Polarity transformations of semipartial geometries*

Vedran Krčadinac

University of Zagreb, Croatia

31.5.2022.

* This work has been supported by the Croatian Science Foundation under the projects 6732 and 9752.

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular configurations*, preprint, 2021. https://arxiv.org/abs/2104.04880

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular configurations*, preprint, 2021. https://arxiv.org/abs/2104.04880

A (v_r, b_k) configuration is a partial linear space with v points of degree r and b lines of degree k.

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular configurations*, preprint, 2021. https://arxiv.org/abs/2104.04880

A (v_r, b_k) configuration is a partial linear space with v points of degree r and b lines of degree k.

R. C. Bose, *Strongly regular graphs, partial geometries and partially balanced designs*, Pacific J. Math. **13** (1963), 389–419.

A partial geometry $pg(s, t, \alpha)$ is a configuration with k = s + 1 and r = t + 1 such that for every non-incident point-line pair (P, ℓ) , there are exactly α points on ℓ collinear with P.

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular configurations*, preprint, 2021. https://arxiv.org/abs/2104.04880

A (v_r, b_k) configuration is a partial linear space with v points of degree r and b lines of degree k.

R. C. Bose, *Strongly regular graphs, partial geometries and partially balanced designs*, Pacific J. Math. **13** (1963), 389–419.

A partial geometry $pg(s, t, \alpha)$ is a configuration with k = s + 1 and r = t + 1 such that for every non-incident point-line pair (P, ℓ) , there are exactly α points on ℓ collinear with P.

Special cases:

- Steiner 2-designs pg(s, t, s+1); duals pg(s, t, t+1)
- Bruck nets -pg(s, t, t); transversal designs -pg(s, t, s)
- generalized quadrangles pg(s, t, 1)

イロト 不得 トイヨト イヨト

The point graph of a partial geometry is a

$$SRG\left(rac{(s+1)(st+lpha)}{lpha},\,s(t+1),\,s-1+t(lpha-1),\,lpha(t+1)
ight),$$

and the line graph is a

$$SRG\left(rac{(t+1)(st+lpha)}{lpha},\ t(s+1),\ t-1+s(lpha-1),\ lpha(s+1)
ight).$$

The point graph of a partial geometry is a

$$SRG\left(rac{(s+1)(st+lpha)}{lpha},\,s(t+1),\,s-1+t(lpha-1),\,lpha(t+1)
ight),$$

and the line graph is a

$$SRG\left(rac{(t+1)(st+lpha)}{lpha},\ t(s+1),\ t-1+s(lpha-1),\ lpha(s+1)
ight).$$

There are configurations with both associated graphs strongly regular that are **not** partial geometries. E.g. the Desargues configuration (10_3) :

SRG(10, 6, 3, 4) (complement of the Petersen graph)

Semipartial geometries

I. Debroey, J. A. Thas, *On semipartial geometries*, J. Comb. Theory A **25** (1978), 242–250.

A semipartial geometry $spg(s, t, \alpha, \mu)$ is a configuration with k = s + 1and r = t + 1 such that for every non-incident point-line pair (P, ℓ) , there are either 0 or α points on ℓ collinear with P. Furthermore, for every pair of non-collinear points, there are exactly μ points collinear with both.

Semipartial geometries

I. Debroey, J. A. Thas, *On semipartial geometries*, J. Comb. Theory A **25** (1978), 242–250.

A semipartial geometry $spg(s, t, \alpha, \mu)$ is a configuration with k = s + 1and r = t + 1 such that for every non-incident point-line pair (P, ℓ) , there are either 0 or α points on ℓ collinear with P. Furthermore, for every pair of non-collinear points, there are exactly μ points collinear with both.

The point graph of a semipartial geometry is a

$$SRG\left(1+rac{s(t+1)(\mu+t(s+1-lpha))}{\mu}, s(t+1), s-1+t(lpha-1), \mu
ight).$$

Semipartial geometries

I. Debroey, J. A. Thas, *On semipartial geometries*, J. Comb. Theory A **25** (1978), 242–250.

A semipartial geometry $spg(s, t, \alpha, \mu)$ is a configuration with k = s + 1and r = t + 1 such that for every non-incident point-line pair (P, ℓ) , there are either 0 or α points on ℓ collinear with P. Furthermore, for every pair of non-collinear points, there are exactly μ points collinear with both.

