Looking for Additive Steiner 2-Designs

Anamari Nakić

University of Zagreb

Joint work with Marco Buratti

Mantova, May 2022 This work has been supported by HRZZ grant no. 9752

イロト イヨト イヨト イヨト 二日

1/14

Definition (2-Design)

A $2\text{-}(v,k,\lambda)$ design is a pair $(\mathcal{P},\mathcal{B})$ such that

- $\blacktriangleright \mathcal{P}$ is a set of v points;
- B is a collection of k-subsets of P (blocks);
- each 2-subset of \mathcal{P} is contained in exactly λ blocks.

Figure: The Fano plane. 2-(7,3,1) design.

A 2-design is symmetric if $|\mathcal{P}| = |\mathcal{B}|$.

• A Steiner system is a design with $\lambda = 1$.

Definition (Cageggi, Falcone, Pavone, 2017)

A design $(\mathcal{P},\mathcal{B})$ is additive under an abelian group G if

$$\begin{array}{l} \blacktriangleright \ \mathcal{P} \subseteq G \text{ and} \\ \blacktriangleright \ \sum_{x \in B} x = 0, \quad \forall B \in \mathcal{B} \end{array}$$

Examples of additive Steiner 2-designs:

Parameters	Group	Description		
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}	points and lines of $AG(n,p^m)$		
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	points and lines of $PG(n-1, 2)$		
$(q^2 - 1, q + 1, 1)$	$\mathbb{Z}_{q}^{\frac{q-1}{2}}$	points and lines of $PG(2,q)$		

Definition (Cameron, 1974. Delsarte, 1976.) A 2- (v, k, λ) design over \mathbb{F}_q is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is the set of points of PG(v-1,q)
- ▶ \mathcal{B} is a collection of (k-1)-dimensional subspaces of PG(v-1,q) (blocks)
- each line is contained in exactly λ blocks.

Properties:

- 2- (v, k, λ) design over \mathbb{F}_q is a classical 2- $(\frac{q^v-1}{q-1}, \frac{q^k-1}{q-1}, \lambda)$ design
- 2- (v, k, λ) design over \mathbb{F}_2 is additive under \mathbb{Z}_2^v

A sporadic example of an additive Steiner 2-design:

Parameters	Description	Reference		
2-(8191,7,1)	2-(13,3,1) design over \mathbb{F}_2	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017		

Definition

 $(\mathcal{P},\mathcal{B}) \text{ is additive under an abelian group } G \text{ if } \mathcal{P} \subseteq G \text{ and } \sum_{x \in B} x = 0, \forall B \in \mathcal{B}.$

- strongly additive if $\mathcal{B} = \{B \in \binom{\mathcal{P}}{k} \mid \sum_{x \in B} x = 0\}$
- strictly additive if $\mathcal{P} = G$
- almost strictly additive if $\mathcal{P} = G \setminus \{0\}$

[Cageggi, Falcone, Pavone, 2017],

[Buratti, A.N., Super-regular Steiner 2-designs, 202?]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	points and lines of $PG(n-1, 2)$
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		points and lines of $AG(n, p^m)$
$(p^2, p, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			points and lines of $AG(2, p)$
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k-\lambda mid k$, prime
(8191, 7, 1)	\mathbb{Z}_2^{13}			$\checkmark_{\leftarrow \Box}$	$(13,3,1)$ design over \mathbb{F}_2 , in $PG(12,2)$

うくで 5/14

Definition (Buratti, A.N., 202?)

 $(\mathcal{P}, \mathcal{B})$ is super-regular under an abelian group G (or briefly G-super-regular) if it is

- **•** strictly additive, i.e. $\mathcal{P} = G$,
- G-regular, i.e. $g + B \in \mathcal{B}$, $\forall B \in \mathcal{B}$, $\forall g \in G$.

Theorem (Buratti, A.N., 202?)

Given $k \ge 3$, there are infinitely many values of v for which there exists a super-regular 2-(v, k, 1) design with the definite exceptions of $k \equiv 2 \pmod{4}$ and the possible exceptions of all $k = 2^n 3 \ge 12$.

