Looking for Additive Steiner 2-Designs

Anamari Nakić

University of Zagreb

Joint work with Marco Buratti

Mantova, May 2022
This work has been supported by HRZZ grant no. 9752

Definition (2-Design)

A $2-(v, k, \lambda)$ design is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is a set of v points;
- \mathcal{B} is a collection of k-subsets of \mathcal{P} (blocks);
- each 2 -subset of \mathcal{P} is contained in exactly λ blocks.

Figure: The Fano plane. $2-(7,3,1)$ design.

- A 2-design is symmetric if $|\mathcal{P}|=|\mathcal{B}|$.
- A Steiner system is a design with $\lambda=1$.

Definition (Cageggi, Falcone, Pavone, 2017)
A design $(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if

- $\mathcal{P} \subseteq G$ and
- $\sum_{x \in B} x=0, \quad \forall B \in \mathcal{B}$.
- Examples of additive Steiner 2-designs:

Parameters	Group	Description
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$	points and lines of $A G\left(n, p^{m}\right)$
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	points and lines of $P G(n-1,2)$
$\left(q^{2}-1, q+1,1\right)$	$\mathbb{Z}_{q}^{\frac{q-1}{2}}$	points and lines of $P G(2, q)$

Definition (Cameron, 1974. Delsarte, 1976.)
A 2-(v, k, λ) design over \mathbb{F}_{q} is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is the set of points of $\operatorname{PG}(v-1, q)$
- \mathcal{B} is a collection of $(k-1)$-dimensional subspaces of $\mathrm{PG}(v-1, q)$ (blocks)
- each line is contained in exactly λ blocks.

Properties:

- 2- (v, k, λ) design over \mathbb{F}_{q} is a classical 2-($\left.\frac{q^{v}-1}{q-1}, \frac{q^{k}-1}{q-1}, \lambda\right)$ design
- 2- (v, k, λ) design over \mathbb{F}_{2} is additive under \mathbb{Z}_{2}^{v}

A sporadic example of an additive Steiner 2-design:

Parameters	Description	Reference
$2-(8191,7,1)$	$2-(13,3,1)$ design over \mathbb{F}_{2}	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017

Definition

$(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if $\mathcal{P} \subseteq G$ and $\sum_{x \in B} x=0, \forall B \in \mathcal{B}$.

- strongly additive if $\mathcal{B}=\left\{\left.B \in\binom{\mathcal{P}}{k} \right\rvert\, \sum_{x \in B} x=0\right\}$
- strictly additive if $\mathcal{P}=G$
- almost strictly additive if $\mathcal{P}=G \backslash\{0\}$
[Cageggi, Falcone, Pavone, 2017], [Buratti, A.N., Super-regular Steiner 2-designs, 202?]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	$\sqrt{7}$		$\sqrt{7}$	points and lines of $P G(n-1,2)$
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$		$\sqrt{ }$		points and lines of $A G\left(n, p^{m}\right)$
$\left(p^{2}, p, 1\right)$	$\mathbb{Z}_{p}^{\frac{p(p-1)}{2}}$	$\sqrt{ }$			points and lines of $A G(2, p)$
(v, k, λ)	$\mathbb{Z}_{k} \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	$\sqrt{ }$			symmetric design, $k-\lambda \nmid k$, prime
(8191, 7, 1)	\mathbb{Z}_{2}^{13}			$\sqrt{\square}$	$(13,3,1)$ design over \mathbb{F}_{2}, in $P G(12,2)$

Definition (Buratti, A.N., 202?)
$(\mathcal{P}, \mathcal{B})$ is super-regular under an abelian group G (or briefly G-super-regular) if it is

- strictly additive, i.e. $\mathcal{P}=G$,
- G-regular, i.e. $g+B \in \mathcal{B}, \quad \forall B \in \mathcal{B}, \quad \forall g \in G$.

Theorem (Buratti, A.N., 202?)
Given $k \geq 3$, there are infinitely many values of v for which there exists a super-regular 2-($v, k, 1)$ design with the definite exceptions of $k \equiv 2(\bmod 4)$ and the possible exceptions of all $k=2^{n} 3 \geq 12$.

Constructing examples is computationally hard.

k	3	4	5	\varnothing	7	8
	$\mathrm{AG}(n, 3)$	$\mathrm{AG}(n, 4)$	$\mathrm{AG}(n, 5)$	$2(\bmod 4)$	$\mathrm{AG}(n, 7)$	$\mathrm{AG}(n, 8)$

k	9	10	11	12	13	14	15
	$\mathrm{AG}(n, 9)$	$2(\bmod 4)$	$\mathrm{AG}(n, 11)$	$2^{2} \cdot 3$	$\mathrm{AG}(n, 13)$	$2(\bmod 4)$	$?$

- $v=3 \cdot 5^{31}$
- Design parameters 2-(13, 4, 1)
$-G$ is the additive group of $\mathbb{F}_{27}, G=\left(\mathbb{F}_{3^{3}},+\right)$
$-\mathcal{P}$ is the subgroup of squares of \mathbb{F}_{27}^{*}

$$
\begin{array}{rlll}
\mathcal{P}=\{(0,0,1), & (0,2,0), & (0,2,1), & (0,2,2), \\
(1,0,0), & (1,0,2), & (1,1,0), & (1,1,1), \\
(1,2,0), & (1,2,1), & (2,0,2), & (2,1,1),
\end{array}
$$

