$$

∃ ⊳

1

Deparment of Mathematics, Faculty of Science, University of Zagreb, Croatia

Thank you for your attention!

프 > 프

-4