Polarity transformations of semipartial geometries^

Vedran Krčadinac

University of Zagreb, Croatia
31.5.2022.

* This work has been supported by the Croatian Science Foundation under the projects 6732 and 9752.

Partial geometries

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

Partial geometries

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

A $\left(v_{r}, b_{k}\right)$ configuration is a partial linear space with v points of degree r and b lines of degree k.

Partial geometries

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

A $\left(v_{r}, b_{k}\right)$ configuration is a partial linear space with v points of degree r and b lines of degree k.
R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.

A partial geometry $\mathrm{pg}(s, t, \alpha)$ is a configuration with $k=s+1$ and $r=t+1$ such that for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Partial geometries

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

A $\left(v_{r}, b_{k}\right)$ configuration is a partial linear space with v points of degree r and b lines of degree k.
R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.

A partial geometry $\mathrm{pg}(s, t, \alpha)$ is a configuration with $k=s+1$ and $r=t+1$ such that for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Special cases:

- Steiner 2-designs - $p g(s, t, s+1)$; duals - $p g(s, t, t+1)$
- Bruck nets - $p g(s, t, t)$; transversal designs - $p g(s, t, s)$
- generalized quadrangles - $p g(s, t, 1)$

Partial geometries

The point graph of a partial geometry is a

$$
\operatorname{SRG}\left(\frac{(s+1)(s t+\alpha)}{\alpha}, s(t+1), s-1+t(\alpha-1), \alpha(t+1)\right)
$$

and the line graph is a

$$
\operatorname{SRG}\left(\frac{(t+1)(s t+\alpha)}{\alpha}, t(s+1), t-1+s(\alpha-1), \alpha(s+1)\right)
$$

Partial geometries

The point graph of a partial geometry is a

$$
\operatorname{SRG}\left(\frac{(s+1)(s t+\alpha)}{\alpha}, s(t+1), s-1+t(\alpha-1), \alpha(t+1)\right)
$$

and the line graph is a

$$
\operatorname{SRG}\left(\frac{(t+1)(s t+\alpha)}{\alpha}, t(s+1), t-1+s(\alpha-1), \alpha(s+1)\right)
$$

There are configurations with both associated graphs strongly regular that are not partial geometries. E.g. the Desargues configuration $\left(10_{3}\right)$:

$$
S R G(10,6,3,4)
$$

$\leadsto \quad$ (complement of the Petersen graph)

Semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25 (1978), 242-250.

A semipartial geometry $\operatorname{spg}(s, t, \alpha, \mu)$ is a configuration with $k=s+1$ and $r=t+1$ such that for every non-incident point-line pair (P, ℓ), there are either 0 or α points on ℓ collinear with P. Furthermore, for every pair of non-collinear points, there are exactly μ points collinear with both.

Semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25 (1978), 242-250.

A semipartial geometry $\operatorname{spg}(s, t, \alpha, \mu)$ is a configuration with $k=s+1$ and $r=t+1$ such that for every non-incident point-line pair (P, ℓ), there are either 0 or α points on ℓ collinear with P. Furthermore, for every pair of non-collinear points, there are exactly μ points collinear with both.

The point graph of a semipartial geometry is a

$$
\operatorname{SRG}\left(1+\frac{s(t+1)(\mu+t(s+1-\alpha)}{\mu}, s(t+1), s-1+t(\alpha-1), \mu\right)
$$

Semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25 (1978), 242-250.

A semipartial geometry $\operatorname{spg}(s, t, \alpha, \mu)$ is a configuration with $k=s+1$ and $r=t+1$ such that for every non-incident point-line pair (P, ℓ), there are either 0 or α points on ℓ collinear with P. Furthermore, for every pair of non-collinear points, there are exactly μ points collinear with both.

The point graph of a semipartial geometry is a

$$
\operatorname{SRG}\left(1+\frac{s(t+1)(\mu+t(s+1-\alpha)}{\mu}, s(t+1), s-1+t(\alpha-1), \mu\right)
$$

The Desargues configuration is a $\operatorname{spg}(2,2,2,4)$ with both associated graphs strongly regular.

