Hamiltonian graphs in Abelian 2-groups

Kristijan Tabak
Rochester Institute of Technology, Zagreb Campus

Combinatorics 2022, Mantua (Italy), May 30 - June 3, 2022

> This work has been fully supported by
> Croatian Science Foundation under the projects 6732 and 9752

Graphs defined on Abelian groups of exponent 2

Graphs defined on Abelian groups of exponent 2

$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.
Let $E_{2^{s}}\left[E_{2^{k}}\right]=\left\{T \leq E_{2^{k}} \mid T \cong E_{2^{s}}\right\}$.

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.
Let $E_{2^{s}}\left[E_{2^{k}}\right]=\left\{T \leq E_{2^{k}} \mid T \cong E_{2^{s}}\right\}$.
Let $E_{2^{s}}[T, H]^{-1}=\left\{S \mid T \leq S \leq H, S \cong E_{2^{s}}\right\}$

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.
Let $E_{2^{s}}\left[E_{2^{k}}\right]=\left\{T \leq E_{2^{k}} \mid T \cong E_{2^{s}}\right\}$.
Let $E_{2^{s}}[T, H]^{-1}=\left\{S \mid T \leq S \leq H, S \cong E_{2^{s}}\right\}$
$E_{2^{s}}$-subgroups that contain T and that are also contained in H.

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.
Let $E_{2^{s}}\left[E_{2^{k}}\right]=\left\{T \leq E_{2^{k}} \mid T \cong E_{2^{s}}\right\}$.
Let $E_{2^{s}}[T, H]^{-1}=\left\{S \mid T \leq S \leq H, S \cong E_{2^{s}}\right\}$
$E_{2^{s}}$-subgroups that contain T and that are also contained in H.
If $t \leq s \leq m, H \cong E_{2^{m}}$, and $T \cong E_{2^{t}}$, then

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.
Let $E_{2^{s}}\left[E_{2^{k}}\right]=\left\{T \leq E_{2^{k}} \mid T \cong E_{2^{s}}\right\}$.
Let $E_{2^{s}}[T, H]^{-1}=\left\{S \mid T \leq S \leq H, S \cong E_{2^{s}}\right\}$
$E_{2^{s}}$-subgroups that contain T and that are also contained in H.
If $t \leq s \leq m, H \cong E_{2^{m}}$, and $T \cong E_{2^{t}}$, then
$\left|E_{2^{s}}[T, H]^{-1}\right|=\left|E_{2^{s-t}}[H / T]\right|=\left|E_{2^{s-t}}\left[E_{2^{m-t}}\right]\right|=\left[\begin{array}{c}m-t \\ s-t\end{array}\right]_{2}$,

Graphs defined on Abelian groups of exponent 2
$E_{2^{k}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{k}\right\rangle, x_{i}^{2}=1$
elementary abelian group, $\left|E_{2^{k}}\right|=2^{k}$.
Let $E_{2^{s}}\left[E_{2^{k}}\right]=\left\{T \leq E_{2^{k}} \mid T \cong E_{2^{s}}\right\}$.
Let $E_{2^{s}}[T, H]^{-1}=\left\{S \mid T \leq S \leq H, S \cong E_{2^{s}}\right\}$
$E_{2^{s}}$-subgroups that contain T and that are also contained in H.
If $t \leq s \leq m, H \cong E_{2^{m}}$, and $T \cong E_{2^{t}}$, then
$\left|E_{2^{s}}[T, H]^{-1}\right|=\left|E_{2^{s-t}}[H / T]\right|=\left|E_{2^{s-t}}\left[E_{2^{m-t}}\right]\right|=\left[\begin{array}{c}m-t \\ s-t\end{array}\right]_{2}$,
where H / T is a quotient group isomorphic to $E_{2^{m-t}}$ and $\left[\begin{array}{l}a \\ b\end{array}\right]_{2}$ is a Gaussian coefficient.
$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$,
$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:
$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:

$$
\left\{T_{1}, T_{2}\right\} \in \mathcal{E}_{k} \Leftrightarrow T_{1} \cap T_{2} \cong \mathbb{Z}_{2}
$$

$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:

$$
\left\{T_{1}, T_{2}\right\} \in \mathcal{E}_{k} \Leftrightarrow T_{1} \cap T_{2} \cong \mathbb{Z}_{2}
$$

Theorem: (Ore)

$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:

$$
\left\{T_{1}, T_{2}\right\} \in \mathcal{E}_{k} \Leftrightarrow T_{1} \cap T_{2} \cong \mathbb{Z}_{2} .
$$

Theorem: (Ore)
Let G be a connected graph with $n>3$ vertices. If $\operatorname{deg}(x)+\operatorname{deg}(y)>n$ for all non-adjacent vertices x and y, then G is Hamiltonian.
$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:

$$
\left\{T_{1}, T_{2}\right\} \in \mathcal{E}_{k} \Leftrightarrow T_{1} \cap T_{2} \cong \mathbb{Z}_{2}
$$

Theorem: (Ore)
Let G be a connected graph with $n>3$ vertices. If $\operatorname{deg}(x)+\operatorname{deg}(y)>n$ for all non-adjacent vertices x and y, then G is Hamiltonian.

Corollary:

$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:

$$
\left\{T_{1}, T_{2}\right\} \in \mathcal{E}_{k} \Leftrightarrow T_{1} \cap T_{2} \cong \mathbb{Z}_{2} .
$$

Theorem: (Ore)

Let G be a connected graph with $n>3$ vertices. If $\operatorname{deg}(x)+\operatorname{deg}(y)>n$ for all non-adjacent vertices x and y, then G is Hamiltonian.