The point graph of a semipartial geometry is a

$$SRG\left(1+rac{s(t+1)(\mu+t(s+1-lpha)}{\mu},\,s(t+1),\,s-1+t(lpha-1),\,\mu
ight).$$

The Desargues configuration is a spg(2, 2, 2, 4) with both associated graphs strongly regular.

Other such configurations

Another example of a (10_3) configuration:

SRG(10, 6, 3, 4) (complement of the Petersen graph)

 $\sim \rightarrow$

Another example of a (10_3) configuration:

SRG(10, 6, 3, 4) (complement of the Petersen graph)

This configuration is **not** a semipartial geometry and does not belong to other known generalizations of partial geometries such as strongly regular (α, β) -geometries.

N. Hamilton, R. Mathon, *Strongly regular* (α, β) -geometries, J. Combin. Theory Ser. A **95** (2001), no. 2, 234–250.

A. E. Brouwer, W. H. Haemers, V. D. Tonchev, *Embedding partial* geometries in Steiner designs, in: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., **245**, Cambridge Univ. Press, Cambridge, 1997, pp. 33–41.

Theorem.

If the point graph of a (v_r, b_k) configuration is strongly regular, then the configuration is a partial geometry or $v \leq b$.

A. E. Brouwer, W. H. Haemers, V. D. Tonchev, *Embedding partial* geometries in Steiner designs, in: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., **245**, Cambridge Univ. Press, Cambridge, 1997, pp. 33–41.

Theorem.

If the point graph of a (v_r, b_k) configuration is strongly regular, then the configuration is a partial geometry or $v \leq b$.

Corollary.

If both associated graphs of a (v_r, b_k) configuration are strongly regular, then the configuration is a partial geometry or v = b.

(日)

A strongly regular configuration with parameters $(v_k; \lambda, \mu)$ is a symmetric (v_k) configuration with the point graph a $SRG(v, k(k-1), \lambda, \mu)$.

A strongly regular configuration with parameters $(v_k; \lambda, \mu)$ is a symmetric (v_k) configuration with the point graph a $SRG(v, k(k-1), \lambda, \mu)$.

Theorem.

In a $(v_k; \lambda, \mu)$ configuration, the line graph is also a $SRG(v, k(k-1), \lambda, \mu)$. If the incidence matrix is singular, the configuration is a partial geometry.

A strongly regular configuration with parameters $(v_k; \lambda, \mu)$ is a symmetric (v_k) configuration with the point graph a $SRG(v, k(k-1), \lambda, \mu)$.

Theorem.

In a $(v_k; \lambda, \mu)$ configuration, the line graph is also a $SRG(v, k(k-1), \lambda, \mu)$. If the incidence matrix is singular, the configuration is a partial geometry.

We shall call strongly regular configurations with non-singular incidence matrices proper.

A strongly regular configuration with parameters $(v_k; \lambda, \mu)$ is a symmetric (v_k) configuration with the point graph a $SRG(v, k(k-1), \lambda, \mu)$.

Theorem.

In a $(v_k; \lambda, \mu)$ configuration, the line graph is also a $SRG(v, k(k-1), \lambda, \mu)$. If the incidence matrix is singular, the configuration is a partial geometry.

We shall call strongly regular configurations with non-singular incidence matrices proper. This can be recognised from the parameters:

Proposition.

A strongly regular $(v_k; \lambda, \mu)$ configuration that is not a projective plane is proper if and only if $(v - k)(\lambda + 1) > k(k - 1)^3$ holds.

イロト イヨト イヨト イヨト

I. Debroey, J. A. Thas, *On semipartial geometries*, J. Comb. Theory A **25** (1978), 242–250.

Family (g) a.k.a. LP(n, q):

- POINTS are lines of the projective space PG(n, q), $n \ge 3$,
- LINES are 2-planes of PG(n, q), and incidence is inclusion.

I. Debroey, J. A. Thas, *On semipartial geometries*, J. Comb. Theory A **25** (1978), 242–250.

Family (g) a.k.a. LP(n,q):

- POINTS are lines of the projective space PG(n, q), $n \ge 3$,
- LINES are 2-planes of PG(n, q), and incidence is inclusion.