Other such configurations

Another example of a $\left(\mathrm{10}_{3}\right)$ configuration:

$\operatorname{SRG}(10,6,3,4)$

(complement of the Petersen graph)

Other such configurations

Another example of a $\left(\mathrm{10}_{3}\right)$ configuration:

$\operatorname{SRG}(10,6,3,4)$

(complement of the Petersen graph)

This configuration is not a semipartial geometry and does not belong to other known generalizations of partial geometries such as strongly regular (α, β)-geometries.
N. Hamilton, R. Mathon, Strongly regular (α, β)-geometries, J. Combin. Theory Ser. A 95 (2001), no. 2, 234-250.

Non-symmetric examples?

A. E. Brouwer, W. H. Haemers, V. D. Tonchev, Embedding partial geometries in Steiner designs, in: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., 245, Cambridge Univ. Press, Cambridge, 1997, pp. 33-41.

Theorem.

If the point graph of a $\left(v_{r}, b_{k}\right)$ configuration is strongly regular, then the configuration is a partial geometry or $v \leq b$.

Non-symmetric examples?

A. E. Brouwer, W. H. Haemers, V. D. Tonchev, Embedding partial geometries in Steiner designs, in: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., 245, Cambridge Univ. Press, Cambridge, 1997, pp. 33-41.

Theorem.

If the point graph of a $\left(v_{r}, b_{k}\right)$ configuration is strongly regular, then the configuration is a partial geometry or $v \leq b$.

Corollary.

If both associated graphs of a $\left(v_{r}, b_{k}\right)$ configuration are strongly regular, then the configuration is a partial geometry or $v=b$.

Strongly regular configurations

Definition.

A strongly regular configuration with parameters $\left(v_{k} ; \lambda, \mu\right)$ is a symmetric $\left(v_{k}\right)$ configuration with the point graph a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$.

Strongly regular configurations

Definition.

A strongly regular configuration with parameters $\left(v_{k} ; \lambda, \mu\right)$ is a symmetric $\left(v_{k}\right)$ configuration with the point graph a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$.

Theorem.

In a $\left(v_{k} ; \lambda, \mu\right)$ configuration, the line graph is also a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$. If the incidence matrix is singular, the configuration is a partial geometry.

Strongly regular configurations

Definition.

A strongly regular configuration with parameters $\left(v_{k} ; \lambda, \mu\right)$ is a symmetric $\left(v_{k}\right)$ configuration with the point graph a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$.

Theorem.

In a $\left(v_{k} ; \lambda, \mu\right)$ configuration, the line graph is also a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$. If the incidence matrix is singular, the configuration is a partial geometry.

We shall call strongly regular configurations with non-singular incidence matrices proper.

Strongly regular configurations

Definition.

A strongly regular configuration with parameters $\left(v_{k} ; \lambda, \mu\right)$ is a symmetric $\left(v_{k}\right)$ configuration with the point graph a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$.

Theorem.

In a $\left(v_{k} ; \lambda, \mu\right)$ configuration, the line graph is also a $\operatorname{SRG}(v, k(k-1), \lambda, \mu)$. If the incidence matrix is singular, the configuration is a partial geometry.

We shall call strongly regular configurations with non-singular incidence matrices proper. This can be recognised from the parameters:

Proposition.

A strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration that is not a projective plane is proper if and only if $(v-k)(\lambda+1)>k(k-1)^{3}$ holds.

A family of semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25 (1978), 242-250.

Family (g) a.k.a. $L P(n, q)$:

- POINTS are lines of the projective space $P G(n, q), n \geq 3$,
- LINES are 2-planes of $P G(n, q)$, and incidence is inclusion.

A family of semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25 (1978), 242-250.

Family (g) a.k.a. $L P(n, q)$:

- POINTS are lines of the projective space $P G(n, q), n \geq 3$,
- LINES are 2-planes of $P G(n, q)$, and incidence is inclusion.

Parameters:

$$
v=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]_{q}, \quad b=\left[\begin{array}{c}
n+1 \\
3
\end{array}\right]_{q}, \quad r=\left[\begin{array}{c}
n-1 \\
1
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q} .
$$

A family of semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25 (1978), 242-250.