Corollary:
If $G=(V, E)$ is r-regular graph and if $\operatorname{deg}(x)>\frac{1}{2}|V|$, then G is Hamiltonian.
$\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is a graph with vertices $T \leq E_{2^{k}}$, where $T \cong E_{2^{2}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Edges \mathcal{E}_{k} are defined as follows:

$$
\left\{T_{1}, T_{2}\right\} \in \mathcal{E}_{k} \Leftrightarrow T_{1} \cap T_{2} \cong \mathbb{Z}_{2} .
$$

Theorem: (Ore)

Let G be a connected graph with $n>3$ vertices. If $\operatorname{deg}(x)+\operatorname{deg}(y)>n$ for all non-adjacent vertices x and y, then G is Hamiltonian.

Corollary:

If $G=(V, E)$ is r-regular graph and if $\operatorname{deg}(x)>\frac{1}{2}|V|$, then G is Hamiltonian.

Ore's Theorem immediately yields that $\left(E_{2^{2}}\left[E_{2^{3}}\right], \mathcal{E}_{3}\right)$ and $\left(E_{2^{2}}\left[E_{2^{4}}\right], \mathcal{E}_{4}\right)$ are Hamiltonian.

Theorem:

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:
Let V be a vertex and let

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:
Let V be a vertex and let

$$
n(V)=\left[\bigcup_{g \in V^{*}} E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right] \backslash\{V\},
$$

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:
Let V be a vertex and let

$$
n(V)=\left[\bigcup_{g \in V^{*}} E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right] \backslash\{V\},
$$

the collection of all vertices adjacent to V,

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:
Let V be a vertex and let

$$
n(V)=\left[\bigcup_{g \in V^{*}} E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right] \backslash\{V\},
$$

the collection of all vertices adjacent to V, also

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:
Let V be a vertex and let

$$
n(V)=\left[\bigcup_{g \in V^{*}} E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right] \backslash\{V\},
$$

the collection of all vertices adjacent to V, also

$$
\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right|=\left|E_{2}\left[E_{2^{k}} /\langle g\rangle\right]\right|=\left|E_{2}\left[E_{2^{k-1}}\right]\right|=2^{k-1}-1 .
$$

Theorem:

A graph $\left(E_{2^{2}}\left[E_{2^{k}}\right], \mathcal{E}_{k}\right)$ is $6\left(2^{k-2}-1\right)$-regular. The inequality

$$
\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)<0
$$

holds for all $V \in E_{2^{2}}\left[E_{2^{k}}\right]$ if any only if $k<5$.
Sketch of a proof:
Let V be a vertex and let

$$
n(V)=\left[\bigcup_{g \in V^{*}} E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right] \backslash\{V\},
$$

the collection of all vertices adjacent to V, also

$$
\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right|=\left|E_{2}\left[E_{2^{k}} /\langle g\rangle\right]\right|=\left|E_{2}\left[E_{2^{k-1}}\right]\right|=2^{k-1}-1 .
$$

Using the inclusion-exclusion formula, the following holds

Using the inclusion-exclusion formula, the following holds

$$
\begin{gathered}
\operatorname{deg}(V)=\sum_{g \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right|- \\
-\sum_{g \neq h, g, h \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1}\right|+ \\
+\sum_{g \neq h \neq k \neq g, g, h, k \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle k\rangle, E_{2^{k}}\right]^{-1}\right|-1= \\
=\binom{3}{1}\left(2^{k-1}-1\right)-\binom{3}{2} \cdot 1+1-1=6\left(2^{k-2}-1\right) .
\end{gathered}
$$

Using the inclusion-exclusion formula, the following holds

$$
\begin{gathered}
\operatorname{deg}(V)=\sum_{g \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right|- \\
-\sum_{g \neq h, g, h \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1}\right|+ \\
+\sum_{g \neq h \neq k \neq g, g, h, k \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle k\rangle, E_{2^{k}}\right]^{-1}\right|-1= \\
=\binom{3}{1}\left(2^{k-1}-1\right)-\binom{3}{2} \cdot 1+1-1=6\left(2^{k-2}-1\right) .
\end{gathered}
$$

Notice that

Using the inclusion-exclusion formula, the following holds

$$
\begin{gathered}
\operatorname{deg}(V)=\sum_{g \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right|- \\
-\sum_{g \neq h, g, h \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1}\right|+ \\
+\sum_{g \neq h \neq k \neq g, g, h, k \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle k\rangle, E_{2^{k}}\right]^{-1}\right|-1= \\
=\binom{3}{1}\left(2^{k-1}-1\right)-\binom{3}{2} \cdot 1+1-1=6\left(2^{k-2}-1\right) .
\end{gathered}
$$

Notice that

$$
\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|=\left[\begin{array}{l}
k \\
2
\end{array}\right]_{2}=\frac{1}{3}\left(2^{k}-1\right)\left(2^{k-1}-1\right) .
$$

Using the inclusion-exclusion formula, the following holds

$$
\begin{gathered}
\operatorname{deg}(V)=\sum_{g \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1}\right|- \\
-\sum_{g \neq h, g, h \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1}\right|+ \\
+\sum_{g \neq h \neq k \neq g, g, h, k \in V^{*}}\left|E_{2^{2}}\left[\langle g\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle h\rangle, E_{2^{k}}\right]^{-1} \cap E_{2^{2}}\left[\langle k\rangle, E_{2^{k}}\right]^{-1}\right|-1= \\
=\binom{3}{1}\left(2^{k-1}-1\right)-\binom{3}{2} \cdot 1+1-1=6\left(2^{k-2}-1\right) .
\end{gathered}
$$

Notice that
$\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|=\left[\begin{array}{l}k \\ 2\end{array}\right]_{2}=\frac{1}{3}\left(2^{k}-1\right)\left(2^{k-1}-1\right)$.
Put $t=2^{k-2}$.

