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Let E2s[T,H ]−1 = {S | T ≤ S ≤ H, S ∼= E2s}

E2s-subgroups that contain T and that are also contained in H.
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i = 1
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Let E2s[T,H ]−1 = {S | T ≤ S ≤ H, S ∼= E2s}

E2s-subgroups that contain T and that are also contained in H.

If t ≤ s ≤ m, H ∼= E2m, and T ∼= E2t, then

|E2s[T,H ]−1| = |E2s−t[H/T ]| = |E2s−t[E2m−t]| =
[
m− t
s− t

]
2

,

where H/T is a quotient group isomorphic to E2m−t and

[
a

b

]
2

is a

Gaussian coefficient.
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Theorem: (Ore)
Let G be a connected graph with n > 3 vertices. If deg(x)+deg(y) > n
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Hamiltonian.
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(E22[E2k], Ek) is a graph with vertices T ≤ E2k,

where T ∼= E22 = Z2 × Z2.

Edges Ek are defined as follows:

{T1, T2} ∈ Ek ⇔ T1 ∩ T2
∼= Z2.

Theorem: (Ore)
Let G be a connected graph with n > 3 vertices. If deg(x)+deg(y) > n
for all non-adjacent vertices x and y, then G is Hamiltonian.

Corollary:
If G = (V,E) is r-regular graph and if deg(x) > 1

2
|V |, then G is

Hamiltonian.

Ore’s Theorem immediately yields that (E22[E23], E3) and (E22[E24], E4)
are Hamiltonian.
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Theorem:
A graph (E22[E2k], Ek) is 6(2k−2 − 1)-regular. The inequality

1

2
|E22[E2k]| − deg(V ) < 0

holds for all V ∈ E22[E2k] if any only if k < 5.
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Using the inclusion-exclusion formula, the following holds

deg(V ) =
∑
g∈V ∗

|E22[〈g〉, E2k]
−1|−

−
∑

g 6=h, g,h∈V ∗

∣∣E22[〈g〉, E2k]
−1 ∩ E22[〈h〉, E2k]

−1
∣∣+

+
∑

g 6=h 6=k 6=g, g,h,k∈V ∗

∣∣E22[〈g〉, E2k]
−1 ∩ E22[〈h〉, E2k]

−1 ∩ E22[〈k〉, E2k]
−1
∣∣−1 =

=

(
3

1

)
(2k−1 − 1)−

(
3

2

)
· 1 + 1− 1 = 6(2k−2 − 1).
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=

(
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)
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(
3
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)
· 1 + 1− 1 = 6(2k−2 − 1).

Notice that

|E22[E2k]| =
[
k

2

]
2

=
1

3
(2k − 1)(2k−1 − 1).

Put t = 2k−2.
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Therefore,

1

2
|E22[E2k]|−deg(V ) =

1

6
(4t−1)(2t−1)−6(t−1) =

1

6
(8t2−42t+37).
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Thus, we can not use Ore’s theorem for k ≥ 5.

Hamiltonian cycle in (E22[E25], E5)

Let E25 = 〈a〉 × 〈b〉 × 〈c〉 × 〈d〉 × 〈e〉 = 〈a, b, c, d, e〉,

where a, b, c, d, e are generators of E25.

Any automorphism α ∈ Aut(E25) is represented by its action on a
generators like



7/15

JJ
II
J
I

Back

Close

α =

(
a b c d e
g1 g2 g3 g4 g5

)
,
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for some gi ∈ E∗25 such that 〈gi | i = 1, . . . , 5〉 = E25
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α =

(
a b c d e
g1 g2 g3 g4 g5

)
,

for some gi ∈ E∗25 such that 〈gi | i = 1, . . . , 5〉 = E25

If α is of order n,

then an orbit X 〈α〉 can be represented in a group ring Z[E25] like this:

X 〈α〉 = X + Xα + · · · + Xαn−1

.

The following is crucial for a construction of a Hamiltonian cycle in
(E22[E25], E5).
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Lemma: Let E25 = 〈a, b, c, d, e〉 and let α ∈ Aut(E25) be given by

α =

(
a b c d e
bc cd bcd de a

)
, then o(α) = 31 and H 〈α〉 = E24[E25] where

H = 〈a, b, c, d〉. If T = 〈a, b, c〉 and ∆i = T ∩ T αi for i ∈ Z31, then

∆i =


〈b, c〉, if i = 1, 14

〈a, bc〉, if i = 13, 30

〈ab, c〉, if i = 17, 18
∼= Z2 otherwise.
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|E22[E25]| =
[

5

2

]
2

= 31 · 5.

Using the inclusion-exclusion formula

∣∣ 30⋃
i=0

E22[T
αi]
∣∣ =

30∑
i=0

∣∣E22[T
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∣∣E22[T
αi] ∩ E22[T
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∣∣ + · · ·+

· · · +
∑

0≤i<j<k≤30

∣∣E22[T
αi] ∩ E22[T

αj ] ∩ E22[T
αk]| =

= 31 · 7− 31 · 3 + 31− 0 + 0− · · · = 31 · 5.
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Theorem: A graph (E22[E25], E5) is Hamiltonian.

Sketch of a proof:

Since T ∼= E23 and AB = T , where

A, B ∈ E22[T
αi],

it follows that |A ∩B| = |A| · |B|
|E23|

= 2.

Hence A and B are adjacent.

Vertices in E22[T
αi] ∼= K7 induce a complete graph on 7

if we delete some vertices together with the edges incident to them from
E22[T

αi],

there will be a path in a remaining graph that visits each remaining
vertex.
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thenA is not a link, but it is a vertex in graphsE22[T
αi]mi
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αj ]mj

.

Then, we delete a vertex A and the edges incident to it.

In this case let E22[T
αi]mi+1 = E22[T

αi]mi
\ {A}.

If such a vertex A does not exist, we leave E22[T
αi]mi

unchanged and

denote that by Ẽ22[T
αi]mi

.

Now, continue the same procedure with E22[T
αi+1

]mi+1
.
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αi]| = 7 and the fact that we do not delete links in this
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∼= K7−mi
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