Family (g) a.k.a. $L P(n, q)$:

- POINTS are lines of the projective space $P G(n, q), n \geq 3$,
- LINES are 2-planes of $P G(n, q)$, and incidence is inclusion.

Parameters:

$$
v=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]_{q}, \quad b=\left[\begin{array}{c}
n+1 \\
3
\end{array}\right]_{q}, \quad r=\left[\begin{array}{c}
n-1 \\
1
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q} .
$$

Lemma.

Two lines of $P G(n, q)$ are coplanar if and only if they intersect.

A family of semipartial geometries

\rightsquigarrow semipartial geometry $\operatorname{spg}\left(k-1, r-1, q+1,(q+1)^{2}\right)$

A family of semipartial geometries

\rightsquigarrow semipartial geometry $\operatorname{spg}\left(k-1, r-1, q+1,(q+1)^{2}\right)$
α-condition:
$\alpha=q+1$

A family of semipartial geometries

\rightsquigarrow semipartial geometry $\operatorname{spg}\left(k-1, r-1, q+1,(q+1)^{2}\right)$
α-condition:
$\alpha=q+1$
μ-condition:

A family of semipartial geometries

\rightsquigarrow semipartial geometry $\operatorname{spg}\left(k-1, r-1, q+1,(q+1)^{2}\right)$
α-condition:
$\alpha=q+1$
μ-condition:

$L P(n, q)$ is a partial geometry $\Longleftrightarrow n=3$

A family of semipartial geometries

\rightsquigarrow semipartial geometry $\operatorname{spg}\left(k-1, r-1, q+1,(q+1)^{2}\right)$
α-condition:
μ-condition:

$L P(n, q)$ is a partial geometry $\Longleftrightarrow n=3$
$L P(n, q)$ is symmetric $\Longleftrightarrow n=4$

A family of semipartial geometries

$\operatorname{LP}(4, q) \rightsquigarrow$ semipartial geometry $\operatorname{spg}\left(q(q+1), q(q+1), q+1,(q+1)^{2}\right)$

A family of semipartial geometries

$\operatorname{LP}(4, q) \rightsquigarrow$ semipartial geometry $\operatorname{spg}\left(q(q+1), q(q+1), q+1,(q+1)^{2}\right)$ \rightsquigarrow strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration for

$$
v=\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q}, \quad \lambda=q^{3}+2 q^{2}+q-1, \quad \mu=(q+1)^{2} .
$$

A family of semipartial geometries

$\operatorname{LP}(4, q) \rightsquigarrow$ semipartial geometry $\operatorname{spg}\left(q(q+1), q(q+1), q+1,(q+1)^{2}\right)$ \rightsquigarrow strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration for

$$
v=\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q}, \quad \lambda=q^{3}+2 q^{2}+q-1, \quad \mu=(q+1)^{2} .
$$

Are there strongly regular configurations with the same parameters that are not semipartial geometries?

A family of semipartial geometries

$\operatorname{LP}(4, q) \rightsquigarrow$ semipartial geometry $\operatorname{spg}\left(q(q+1), q(q+1), q+1,(q+1)^{2}\right)$ \rightsquigarrow strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration for

$$
v=\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q}, \quad \lambda=q^{3}+2 q^{2}+q-1, \quad \mu=(q+1)^{2} .
$$

Are there strongly regular configurations with the same parameters that are not semipartial geometries?

We first found three such examples for $q=2$ by computer. By studying them we discovered a general construction for any prime power q.

A family of semipartial geometries

$\operatorname{LP}(4, q) \rightsquigarrow$ semipartial geometry $\operatorname{spg}\left(q(q+1), q(q+1), q+1,(q+1)^{2}\right)$ \rightsquigarrow strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration for

$$
v=\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q}, \quad \lambda=q^{3}+2 q^{2}+q-1, \quad \mu=(q+1)^{2} .
$$

Are there strongly regular configurations with the same parameters that are not semipartial geometries?

We first found three such examples for $q=2$ by computer. By studying them we discovered a general construction for any prime power q.

The construction is similar to:
D. Jungnickel, V. D. Tonchev, Polarities, quasi-symmetric designs, and Hamada's conjecture, Des. Codes Cryptogr. 51 (2009), no. 2, 131-140.