Constructing examples is computationally hard.

k	3	4	5	ø	7	8
	AG(n,3)	AG(n,4)	AG(n,5)	2 (mod 4)	AG(n,7)	AG(n,8)

k	9	10	11	12	13	14	15
	AG(n,9)	2 (mod 4)	AG(n, 11)	$2^2 \cdot 3$	AG(n, 13)	2 (mod 4)	?

▶ $v = 3 \cdot 5^{31}$

6/14

- Design parameters 2-(13, 4, 1)
- G is the additive group of \mathbb{F}_{27} , $G = (\mathbb{F}_{3^3}, +)$
- \mathcal{P} is the subgroup of squares of \mathbb{F}_{27}^*

▶ Blocks B :

 $(\mathcal{P}, \mathcal{B})$ is a *G*-additive 2-(13, 4, 1) design

Definition

A (v,k,1) difference family in a multiplicative group $\mathcal P$ of order v is a set $\mathcal F$ of k-subsets of $\mathcal P$ such that

$$\Delta \mathcal{F} = \bigcup_{B \in \mathcal{F}} \{gh^{-1} : g, h \in B, g \neq h\} = \mathcal{P} \setminus \{1\}.$$

▶ Briefly $(\mathcal{P}, k, 1)$ -DF

- The number of members of \mathcal{F} (base blocks) is $\frac{v-1}{k(k-1)}$
- ▶ The development of \mathcal{F} is the set dev $\mathcal{F} = \{Bp : B \in \mathcal{F}, p \in \mathcal{P}\}$ of all the translates of the base blocks
- $(\mathcal{P}, \operatorname{dev}\mathcal{F})$ is a \mathcal{P} -regular Steiner 2-(v, k, 1) design

Theorem

Let \mathcal{F} be a (v, k, 1)-DF in $\mathcal{P} \leq \mathbb{F}_q^*$. If all the base blocks of \mathcal{F} are zero-sum, then $(\mathcal{P}, \operatorname{dev}\mathcal{F})$ is an \mathbb{F}_q -additive Steiner 2-(v, k, 1) design.

Definition

Let H be a subgroup of order n of a multiplicative group \mathcal{P} of order v. A (v, n, k, 1) difference family, relative to H, is a set \mathcal{F} of k-subsets of \mathcal{P} such that $\Delta \mathcal{F} = \mathcal{P} \setminus H$.

- ▶ Briefly $(\mathcal{P}, H, k, 1)$ -DF
- Ordinary (v, k, 1)-DF = (v, 1, k, 1)-DF
- ▶ Number of base blocks is $\frac{v-n}{k(k-1)}$
- Necessary condition: v n is divisible by k(k 1)
- ▶ If |H| = k, then $(\mathcal{P}, \text{dev}\mathcal{F} \bigcup \{\text{right cosets of } H \text{ in } \mathcal{P}\})$ is a \mathcal{P} -regular Steiner 2-(v, k, 1) design

Theorem

Let \mathcal{F} be a (v, k, k, 1)-DF in $\mathcal{P} \leq \mathbb{F}_q^*$, relative to H. If all the base blocks of \mathcal{F} are zero-sum, then $(\mathcal{P}, \operatorname{dev}\mathcal{F})$ is an \mathbb{F}_q -additive Steiner 2-(v, k, 1) design.

- Design parameters 2-(40, 4, 1)
- G is the additive group of \mathbb{F}_{81}
- \mathcal{P} is the subgroup of squares of $\mathbb{F}_{81}^* = \langle r \rangle$

$$r^4 - r^3 - 1 = 0$$

$$\blacktriangleright \ H = \{r^0, r^{20}, r^{40}, r^{60}\}$$

▶ The following is a $(\mathcal{P}, H, 4, 1)$ -DF and its base blocks are zero-sum

$$\mathcal{F} = \{\{r^0, r^2, r^{14}, r^{44}\}, \quad \{r^0, r^4, r^{10}, r^{32}\}, \quad \{r^0, r^8, r^{18}, r^{64}\}\}$$

• Set $\mathcal{B} = \operatorname{dev}\mathcal{P} \bigcup \{ \operatorname{cosets} \text{ of } H \text{ in } \mathcal{P} \}$

 $(\mathcal{P},\mathcal{B})$ is a $(\mathbb{F}_{3^4},+)$ -additive 2-(40,4,1) design