Parameters:

$$v = \begin{bmatrix} n+1\\2 \end{bmatrix}_q, \ b = \begin{bmatrix} n+1\\3 \end{bmatrix}_q, \ r = \begin{bmatrix} n-1\\1 \end{bmatrix}_q, \ k = \begin{bmatrix} 3\\2 \end{bmatrix}_q.$$

I. Debroey, J. A. Thas, *On semipartial geometries*, J. Comb. Theory A **25** (1978), 242–250.

Family (g) a.k.a. LP(n,q):

- POINTS are lines of the projective space PG(n, q), $n \ge 3$,
- LINES are 2-planes of PG(n, q), and incidence is inclusion.

Parameters:

$$v = \begin{bmatrix} n+1\\2 \end{bmatrix}_q, \ b = \begin{bmatrix} n+1\\3 \end{bmatrix}_q, \ r = \begin{bmatrix} n-1\\1 \end{bmatrix}_q, \ k = \begin{bmatrix} 3\\2 \end{bmatrix}_q$$

Lemma.

Two lines of PG(n, q) are coplanar if and only if they intersect.

< □ > < 同 > < 三 > <

 \rightsquigarrow semipartial geometry $spg(k-1, r-1, q+1, (q+1)^2)$

 \rightsquigarrow semipartial geometry $spg(k-1, r-1, q+1, (q+1)^2)$

 α -condition:

 \rightsquigarrow semipartial geometry $spg(k-1, r-1, q+1, (q+1)^2)$

 α -condition:

 μ -condition:

 \rightsquigarrow semipartial geometry $spg(k-1, r-1, q+1, (q+1)^2)$

 α -condition:

 μ -condition:

LP(n,q) is a partial geometry $\iff n=3$

 \rightsquigarrow semipartial geometry $spg(k-1, r-1, q+1, (q+1)^2)$

 α -condition:

 μ -condition:

LP(n,q) is a partial geometry $\iff n=3$

LP(n,q) is symmetric $\iff n=4$

 $LP(4,q) \rightsquigarrow$ semipartial geometry $spg(q(q+1),q(q+1),q+1,(q+1)^2)$

Image: A matrix

 $LP(4, q) \rightsquigarrow$ semipartial geometry $spg(q(q + 1), q(q + 1), q + 1, (q + 1)^2)$ \rightsquigarrow strongly regular $(v_k; \lambda, \mu)$ configuration for

$$u = \begin{bmatrix} 5\\2 \end{bmatrix}_q, \quad k = \begin{bmatrix} 3\\2 \end{bmatrix}_q, \quad \lambda = q^3 + 2q^2 + q - 1, \quad \mu = (q+1)^2.$$

 $LP(4, q) \rightsquigarrow$ semipartial geometry $spg(q(q + 1), q(q + 1), q + 1, (q + 1)^2)$ \rightsquigarrow strongly regular $(v_k; \lambda, \mu)$ configuration for

$$u = \begin{bmatrix} 5\\2 \end{bmatrix}_q, \quad k = \begin{bmatrix} 3\\2 \end{bmatrix}_q, \quad \lambda = q^3 + 2q^2 + q - 1, \quad \mu = (q+1)^2.$$

Are there strongly regular configurations with the same parameters that are not semipartial geometries?

10/16

 $LP(4, q) \rightsquigarrow$ semipartial geometry $spg(q(q + 1), q(q + 1), q + 1, (q + 1)^2)$ \rightsquigarrow strongly regular $(v_k; \lambda, \mu)$ configuration for

$$u = \begin{bmatrix} 5\\2 \end{bmatrix}_q, \quad k = \begin{bmatrix} 3\\2 \end{bmatrix}_q, \quad \lambda = q^3 + 2q^2 + q - 1, \quad \mu = (q+1)^2.$$

Are there strongly regular configurations with the same parameters that are not semipartial geometries?

We first found three such examples for q = 2 by computer. By studying them we discovered a general construction for any prime power q.