- Blocks \mathcal{B} :

$\{(0,0,1),(1,0,0),(1,1,1),(1,2,1)\}$,	$\{(1,0,0),(1,2,0),(2,0,2),(2,1,1)\}$,
$\{(1,2,0),(1,1,1),(1,1,0),(0,2,2)\}$,	$\{(1,1,1),(2,0,2),(1,0,2),(2,2,1)\}$,
$\{(2,0,2),(1,1,0),(0,2,0),(0,0,1)\}$,	$\{(1,1,0),(1,0,2),(0,2,1),(1,0,0)\}$,
$\{(1,0,2),(0,2,0),(1,2,1),(1,2,0)\}$,	$\{(0,2,0),(0,2,1),(2,1,1),(1,1,1)\}$,
$\{(0,2,1),(1,2,1),(0,2,2),(2,0,2)\}$,	$\{(1,2,1),(2,1,1),(2,2,1),(1,1,0)\}$,
$\{(2,1,1),(0,2,2),(0,0,1),(1,0,2)\}$,	$\{(0,2,2),(2,2,1),(1,0,0),(0,2,0)\}$,
$\{(2,2,1),(0,0,1),(1,2,0),(0,2,1)\}$	

$(\mathcal{P}, \mathcal{B})$ is a G-additive 2 - $(13,4,1)$ design

Definition

A $(v, k, 1)$ difference family in a multiplicative group \mathcal{P} of order v is a set \mathcal{F} of k-subsets of \mathcal{P} such that

$$
\Delta \mathcal{F}=\bigcup_{B \in \mathcal{F}}\left\{g h^{-1}: g, h \in B, g \neq h\right\}=\mathcal{P} \backslash\{1\}
$$

- Briefly ($\mathcal{P}, k, 1$)-DF
- The number of members of \mathcal{F} (base blocks) is $\frac{v-1}{k(k-1)}$
- The development of \mathcal{F} is the set $\operatorname{dev} \mathcal{F}=\{B p: B \in \mathcal{F}, p \in \mathcal{P}\}$ of all the translates of the base blocks
- $(\mathcal{P}, \operatorname{dev} \mathcal{F})$ is a \mathcal{P}-regular Steiner $2-(v, k, 1)$ design

Theorem

Let \mathcal{F} be a $(v, k, 1)$-DF in $\mathcal{P} \leq \mathbb{F}_{q}^{*}$. If all the base blocks of \mathcal{F} are zero-sum, then $(\mathcal{P}, \operatorname{dev} \mathcal{F})$ is an \mathbb{F}_{q}-additive Steiner $2-(v, k, 1)$ design.

Definition

Let H be a subgroup of order n of a multiplicative group \mathcal{P} of order v. $\mathrm{A}(v, n, k, 1)$ difference family, relative to H, is a set \mathcal{F} of k-subsets of \mathcal{P} such that $\Delta \mathcal{F}=\mathcal{P} \backslash H$.

- Briefly $(\mathcal{P}, H, k, 1)$-DF
- Ordinary $(v, k, 1)$-DF $=(v, 1, k, 1)$-DF
- Number of base blocks is $\frac{v-n}{k(k-1)}$
- Necessary condition: $v-n$ is divisible by $k(k-1)$
- If $|H|=k$, then $(\mathcal{P}, \operatorname{dev} \mathcal{F} \bigcup\{$ right cosets of H in $\mathcal{P}\})$ is a \mathcal{P}-regular Steiner 2-($v, k, 1)$ design

Theorem

Let \mathcal{F} be a $(v, k, k, 1)-D F$ in $\mathcal{P} \leq \mathbb{F}_{q}^{*}$, relative to H. If all the base blocks of \mathcal{F} are zero-sum, then $(\mathcal{P}, \operatorname{dev} \mathcal{F})$ is an \mathbb{F}_{q}-additive Steiner $2-(v, k, 1)$ design.

- Design parameters 2-(40, 4, 1)
- G is the additive group of \mathbb{F}_{81}
- \mathcal{P} is the subgroup of squares of $\mathbb{F}_{81}^{*}=\langle r\rangle$

$$
r^{4}-r^{3}-1=0
$$

- $H=\left\{r^{0}, r^{20}, r^{40}, r^{60}\right\}$
- The following is a ($\mathcal{P}, H, 4,1$)-DF and its base blocks are zero-sum

$$
\mathcal{F}=\left\{\left\{r^{0}, r^{2}, r^{14}, r^{44}\right\}, \quad\left\{r^{0}, r^{4}, r^{10}, r^{32}\right\}, \quad\left\{r^{0}, r^{8}, r^{18}, r^{64}\right\}\right\}
$$