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.
For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.

For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.
For $k \geq 5$ we have $8 t^{2}-42 t+37>0$.

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.

For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.
For $k \geq 5$ we have $8 t^{2}-42 t+37>0$.
Thus, we can not use Ore's theorem for $k \geq 5$.

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.

For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.
For $k \geq 5$ we have $8 t^{2}-42 t+37>0$.
Thus, we can not use Ore's theorem for $k \geq 5$.
Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.
For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.
For $k \geq 5$ we have $8 t^{2}-42 t+37>0$.
Thus, we can not use Ore's theorem for $k \geq 5$.
Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$
Let $E_{2^{5}}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle \times\langle d\rangle \times\langle e\rangle=\langle a, b, c, d, e\rangle$,

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.
For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.
For $k \geq 5$ we have $8 t^{2}-42 t+37>0$.
Thus, we can not use Ore's theorem for $k \geq 5$.
Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$
Let $E_{2^{5}}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle \times\langle d\rangle \times\langle e\rangle=\langle a, b, c, d, e\rangle$,
where a, b, c, d, e are generators of $E_{2^{5}}$.

Therefore,
$\frac{1}{2}\left|E_{2^{2}}\left[E_{2^{k}}\right]\right|-\operatorname{deg}(V)=\frac{1}{6}(4 t-1)(2 t-1)-6(t-1)=\frac{1}{6}\left(8 t^{2}-42 t+37\right)$.
For $k=3$ and $k=4$ we get $8 t^{2}-42 t+37<0$.
For $k \geq 5$ we have $8 t^{2}-42 t+37>0$.
Thus, we can not use Ore's theorem for $k \geq 5$.
Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$
Let $E_{2^{5}}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle \times\langle d\rangle \times\langle e\rangle=\langle a, b, c, d, e\rangle$,
where a, b, c, d, e are generators of $E_{2^{5}}$.
Any automorphism $\alpha \in \operatorname{Aut}\left(E_{2^{5}}\right)$ is represented by its action on a generators like

$$
\alpha=\left(\begin{array}{ccccc}
a & b & c & d & e \\
g_{1} & g_{2} & g_{3} & g_{4} & g_{5}
\end{array}\right)
$$

$$
\alpha=\left(\begin{array}{ccccc}
a & b & c & d & e \\
g_{1} & g_{2} & g_{3} & g_{4} & g_{5}
\end{array}\right),
$$

for some $g_{i} \in E_{2^{5}}^{*}$ such that $\left\langle g_{i} \mid i=1, \ldots, 5\right\rangle=E_{2^{5}}$

$$
\alpha=\left(\begin{array}{ccccc}
a & b & c & d & e \\
g_{1} & g_{2} & g_{3} & g_{4} & g_{5}
\end{array}\right),
$$

for some $g_{i} \in E_{2^{5}}^{*}$ such that $\left\langle g_{i} \mid i=1, \ldots, 5\right\rangle=E_{2^{5}}$
If α is of order n,

$$
\alpha=\left(\begin{array}{ccccc}
a & b & c & d & e \\
g_{1} & g_{2} & g_{3} & g_{4} & g_{5}
\end{array}\right),
$$

for some $g_{i} \in E_{2^{5}}^{*}$ such that $\left\langle g_{i} \mid i=1, \ldots, 5\right\rangle=E_{2^{5}}$
If α is of order n, then an orbit $X^{\langle\alpha\rangle}$ can be represented in a group ring $\mathbb{Z}\left[E_{2^{5}}\right]$ like this:

$$
\alpha=\left(\begin{array}{ccccc}
a & b & c & d & e \\
g_{1} & g_{2} & g_{3} & g_{4} & g_{5}
\end{array}\right),
$$

for some $g_{i} \in E_{2^{5}}^{*}$ such that $\left\langle g_{i} \mid i=1, \ldots, 5\right\rangle=E_{2^{5}}$
If α is of order n, then an orbit $X^{\langle\alpha\rangle}$ can be represented in a group ring $\mathbb{Z}\left[E_{2^{5}}\right]$ like this:

$$
X^{\langle\alpha\rangle}=X+X^{\alpha}+\cdots+X^{\alpha^{n-1}}
$$

$$
\alpha=\left(\begin{array}{ccccc}
a & b & c & d & e \\
g_{1} & g_{2} & g_{3} & g_{4} & g_{5}
\end{array}\right),
$$

for some $g_{i} \in E_{2^{5}}^{*}$ such that $\left\langle g_{i} \mid i=1, \ldots, 5\right\rangle=E_{2^{5}}$
If α is of order n, then an orbit $X^{\langle\alpha\rangle}$ can be represented in a group ring $\mathbb{Z}\left[E_{2^{5}}\right]$ like this:

$$
X^{\langle\alpha\rangle}=X+X^{\alpha}+\cdots+X^{\alpha^{n-1}}
$$

The following is crucial for a construction of a Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$.