10/16

 $LP(4, q) \rightsquigarrow$ semipartial geometry $spg(q(q + 1), q(q + 1), q + 1, (q + 1)^2)$ \rightsquigarrow strongly regular $(v_k; \lambda, \mu)$ configuration for

$$u = \begin{bmatrix} 5\\2 \end{bmatrix}_q, \quad k = \begin{bmatrix} 3\\2 \end{bmatrix}_q, \quad \lambda = q^3 + 2q^2 + q - 1, \quad \mu = (q+1)^2.$$

Are there strongly regular configurations with the same parameters that are not semipartial geometries?

We first found three such examples for q = 2 by computer. By studying them we discovered a general construction for any prime power q.

The construction is similar to:

D. Jungnickel, V. D. Tonchev, *Polarities, quasi-symmetric designs, and Hamada's conjecture*, Des. Codes Cryptogr. **51** (2009), no. 2, 131–140.

Let H_0 be a hyperplane of PG(4, q). As a subgeometry, H_0 is isomorphic to PG(3, q) and possesses a polarity π , i.e. an inclusion-reversing involution. The polarity maps the set of projective lines contained in H_0 onto itself.

Let H_0 be a hyperplane of PG(4, q). As a subgeometry, H_0 is isomorphic to PG(3, q) and possesses a polarity π , i.e. an inclusion-reversing involution. The polarity maps the set of projective lines contained in H_0 onto itself.

We modify incidence of the POINTS and LINES of LP(4, q) contained in H_0 : a POINT L (projective line contained in H_0) is incident with a LINE p (projective plane contained in H_0) if $\pi(L) \subseteq p$. For the remaining pairs (L, p), with L or p not contained in H_0 , incidence remains unaltered. Let H_0 be a hyperplane of PG(4, q). As a subgeometry, H_0 is isomorphic to PG(3, q) and possesses a polarity π , i.e. an inclusion-reversing involution. The polarity maps the set of projective lines contained in H_0 onto itself.

We modify incidence of the POINTS and LINES of LP(4, q) contained in H_0 : a POINT L (projective line contained in H_0) is incident with a LINE p (projective plane contained in H_0) if $\pi(L) \subseteq p$. For the remaining pairs (L, p), with L or p not contained in H_0 , incidence remains unaltered.

Theorem.

The new incidence structure $LP(4, q)^{\pi}$ is a strongly regular configuration with the same parameters that is not a semipartial geometry.

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

The POINT graphs of $LP(4, q)^{\pi}$ and LP(4, q) are identical. This follows from the Lemma: if L_1 and L_2 are in H_0 , $\pi(L_1)$, $\pi(L_1)$ are contained in a plane p if and only if L_1 , L_2 intersect in the point $\pi(p)$ and hence are contained in some plane p'.

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

The POINT graphs of $LP(4, q)^{\pi}$ and LP(4, q) are identical. This follows from the Lemma: if L_1 and L_2 are in H_0 , $\pi(L_1)$, $\pi(L_1)$ are contained in a plane p if and only if L_1 , L_2 intersect in the point $\pi(p)$ and hence are contained in some plane p'.

The line graph of $LP(4, q)^{\pi}$ is changed, but remains strongly regular.

Proof.

The POINT and LINE degrees remain the same and there is at most one LINE through every pair of POINTS.

The POINT graphs of $LP(4, q)^{\pi}$ and LP(4, q) are identical. This follows from the Lemma: if L_1 and L_2 are in H_0 , $\pi(L_1)$, $\pi(L_1)$ are contained in a plane p if and only if L_1 , L_2 intersect in the point $\pi(p)$ and hence are contained in some plane p'.

The line graph of $LP(4, q)^{\pi}$ is changed, but remains strongly regular.

The new configuration $LP(4, q)^{\pi}$ is not a semipartial geometry: take a plane p in H_0 and a projective line L not in H_0 intersecting the hyperplane in the point $\pi(p)$. Then, (L, p) is a non-incident POINT-LINE pair of $LP(4, q)^{\pi}$. If $\pi(M) \subseteq p$, then M contains $\pi(p)$ and is coplanar with L, i.e. collinear as a POINT of the configuration. Hence, all $q^2 + q + 1$ POINTS on p are collinear with L, whereas in a semipartial geometry the number is always 0 or $\alpha = q + 1$.

The composition of two polarities is an isomorphism \Rightarrow

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming LP(4, q) with different polarities are isomorphic.

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming LP(4, q) with different polarities are isomorphic.