- Design parameters 2-(85, 5, 1)
- G is the additive group of \mathbb{F}_{256}

 $\blacktriangleright \ \mathcal{P}$ is the subgroup of cubes of $\mathbb{F}_{256}^* = \langle r \rangle$

$$r^8 + r^4 + r^3 + r^2 + 1 = 0$$

$$\blacktriangleright \ H = \{r^0, r^{51}, r^{102}, r^{153}, r^{204}\}$$

• The following is a $(\mathcal{P}, H, 5, 1)$ -DF and its base blocks are zero-sum

$$\mathcal{F} = \{\{r^{0}, r^{3}, r^{75}, r^{123}, r^{216}\}, \{r^{0}, r^{6}, r^{150}, r^{177}, r^{246}\}, \{r^{0}, r^{12}, r^{45}, r^{69}, r^{237}\}, \{r^{0}, r^{21}, r^{57}, r^{81}, r^{147}\}\}$$

• Set $\mathcal{B} = \operatorname{dev}\mathcal{P} \bigcup \{ \operatorname{cosets} \text{ of } H \text{ in } \mathcal{P} \}$

 $(\mathcal{P}, \mathcal{B})$ is a $(\mathbb{F}_{4^4}, +)$ -additive 2-(85, 5, 1) design

Conjecture

We found:

(F₃₃,+)-additive 2-(13, 4, 1) design isomorphic to point-line design of PG(2, 3)
(F₃₄,+)-additive 2-(40, 4, 1) design isomorphic to point-line design of PG(3, 3)
(F₄₄,+)-additive 2-(85, 5, 1) design isomorphic to point-line design of PG(3, 4)
(F₅₄,+)-additive 2-(156, 6, 1) design isomorphic to point-line design PG(3, 5)
(F₄₃,+)-additive 2-(21, 5, 1) design isomorphic to point-line design of PG(2, 4)
(F₇₃,+)-additive 2-(57, 8, 1) design isomorphic to point-line design of PG(2, 7)
(F₅₃,+)-additive 2-(31, 6, 1) design isomorphic to point-line design of PG(2, 5)

We checked for $q \leq 19$ that every point-line design of PG(2,q) is additive under $(\mathbb{F}_{q^3},+)$.

Conjecture

The point-line design of PG(d,q) is additive under $(\mathbb{F}_{q^{d+1}},+)$.

Theorem (Cageggi, Falcone, Pavone, 2017)

Every symmetric design, so in particular the point-line design of PG(2,q), is additive under a suitable (big) group. For instance:

For q prime, the point-line design of PG(2,q) is strongly additive under $(\mathbb{F}_{q(q-1)/2},+)$.

- Design parameters 2-(124, 4, 1)
- G is the additive group of \mathbb{F}_{125}

$$\blacktriangleright \mathcal{P} = \mathbb{F}_{125}^* = \langle r \rangle$$

- $\blacktriangleright \ H = \{r^0, r^{31}, r^{62}, r^{93}\}$
- The following is a $(\mathcal{P}, H, 4, 1)$ -DF and its base blocks are zero-sum

$$\begin{split} \mathcal{F} &= \{\{r^0, r, r^{21}, r^{55}\}, \{r^0, r^2, r^{59}, r^{112}\}, \{r^0, r^3, r^{44}, r^{63}\}, \\ &\{r^0, r^4, r^{79}, r^{95}\}, \{r^0, r^5, r^{17}, r^{48}\}, \{r^0, r^6, r^{56}, r^{94}\}, \\ &\{r^0, r^7, r^{81}, r^{99}\}, \{r^0, r^8, r^{36}, r^{106}\}, \{r^0, r^{10}, r^{35}, r^{49}\}, \\ &\{r^0, r^{13}, r^{37}, r^{89}\}\} \end{split}$$

• Set $\mathcal{B} = \operatorname{dev}\mathcal{P} \bigcup \{ \operatorname{cosets} \text{ of } H \text{ in } \mathcal{P} \}$

 $(\mathcal{P},\mathcal{B})$ is a $(\mathbb{F}_{5^3},+)$ -additive 2-(124,4,1) design

Thank you for your attention!