Lemma: Let $E_{2^{5}}=\langle a, b, c, d, e\rangle$ and let $\alpha \in \operatorname{Aut}\left(E_{2^{5}}\right)$ be given by $\alpha=\left(\begin{array}{ccccc}a & b & c & d & e \\ b c & c d & b c d & d e & a\end{array}\right)$, then $o(\alpha)=31$ and $H^{\langle\alpha\rangle}=E_{2^{4}}\left[E_{2^{5}}\right]$ where $H=\langle a, b, c, d\rangle$. If $T=\langle a, b, c\rangle$ and $\Delta_{i}=T \cap T^{\alpha^{i}}$ for $i \in \mathbb{Z}_{31}$, then

$$
\Delta_{i}= \begin{cases}\langle b, c\rangle, & \text { if } i=1,14 \\ \langle a, b c\rangle, & \text { if } i=13,30 \\ \langle a b, c\rangle, & \text { if } i=17,18 \\ \cong \mathbb{Z}_{2} & \text { otherwise. }\end{cases}
$$

Lemma: Let $E_{2^{5}}=\langle a, b, c, d, e\rangle$ and let $\alpha \in \operatorname{Aut}\left(E_{2^{5}}\right)$ be given by $\alpha=\left(\begin{array}{ccccc}a & b & c & d & e \\ b c & c d & b c d & d e & a\end{array}\right)$, then $o(\alpha)=31$ and $H^{\langle\alpha\rangle}=E_{2^{4}}\left[E_{2^{5}}\right]$ where $H=\langle a, b, c, d\rangle$. If $T=\langle a, b, c\rangle$ and $\Delta_{i}=T \cap T^{\alpha^{i}}$ for $i \in \mathbb{Z}_{31}$, then

$$
\Delta_{i}= \begin{cases}\langle b, c\rangle, & \text { if } i=1,14 \\ \langle a, b c\rangle, & \text { if } i=13,30 \\ \langle a b, c\rangle, & \text { if } i=17,18 \\ \cong \mathbb{Z}_{2} & \text { otherwise. }\end{cases}
$$

We can rewrite an automorphism α in a simplified form over \mathbb{Z}_{2}

Lemma: Let $E_{2^{5}}=\langle a, b, c, d, e\rangle$ and let $\alpha \in \operatorname{Aut}\left(E_{2^{5}}\right)$ be given by $\alpha=\left(\begin{array}{ccccc}a & b & c & d & e \\ b c & c d & b c d & d e & a\end{array}\right)$, then $o(\alpha)=31$ and $H^{\langle\alpha\rangle}=E_{2^{4}}\left[E_{2^{5}}\right]$ where $H=\langle a, b, c, d\rangle$. If $T=\langle a, b, c\rangle$ and $\Delta_{i}=T \cap T^{\alpha^{i}}$ for $i \in \mathbb{Z}_{31}$, then

$$
\Delta_{i}= \begin{cases}\langle b, c\rangle, & \text { if } i=1,14 \\ \langle a, b c\rangle, & \text { if } i=13,30 \\ \langle a b, c\rangle, & \text { if } i=17,18 \\ \cong \mathbb{Z}_{2} & \text { otherwise. }\end{cases}
$$

We can rewrite an automorphism α in a simplified form over \mathbb{Z}_{2}

$$
\alpha=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

Lemma: Let $E_{2^{5}}=\langle a, b, c, d, e\rangle$ and let $\alpha \in \operatorname{Aut}\left(E_{2^{5}}\right)$ be given by $\alpha=\left(\begin{array}{ccccc}a & b & c & d & e \\ b c & c d & b c d & d e & a\end{array}\right)$, then $o(\alpha)=31$ and $H^{\langle\alpha\rangle}=E_{2^{4}}\left[E_{2^{5}}\right]$ where $H=\langle a, b, c, d\rangle$. If $T=\langle a, b, c\rangle$ and $\Delta_{i}=T \cap T^{\alpha^{i}}$ for $i \in \mathbb{Z}_{31}$, then

$$
\Delta_{i}= \begin{cases}\langle b, c\rangle, & \text { if } i=1,14 \\ \langle a, b c\rangle, & \text { if } i=13,30 \\ \langle a b, c\rangle, & \text { if } i=17,18 \\ \cong \mathbb{Z}_{2} & \text { otherwise. }\end{cases}
$$

We can rewrite an automorphism α in a simplified form over \mathbb{Z}_{2}

$$
\alpha=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

we introduce slightly different notation:
we introduce slightly different notation:

$$
\begin{aligned}
& \Delta_{\Omega_{1}}=\langle b, c\rangle, \Omega_{1} \\
&=\{1,14\}, \\
& \Delta_{\Omega_{2}}=\langle a, b c\rangle, \Omega_{2} \\
&\left.\Delta_{\Omega_{3}}=\langle 13,30\}, c\right\rangle, \Omega_{3}=\{17,18\} .
\end{aligned}
$$

we introduce slightly different notation:

$$
\begin{aligned}
& \Delta_{\Omega_{1}}=\langle b, c\rangle, \Omega_{1} \\
& \Delta_{\Omega_{2}}=\langle 1,14\}, \\
&\left.\Delta_{\Omega_{3}}=\langle a b\rangle, c\right\rangle, \Omega_{2}=\{13,30\}, \\
&=\{17,18\} .
\end{aligned}
$$

Lemma: Groups $\Delta_{\Omega_{i}}^{\alpha^{k}}$ and $\Delta_{\Omega_{i}}$ are distinct for all $i \in[3]$ and $k \in[30]$.
we introduce slightly different notation:

$$
\begin{aligned}
& \Delta_{\Omega_{1}}=\langle b, c\rangle, \Omega_{1} \\
& \Delta_{\Omega_{2}}=\langle 1,14\}, \\
&\left.\Delta_{\Omega_{3}}=\langle a b\rangle, c\right\rangle, \Omega_{2}=\{13,30\}, \\
&=\{17,18\} .
\end{aligned}
$$