- Set $\mathcal{B}=\operatorname{dev} \mathcal{P} \bigcup\{$ cosets of H in $\mathcal{P}\}$
$(\mathcal{P}, \mathcal{B})$ is a $\left(\mathbb{F}_{3^{4}},+\right)$-additive 2 - $(40,4,1)$ design
- Design parameters 2-($85,5,1$)
- G is the additive group of \mathbb{F}_{256}
- \mathcal{P} is the subgroup of cubes of $\mathbb{F}_{256}^{*}=\langle r\rangle$

$$
r^{8}+r^{4}+r^{3}+r^{2}+1=0
$$

- $H=\left\{r^{0}, r^{51}, r^{102}, r^{153}, r^{204}\right\}$
- The following is a ($\mathcal{P}, H, 5,1$)-DF and its base blocks are zero-sum

$$
\begin{gathered}
\mathcal{F}=\left\{\left\{r^{0}, r^{3}, r^{75}, r^{123}, r^{216}\right\}, \quad\left\{r^{0}, r^{6}, r^{150}, r^{177}, r^{246}\right\},\right. \\
\left.\left\{r^{0}, r^{12}, r^{45}, r^{69}, r^{237}\right\}, \quad\left\{r^{0}, r^{21}, r^{57}, r^{81}, r^{147}\right\}\right\}
\end{gathered}
$$

- Set $\mathcal{B}=\operatorname{dev} \mathcal{P} \bigcup\{$ cosets of H in $\mathcal{P}\}$

$$
(\mathcal{P}, \mathcal{B}) \text { is a }\left(\mathbb{F}_{4^{4}},+\right) \text {-additive } 2 \text { - }(85,5,1) \text { design }
$$

We found:

- $\left(\mathbb{F}_{3^{3}},+\right)$-additive 2 - $(13,4,1)$ design isomorphic to point-line design of $\operatorname{PG}(2,3)$
- $\left(\mathbb{F}_{3^{4}},+\right)$-additive 2 - $(40,4,1)$ design isomorphic to point-line design of $\mathrm{PG}(3,3)$
- $\left(\mathbb{F}_{4},+\right)$-additive 2 - $(85,5,1)$ design isomorphic to point-line design of $\operatorname{PG}(3,4)$
- $\left(\mathbb{F}_{5},+\right)$-additive 2- $(156,6,1)$ design isomorphic to point-line design PG $(3,5)$
- $\left(\mathbb{F}_{4^{3}},+\right)$-additive 2 - $(21,5,1)$ design isomorphic to point-line design of $\mathrm{PG}(2,4)$
- $\left(\mathbb{F}_{7^{3}},+\right)$-additive 2 - $(57,8,1)$ design isomorphic to point-line design of $\operatorname{PG}(2,7)$
- $\left(\mathbb{F}_{5^{3}},+\right)$-additive 2- $(31,6,1)$ design isomorphic to point-line design of $\operatorname{PG}(2,5)$

We checked for $q \leq 19$ that every point-line design of $\mathrm{PG}(2, q)$ is additive under $\left(\mathbb{F}_{q^{3}},+\right)$.

Conjecture

The point-line design of $P G(d, q)$ is additive under $\left(\mathbb{F}_{q^{d+1}},+\right)$.

Theorem (Cageggi, Falcone, Pavone, 2017)

Every symmetric design, so in particular the point-line design of $P G(2, q)$, is additive under a suitable (big) group. For instance:

For q prime, the point-line design of $P G(2, q)$ is strongly additive under $\left(\mathbb{F}_{q(q-1) / 2},+\right)$.

- Design parameters 2-(124, 4, 1)
- G is the additive group of \mathbb{F}_{125}
- $\mathcal{P}=\mathbb{F}_{125}^{*}=\langle r\rangle$
- $H=\left\{r^{0}, r^{31}, r^{62}, r^{93}\right\}$
- The following is a ($\mathcal{P}, H, 4,1$)-DF and its base blocks are zero-sum

$$
\begin{gathered}
\mathcal{F}=\left\{\left\{r^{0}, r, r^{21}, r^{55}\right\},\left\{r^{0}, r^{2}, r^{59}, r^{112}\right\},\left\{r^{0}, r^{3}, r^{44}, r^{63}\right\},\right. \\
\left\{r^{0}, r^{4}, r^{79}, r^{95}\right\},\left\{r^{0}, r^{5}, r^{17}, r^{48}\right\},\left\{r^{0}, r^{6}, r^{56}, r^{94}\right\}, \\
\left\{r^{0}, r^{7}, r^{81}, r^{99}\right\},\left\{r^{0}, r^{8}, r^{36}, r^{106}\right\},\left\{r^{0}, r^{10}, r^{35}, r^{49}\right\}, \\
\left.\left\{r^{0}, r^{13}, r^{37}, r^{89}\right\}\right\}
\end{gathered}
$$

- Set $\mathcal{B}=\operatorname{dev} \mathcal{P} \bigcup\{$ cosets of H in $\mathcal{P}\}$

$$
(\mathcal{P}, \mathcal{B}) \text { is a }\left(\mathbb{F}_{5^{3}},+\right) \text {-additive } 2 \text { - }(124,4,1) \text { design }
$$

Thank you for your attention!