Polarity transformations

Let H_{0} be a hyperplane of $P G(4, q)$. As a subgeometry, H_{0} is isomorphic to $P G(3, q)$ and possesses a polarity π, i.e. an inclusion-reversing involution. The polarity maps the set of projective lines contained in H_{0} onto itself.

Polarity transformations

Let H_{0} be a hyperplane of $P G(4, q)$. As a subgeometry, H_{0} is isomorphic to $P G(3, q)$ and possesses a polarity π, i.e. an inclusion-reversing involution. The polarity maps the set of projective lines contained in H_{0} onto itself.

We modify incidence of the POINTS and LINES of $\operatorname{LP}(4, q)$ contained in H_{0} : a POINT L (projective line contained in H_{0}) is incident with a LINE p (projective plane contained in H_{0}) if $\pi(L) \subseteq p$. For the remaining pairs (L, p), with L or p not contained in H_{0}, incidence remains unaltered.

Polarity transformations

Let H_{0} be a hyperplane of $P G(4, q)$. As a subgeometry, H_{0} is isomorphic to $P G(3, q)$ and possesses a polarity π, i.e. an inclusion-reversing involution. The polarity maps the set of projective lines contained in H_{0} onto itself.

We modify incidence of the POINTS and LINES of $\operatorname{LP}(4, q)$ contained in H_{0} : a POINT L (projective line contained in H_{0}) is incident with a LINE p (projective plane contained in H_{0}) if $\pi(L) \subseteq p$. For the remaining pairs (L, p), with L or p not contained in H_{0}, incidence remains unaltered.

Theorem.

The new incidence structure $L P(4, q)^{\pi}$ is a strongly regular configuration with the same parameters that is not a semipartial geometry.

Polarity transformations

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

Polarity transformations

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

The POINT graphs of $L P(4, q)^{\pi}$ and $L P(4, q)$ are identical. This follows from the Lemma: if L_{1} and L_{2} are in $H_{0}, \pi\left(L_{1}\right), \pi\left(L_{1}\right)$ are contained in a plane p if and only if L_{1}, L_{2} intersect in the point $\pi(p)$ and hence are contained in some plane p^{\prime}.

Polarity transformations

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

The POINT graphs of $L P(4, q)^{\pi}$ and $L P(4, q)$ are identical. This follows from the Lemma: if L_{1} and L_{2} are in $H_{0}, \pi\left(L_{1}\right), \pi\left(L_{1}\right)$ are contained in a plane p if and only if L_{1}, L_{2} intersect in the point $\pi(p)$ and hence are contained in some plane p^{\prime}.

The line graph of $L P(4, q)^{\pi}$ is changed, but remains strongly regular.

Polarity transformations

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

The POINT graphs of $L P(4, q)^{\pi}$ and $L P(4, q)$ are identical. This follows from the Lemma: if L_{1} and L_{2} are in $H_{0}, \pi\left(L_{1}\right), \pi\left(L_{1}\right)$ are contained in a plane p if and only if L_{1}, L_{2} intersect in the point $\pi(p)$ and hence are contained in some plane p^{\prime}.

The line graph of $L P(4, q)^{\pi}$ is changed, but remains strongly regular.
The new configuration $\operatorname{LP}(4, q)^{\pi}$ is not a semipartial geometry: take a plane p in H_{0} and a projective line L not in H_{0} intersecting the hyperplane in the point $\pi(p)$. Then, (L, p) is a non-incident POINT-LINE pair of $\operatorname{LP}(4, q)^{\pi}$. If $\pi(M) \subseteq p$, then M contains $\pi(p)$ and is coplanar with L, i.e. collinear as a POINT of the configuration. Hence, all $q^{2}+q+1$ POINTS on p are collinear with L, whereas in a semipartial geometry the number is always 0 or $\alpha=q+1$.

Polarity transformations

The composition of two polarities is an isomorphism \Rightarrow

Polarity transformations

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming $L P(4, q)$ with different polarities are isomorphic.

Polarity transformations

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming $L P(4, q)$ with different polarities are isomorphic.