Lemma: Groups $\Delta_{\Omega_{i}}^{\alpha^{k}}$ and $\Delta_{\Omega_{i}}$ are distinct for all $i \in[3]$ and $k \in[30]$.
Corollary: If $\Delta_{\Omega_{i}}^{\alpha^{k}}=\Delta_{\Omega_{j}}$, then α^{k} is a unique element from $\langle\alpha\rangle$.
we introduce slightly different notation:

$$
\begin{aligned}
& \Delta_{\Omega_{1}}=\langle b, c\rangle, \Omega_{1} \\
& \Delta_{\Omega_{2}}=\langle a, b c\rangle, \Omega_{2} \\
&=\{13,30\}, \\
& \Delta_{\Omega_{3}}=\langle a b, c\rangle, \Omega_{3}
\end{aligned}=\{17,18\} .
$$

Lemma: Groups $\Delta_{\Omega_{i}}^{\alpha^{k}}$ and $\Delta_{\Omega_{i}}$ are distinct for all $i \in[3]$ and $k \in[30]$.
Corollary: If $\Delta_{\Omega_{i}}^{\alpha^{k}}=\Delta_{\Omega_{j}}$, then α^{k} is a unique element from $\langle\alpha\rangle$.
Lemma: Subgroups $\Delta_{\Omega_{i}}, i \in[3]$ satisfy the following:

$$
\Delta_{\Omega_{1}}^{\alpha^{30}}=\Delta_{\Omega_{2}}, \Delta_{\Omega_{2}}^{\alpha^{18}}=\Delta_{\Omega_{3}}, \Delta_{\Omega_{3}}^{\alpha^{14}}=\Delta_{\Omega_{1}} .
$$

we introduce slightly different notation:

$$
\begin{aligned}
\Delta_{\Omega_{1}} & =\langle b, c\rangle, \Omega_{1} \\
\Delta_{\Omega_{2}} & =\langle 1,14\}, \\
\Delta_{\Omega_{3}} & =\langle a b\rangle, c\rangle, \Omega_{2}=\{13,30\}, \\
& =\{17,18\} .
\end{aligned}
$$

Lemma: Groups $\Delta_{\Omega_{i}}^{\alpha^{k}}$ and $\Delta_{\Omega_{i}}$ are distinct for all $i \in[3]$ and $k \in[30]$.
Corollary: If $\Delta_{\Omega_{i}}^{\alpha^{k}}=\Delta_{\Omega_{j}}$, then α^{k} is a unique element from $\langle\alpha\rangle$.
Lemma: Subgroups $\Delta_{\Omega_{i}}, i \in[3]$ satisfy the following:

$$
\Delta_{\Omega_{1}}^{\alpha^{30}}=\Delta_{\Omega_{2}}, \Delta_{\Omega_{2}}^{\alpha^{18}}=\Delta_{\Omega_{3}}, \Delta_{\Omega_{3}}^{\alpha^{14}}=\Delta_{\Omega_{1}} .
$$

Theorem: For T and α the following holds

$$
\bigcup_{i=0}^{30} E_{2^{2}}\left[T^{\alpha^{i}}\right]=E_{2^{2}}\left[E_{2^{5}}\right]
$$

we introduce slightly different notation:

$$
\begin{aligned}
\Delta_{\Omega_{1}} & =\langle b, c\rangle, \Omega_{1} \\
\Delta_{\Omega_{2}} & =\langle 1,14\}, \\
\Delta_{\Omega_{3}} & =\langle a b\rangle, c\rangle, \Omega_{2}=\{13,30\}, \\
& =\{17,18\} .
\end{aligned}
$$

Lemma: Groups $\Delta_{\Omega_{i}}^{\alpha^{k}}$ and $\Delta_{\Omega_{i}}$ are distinct for all $i \in[3]$ and $k \in[30]$.
Corollary: If $\Delta_{\Omega_{i}}^{\alpha^{k}}=\Delta_{\Omega_{j}}$, then α^{k} is a unique element from $\langle\alpha\rangle$.
Lemma: Subgroups $\Delta_{\Omega_{i}}, i \in[3]$ satisfy the following:

$$
\Delta_{\Omega_{1}}^{\alpha^{30}}=\Delta_{\Omega_{2}}, \Delta_{\Omega_{2}}^{\alpha^{18}}=\Delta_{\Omega_{3}}, \Delta_{\Omega_{3}}^{\alpha^{14}}=\Delta_{\Omega_{1}}
$$

Theorem: For T and α the following holds

$$
\bigcup_{i=0}^{30} E_{2^{2}}\left[T^{\alpha^{i}}\right]=E_{2^{2}}\left[E_{2^{5}}\right]
$$

Sketch of a proof:

Sketch of a proof:

The total number of all $E_{2^{2}}$ subgroups of $E_{2^{5}}$ is

Sketch of a proof:

The total number of all $E_{2^{2}}$ subgroups of $E_{2^{5}}$ is
$\left|E_{2^{2}}\left[E_{2^{5}}\right]\right|=\left[\begin{array}{l}5 \\ 2\end{array}\right]_{2}=31 \cdot 5$.