We define a **dual transformation** of LP(4, q): take a point P_0 of PG(4, q) and consider the quotient geometry of lines, planes and solids containing P_0 . It is isomorphic to PG(3, q) and possesses a polarity π' permuting the planes through P_0 and exchanging the lines and solids through P_0 .

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming LP(4, q) with different polarities are isomorphic.

We define a **dual transformation** of LP(4, q): take a point P_0 of PG(4, q) and consider the quotient geometry of lines, planes and solids containing P_0 . It is isomorphic to PG(3, q) and possesses a polarity π' permuting the planes through P_0 and exchanging the lines and solids through P_0 .

We modify incidence in LP(4, q) for projective lines L and planes p through P_0 : they are incident if $L \subseteq \pi'(p)$. Other incidences remain unaltered.

The composition of two polarities is an isomorphism \Rightarrow configurations obtained by transforming LP(4, q) with different polarities are isomorphic.

We define a **dual transformation** of LP(4, q): take a point P_0 of PG(4, q) and consider the quotient geometry of lines, planes and solids containing P_0 . It is isomorphic to PG(3, q) and possesses a polarity π' permuting the planes through P_0 and exchanging the lines and solids through P_0 .

We modify incidence in LP(4, q) for projective lines L and planes p through P_0 : they are incident if $L \subseteq \pi'(p)$. Other incidences remain unaltered.

Theorem.

The new incidence structure $LP(4, q)_{\pi'}$ is the dual of $LP(4, q)^{\pi}$.

The LINE graphs of LP(4, q) and $LP(4, q)_{\pi'}$ are identical. The POINT graph of $LP(4, q)_{\pi'}$ is changed.

< □ > < □ > < □ > < □ > < □ > < □ >

A **fourth** strongly regular configuration $LP(4, q)_{\pi'}^{\pi}$ is obtained if we take a non-incident point P_0 and hyperplane H_0 and apply both transformations. This configuration has the same LINE graph as $LP(4, q)^{\pi}$ and the same POINT graph as $LP(4, q)_{\pi'}$ and is self-dual.

A **fourth** strongly regular configuration $LP(4, q)_{\pi'}^{\pi}$ is obtained if we take a non-incident point P_0 and hyperplane H_0 and apply both transformations. This configuration has the same LINE graph as $LP(4, q)^{\pi}$ and the same POINT graph as $LP(4, q)_{\pi'}$ and is self-dual.

Theorem.

For every prime power q, there are at least four strongly regular (v_k ; λ, μ) configuration with parameters

$$\mathbf{v}=egin{bmatrix} 5\\2\end{bmatrix}_q, \hspace{1em} k=egin{bmatrix} 3\\2\end{bmatrix}_q, \hspace{1em} \lambda=q^3+2q^2+q-1, \hspace{1em} \mu=(q+1)^2.$$

One of them is the semipartial geometry LP(4, q) and the others are not semipartial geometries.

Other constructions of strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular* configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

Other constructions of strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular* configurations, preprint, 2021. https://arxiv.org/abs/2104.04880

Theorem.

Let \mathcal{P} be a projective plane of order $n \geq 5$ and A, B, C be three noncollinear points. By deleting all points on the lines AB, AC, BC and all lines through the points A, B, C, there remains a strongly regular $(v_k; \lambda, \mu)$ configuration with $v = (n-1)^2$, k = n-2, $\lambda = (n-4)^2 + 1$, and $\mu = (n-3)(n-4)$. This configuration is not an (α, β) -geometry.

Other constructions of strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate. *Strongly regular configurations*, preprint, 2021. https://arxiv.org/abs/2104.04880

Theorem.

Let \mathcal{P} be a projective plane of order $n \geq 5$ and A, B, C be three noncollinear points. By deleting all points on the lines AB, AC, BC and all lines through the points A, B, C, there remains a strongly regular $(v_k; \lambda, \mu)$ configuration with $v = (n-1)^2$, k = n-2, $\lambda = (n-4)^2 + 1$, and $\mu = (n-3)(n-4)$. This configuration is not an (α, β) -geometry.

Sporadic examples from difference sets:

- (13₃; 2, 3)
- (63₆; 13, 15)
- (96₅; 4, 4)
- (120₈; 28, 24)

Thanks for your attention!

∃ ▶ ∢