We define a dual transformation of $L P(4, q)$: take a point P_{0} of $P G(4, q)$ and consider the quotient geometry of lines, planes and solids containing P_{0}. It is isomorphic to $\operatorname{PG}(3, q)$ and possesses a polarity π^{\prime} permuting the planes through P_{0} and exchanging the lines and solids through P_{0}.

Polarity transformations

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming $L P(4, q)$ with different polarities are isomorphic.

We define a dual transformation of $L P(4, q)$: take a point P_{0} of $P G(4, q)$ and consider the quotient geometry of lines, planes and solids containing P_{0}. It is isomorphic to $P G(3, q)$ and possesses a polarity π^{\prime} permuting the planes through P_{0} and exchanging the lines and solids through P_{0}.

We modify incidence in $\operatorname{LP}(4, q)$ for projective lines L and planes p through P_{0} : they are incident if $L \subseteq \pi^{\prime}(p)$. Other incidences remain unaltered.

Polarity transformations

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming $L P(4, q)$ with different polarities are isomorphic.

We define a dual transformation of $L P(4, q)$: take a point P_{0} of $P G(4, q)$ and consider the quotient geometry of lines, planes and solids containing P_{0}. It is isomorphic to $P G(3, q)$ and possesses a polarity π^{\prime} permuting the planes through P_{0} and exchanging the lines and solids through P_{0}.

We modify incidence in $L P(4, q)$ for projective lines L and planes p through P_{0} : they are incident if $L \subseteq \pi^{\prime}(p)$. Other incidences remain unaltered.

Theorem.

The new incidence structure $L P(4, q)_{\pi^{\prime}}$ is the dual of $L P(4, q)^{\pi}$.
The LINE graphs of $L P(4, q)$ and $L P(4, q)_{\pi^{\prime}}$ are identical. The POINT graph of $L P(4, q)_{\pi^{\prime}}$ is changed.

Polarity transformations

A fourth strongly regular configuration $L P(4, q)_{\pi^{\prime}}^{\pi}$, is obtained if we take a non-incident point P_{0} and hyperplane H_{0} and apply both transformations. This configuration has the same LINE graph as $L P(4, q)^{\pi}$ and the same POINT graph as $L P(4, q)_{\pi^{\prime}}$ and is self-dual.

Polarity transformations

A fourth strongly regular configuration $L P(4, q)_{\pi^{\prime}}^{\pi}$, is obtained if we take a non-incident point P_{0} and hyperplane H_{0} and apply both transformations. This configuration has the same LINE graph as $L P(4, q)^{\pi}$ and the same POINT graph as $L P(4, q)_{\pi^{\prime}}$ and is self-dual.

Theorem.

For every prime power q, there are at least four strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration with parameters

$$
v=\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}, \quad k=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q}, \quad \lambda=q^{3}+2 q^{2}+q-1, \quad \mu=(q+1)^{2} .
$$

One of them is the semipartial geometry $L P(4, q)$ and the others are not semipartial geometries.

Other constructions of strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

Other constructions of strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

Theorem.

Let \mathcal{P} be a projective plane of order $n \geq 5$ and A, B, C be three noncollinear points. By deleting all points on the lines $A B, A C, B C$ and all lines through the points A, B, C, there remains a strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration with $v=(n-1)^{2}, k=n-2, \lambda=(n-4)^{2}+1$, and $\mu=(n-3)(n-4)$. This configuration is not an (α, β)-geometry.

Other constructions of strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. Strongly regular configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

Theorem.

Let \mathcal{P} be a projective plane of order $n \geq 5$ and A, B, C be three noncollinear points. By deleting all points on the lines $A B, A C, B C$ and all lines through the points A, B, C, there remains a strongly regular $\left(v_{k} ; \lambda, \mu\right)$ configuration with $v=(n-1)^{2}, k=n-2, \lambda=(n-4)^{2}+1$, and $\mu=(n-3)(n-4)$. This configuration is not an (α, β)-geometry.

Sporadic examples from difference sets:

- $\left(13_{3} ; 2,3\right)$
- $\left(63_{6} ; 13,15\right)$
- $\left(96_{5} ; 4,4\right)$
- $\left(120_{8} ; 28,24\right)$

Thanks for your attention!