Sketch of a proof:

The total number of all $E_{2^{2}}$ subgroups of $E_{2^{5}}$ is
$\left|E_{2^{2}}\left[E_{2^{5}}\right]\right|=\left[\begin{array}{l}5 \\ 2\end{array}\right]_{2}=31 \cdot 5$.
Using the inclusion-exclusion formula

Sketch of a proof:

The total number of all $E_{2^{2}}$ subgroups of $E_{2^{5}}$ is
$\left|E_{2^{2}}\left[E_{2^{5}}\right]\right|=\left[\begin{array}{l}5 \\ 2\end{array}\right]_{2}=31 \cdot 5$.
Using the inclusion-exclusion formula

$$
\begin{gathered}
\left|\bigcup_{i=0}^{30} E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|=\sum_{i=0}^{30}\left|E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|-\sum_{0 \leq i<j \leq 30}\left|E_{2^{2}}\left[T^{\alpha^{i}}\right] \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]\right|+\cdots+ \\
\cdots+\sum_{0 \leq i<j<k \leq 30}\left|E_{2^{2}}\left[T^{\alpha^{i}}\right] \cap E_{2^{2}}\left[T^{\alpha^{j}}\right] \cap E_{2^{2}}\left[T^{\alpha^{k}}\right]\right|= \\
=31 \cdot 7-31 \cdot 3+31-0+0-\cdots=31 \cdot 5 .
\end{gathered}
$$

Sketch of a proof:

The total number of all $E_{2^{2}}$ subgroups of $E_{2^{5}}$ is
$\left|E_{2^{2}}\left[E_{2^{5}}\right]\right|=\left[\begin{array}{l}5 \\ 2\end{array}\right]_{2}=31 \cdot 5$.
Using the inclusion-exclusion formula

$$
\begin{gathered}
\left|\bigcup_{i=0}^{30} E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|=\sum_{i=0}^{30}\left|E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|-\sum_{0 \leq i<j \leq 30}\left|E_{2^{2}}\left[T^{\alpha^{i}}\right] \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]\right|+\cdots+ \\
\cdots+\sum_{0 \leq i<j<k \leq 30}\left|E_{2^{2}}\left[T^{\alpha^{i}}\right] \cap E_{2^{2}}\left[T^{\alpha^{j}}\right] \cap E_{2^{2}}\left[T^{\alpha^{k}}\right]\right|= \\
=31 \cdot 7-31 \cdot 3+31-0+0-\cdots=31 \cdot 5 .
\end{gathered}
$$

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Since $T \cong E_{2^{3}}$ and $A B=T$, where

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Since $T \cong E_{2^{3}}$ and $A B=T$, where
$A, B \in E_{2^{2}}\left[T^{\alpha^{i}}\right]$,

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Since $T \cong E_{2^{3}}$ and $A B=T$, where
$A, B \in E_{2^{2}}\left[T^{\alpha^{i}}\right]$,
it follows that $|A \cap B|=\frac{|A| \cdot|B|}{\left|E_{2^{3}}\right|}=2$.

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Since $T \cong E_{2^{3}}$ and $A B=T$, where
$A, B \in E_{2^{2}}\left[T^{\alpha^{i}}\right]$,
it follows that $|A \cap B|=\frac{|A| \cdot|B|}{\left|E_{2^{3}}\right|}=2$.
Hence A and B are adjacent.

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Since $T \cong E_{2^{3}}$ and $A B=T$, where
$A, B \in E_{2^{2}}\left[T^{\alpha^{i}}\right]$,
it follows that $|A \cap B|=\frac{|A| \cdot|B|}{\left|E_{2^{3}}\right|}=2$.
Hence A and B are adjacent.
Vertices in $E_{2^{2}}\left[T^{\alpha^{i}}\right] \cong K_{7}$ induce a complete graph on 7

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.

Sketch of a proof:

Since $T \cong E_{2^{3}}$ and $A B=T$, where
$A, B \in E_{2^{2}}\left[T^{\alpha^{i}}\right]$,
it follows that $|A \cap B|=\frac{|A| \cdot|B|}{\left|E_{2^{3}}\right|}=2$.
Hence A and B are adjacent.
Vertices in $E_{2^{2}}\left[T^{\alpha^{i}}\right] \cong K_{7}$ induce a complete graph on 7
if we delete some vertices together with the edges incident to them from $E_{2^{2}}\left[T^{\alpha^{i}}\right]$,

Theorem: A graph $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$ is Hamiltonian.
Sketch of a proof:
Since $T \cong E_{2^{3}}$ and $A B=T$, where
$A, B \in E_{2^{2}}\left[T^{\alpha^{i}}\right]$,
it follows that $|A \cap B|=\frac{|A| \cdot|B|}{\left|E_{2^{3}}\right|}=2$.
Hence A and B are adjacent.
Vertices in $E_{2^{2}}\left[T^{\alpha^{i}}\right] \cong K_{7}$ induce a complete graph on 7
if we delete some vertices together with the edges incident to them from $E_{2^{2}}\left[T^{\alpha^{i}}\right]$,
there will be a path in a remaining graph that visits each remaining vertex.

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices

$$
T^{\alpha^{i}} \cap T^{\alpha^{i-1}} \text { and } T^{\alpha^{i}} \cap T^{\alpha^{i+1}} .
$$

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices

$$
\begin{aligned}
& T^{\alpha^{i}} \cap T^{\alpha^{i-1}} \text { and } T^{\alpha^{i}} \cap T^{\alpha^{i+1}} . \\
& \text { Let } L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\} .
\end{aligned}
$$

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices

$$
T^{\alpha^{i}} \cap T^{\alpha^{i-1}} \text { and } T^{\alpha^{i}} \cap T^{\alpha^{i+1}} .
$$

$$
\text { Let } L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\} .
$$

Notice that $L\left(T^{\alpha^{i}}\right)=\left\{\Delta_{1}^{\alpha^{i-1}}, \Delta_{1}^{\alpha^{i}}\right\}$ (since $T \cap T^{\alpha}=\Delta_{1}$).

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices
$T^{\alpha^{i}} \cap T^{\alpha^{i-1}}$ and $T^{\alpha^{i}} \cap T^{\alpha^{i+1}}$.
Let $L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\}$.
Notice that $L\left(T^{\alpha^{i}}\right)=\left\{\Delta_{1}^{\alpha^{i-1}}, \Delta_{1}^{\alpha^{i}}\right\}$ (since $T \cap T^{\alpha}=\Delta_{1}$).
Vertices $L\left(T^{\alpha^{i}}\right)$ are links between neighboring graphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$.

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices
$T^{\alpha^{i}} \cap T^{\alpha^{i-1}}$ and $T^{\alpha^{i}} \cap T^{\alpha^{i+1}}$.
Let $L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\}$.
Notice that $L\left(T^{\alpha^{i}}\right)=\left\{\Delta_{1}^{\alpha^{i-1}}, \Delta_{1}^{\alpha^{i}}\right\}$ (since $T \cap T^{\alpha}=\Delta_{1}$).
Vertices $L\left(T^{\alpha^{i}}\right)$ are links between neighboring graphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$.

30
all vertices in $\bigcup_{i=0} L\left(T^{\alpha^{i}}\right)$ are mutually different (Lemmas above).

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices
$T^{\alpha^{i}} \cap T^{\alpha^{i-1}}$ and $T^{\alpha^{i}} \cap T^{\alpha^{i+1}}$.
Let $L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\}$.
Notice that $L\left(T^{\alpha^{i}}\right)=\left\{\Delta_{1}^{\alpha^{i-1}}, \Delta_{1}^{\alpha^{i}}\right\}$ (since $T \cap T^{\alpha}=\Delta_{1}$).
Vertices $L\left(T^{\alpha^{i}}\right)$ are links between neighboring graphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{a^{i+1}}\right]$.

30
all vertices in $\bigcup_{i=0} L\left(T^{\alpha^{i}}\right)$ are mutually different (Lemmas above).
As the initial step of a recursive construction of a Hamiltonian cycle, we define

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices
$T^{\alpha^{i}} \cap T^{\alpha^{i-1}}$ and $T^{\alpha^{i}} \cap T^{\alpha^{i+1}}$.
Let $L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\}$.
Notice that $L\left(T^{\alpha^{i}}\right)=\left\{\Delta_{1}^{\alpha^{i-1}}, \Delta_{1}^{\alpha^{i}}\right\}$ (since $T \cap T^{\alpha}=\Delta_{1}$).
Vertices $L\left(T^{\alpha^{i}}\right)$ are links between neighboring graphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$.

30
all vertices in $\bigcup_{i=0} L\left(T^{\alpha^{i}}\right)$ are mutually different (Lemmas above).
As the initial step of a recursive construction of a Hamiltonian cycle, we define
$E_{2^{2}}\left[T^{\alpha^{i}}\right]_{0}=E_{2^{2}}\left[T^{\alpha^{i}}\right]$ for all $i \in \mathbb{Z}_{31}$.

The subgraphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$ have common vertices
$T^{\alpha^{i}} \cap T^{\alpha^{i-1}}$ and $T^{\alpha^{i}} \cap T^{\alpha^{i+1}}$.
Let $L\left(T^{\alpha^{i}}\right)=\left\{T^{\alpha^{i}} \cap T^{\alpha^{i-1}}, T^{\alpha^{i}} \cap T^{\alpha^{i+1}}\right\}$.
Notice that $L\left(T^{\alpha^{i}}\right)=\left\{\Delta_{1}^{\alpha^{i-1}}, \Delta_{1}^{\alpha^{i}}\right\}$ (since $T \cap T^{\alpha}=\Delta_{1}$).
Vertices $L\left(T^{\alpha^{i}}\right)$ are links between neighboring graphs $E_{2^{2}}\left[T^{\alpha^{i-1}}\right], E_{2^{2}}\left[T^{\alpha^{i}}\right]$ and $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]$.

30
all vertices in $\bigcup_{i=0} L\left(T^{\alpha^{i}}\right)$ are mutually different (Lemmas above).
As the initial step of a recursive construction of a Hamiltonian cycle, we define
$E_{2^{2}}\left[T^{\alpha^{i}}\right]_{0}=E_{2^{2}}\left[T^{\alpha^{i}}\right]$ for all $i \in \mathbb{Z}_{31}$.

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that

$$
A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}
$$

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that
$A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$,
then A is not a link, but it is a vertex in graphs $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ and $E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$.

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that
$A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$,
then A is not a link, but it is a vertex in graphs $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ and $E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$.
Then, we delete a vertex A and the edges incident to it.

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{2}}\right]$.

If there is a vertex A and $j \neq i$ such that
$A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$,
then A is not a link, but it is a vertex in graphs $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ and $E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$.
Then, we delete a vertex A and the edges incident to it.
In this case let $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}+1}=E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash\{A\}$.

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that
$A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$,
then A is not a link, but it is a vertex in graphs $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ and $E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$.
Then, we delete a vertex A and the edges incident to it.
In this case let $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}+1}=E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash\{A\}$.
If such a vertex A does not exist, we leave $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ unchanged and

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that
$A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$,
then A is not a link, but it is a vertex in graphs $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ and $E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$.
Then, we delete a vertex A and the edges incident to it.
In this case let $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}+1}=E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash\{A\}$.
If such a vertex A does not exist, we leave $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ unchanged and denote that by $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$.

Assume that we have formed a sequence $\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$,
where m_{i} is a sequence of integers that count number of steps (deletions) that we have done in the recursive procedure within $E_{2^{2}}\left[T^{\alpha^{i}}\right]$.

If there is a vertex A and $j \neq i$ such that
$A \in\left(E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash L\left(T^{\alpha^{i}}\right)\right) \cap E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$,
then A is not a link, but it is a vertex in graphs $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ and $E_{2^{2}}\left[T^{\alpha^{j}}\right]_{m_{j}}$.
Then, we delete a vertex A and the edges incident to it. In this case let $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}+1}=E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \backslash\{A\}$.

If such a vertex A does not exist, we leave $E_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$ unchanged and denote that by $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$.

Now, continue the same procedure with $E_{2^{2}}\left[T^{\alpha^{i+1}}\right]_{m_{i+1}}$.

Following this process, after finite number of steps, we will construct a sequence

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.
Using a notation in a group ring $\mathbb{Z}\left[E_{2^{2}}\left[E_{2^{5}}\right]\right]$, we have the following:

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.
Using a notation in a group ring $\mathbb{Z}\left[E_{2^{2}}\left[E_{2^{5}}\right]\right]$, we have the following:

$$
\bigcup_{i \in \mathbb{Z}_{31}} \bigcup_{A \in \widetilde{E}_{2^{2}}\left[T T^{i}\right]_{m_{i}}} A=E_{2^{2}}\left[E_{\left.2^{5}\right]} .\right.
$$

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.
Using a notation in a group ring $\mathbb{Z}\left[E_{2^{2}}\left[E_{2^{5}}\right]\right]$, we have the following:

$$
\bigcup_{i \in \mathbb{Z}_{31}} \bigcup_{A \in \widetilde{E}_{22}\left[T T^{i}\right]_{m_{i}}} A=E_{2^{2}}\left[E_{2^{5}}\right] .
$$

$\bigcup_{i=0}^{30} E_{2^{2}}\left[T^{\alpha^{i}}\right]$ contains all edges in $E_{2^{5}}$.

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.
Using a notation in a group ring $\mathbb{Z}\left[E_{2^{2}}\left[E_{2^{5}}\right]\right]$, we have the following:

$$
\bigcup_{i \in \mathbb{Z}_{31}} \bigcup_{A \in \widetilde{E}_{2}\left[T T^{i}\right]_{m_{i}}} A=E_{2^{2}}\left[E_{2^{5}}\right] .
$$

30
$\bigcup_{i=0} E_{2^{2}}\left[T^{\alpha^{i}}\right]$ contains all edges in $E_{2^{5}}$.
From $\left|E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|=7$ and the fact that we do not delete links in this procedure,

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.
Using a notation in a group ring $\mathbb{Z}\left[E_{2^{2}}\left[E_{2^{5}}\right]\right]$, we have the following:

$$
\bigcup_{i \in \mathbb{Z}_{31}} \bigcup_{A \in \widetilde{E}_{2^{2}}\left[T T^{i}\right]_{m_{i}}} A=E_{2^{2}}\left[E_{2^{5}}\right] .
$$

30
$\bigcup_{i=0} E_{2^{2}}\left[T^{\alpha^{i}}\right]$ contains all edges in $E_{2^{5}}$.
From $\left|E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|=7$ and the fact that we do not delete links in this procedure,
we get $m_{i} \leq 5$ and $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \cong K_{7-m_{i}}$.

Following this process, after finite number of steps, we will construct a sequence
$\left(\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}\right)_{i \in \mathbb{Z}_{31}}$.
Using a notation in a group ring $\mathbb{Z}\left[E_{2^{2}}\left[E_{2^{5}}\right]\right]$, we have the following:

$$
\bigcup_{i \in \mathbb{Z}_{31}} \bigcup_{A \in \widetilde{E}_{2^{2}}\left[T T^{i}\right]_{m_{i}}} A=E_{2^{2}}\left[E_{2^{5}}\right] .
$$

30
$\bigcup_{i=0} E_{2^{2}}\left[T^{\alpha^{i}}\right]$ contains all edges in $E_{2^{5}}$.
From $\left|E_{2^{2}}\left[T^{\alpha^{i}}\right]\right|=7$ and the fact that we do not delete links in this procedure,
we get $m_{i} \leq 5$ and $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}} \cong K_{7-m_{i}}$.

Therefore, there is always a path through each vertex of $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$, where endvertices belong to $L\left(T^{\alpha^{i}}\right)$.

Therefore, there is always a path through each vertex of $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$, where endvertices belong to $L\left(T^{\alpha^{i}}\right)$.

Since all links are preserved, the mentioned paths, after being joined together, make a Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$.

Therefore, there is always a path through each vertex of $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$, where endvertices belong to $L\left(T^{\alpha^{i}}\right)$.

Since all links are preserved, the mentioned paths, after being joined together, make a Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$.

Thank you for your attention

Therefore, there is always a path through each vertex of $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$, where endvertices belong to $L\left(T^{\alpha^{i}}\right)$.

Since all links are preserved, the mentioned paths, after being joined together, make a Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$.

Thank you for your attention Questions?

Therefore, there is always a path through each vertex of $\widetilde{E}_{2^{2}}\left[T^{\alpha^{i}}\right]_{m_{i}}$, where endvertices belong to $L\left(T^{\alpha^{i}}\right)$.

Since all links are preserved, the mentioned paths, after being joined together, make a Hamiltonian cycle in $\left(E_{2^{2}}\left[E_{2^{5}}\right], \mathcal{E}_{5}\right)$.

Thank you for your attention Questions?

