On higher-dimensional Hadamard matrices and designs*

Vedran Krčadinac

University of Zagreb, Croatia

11.6.2024.

* This work was fully supported by the Croatian Science Foundation under the project 9752.

11.6.2024. 1 / 31

A $v \times v$ matrix with $\{-1, 1\}$ -entries is Hadamard if $H \cdot H^{\tau} = v I$ holds.

• □ ▶ • 4□ ▶ • Ξ ▶ •

A $v \times v$ matrix with $\{-1, 1\}$ -entries is Hadamard if $H \cdot H^{\tau} = v I$ holds.

< □ > < □ > < □ > < □ > < □ > < □ >

A $v \times v$ matrix with $\{-1, 1\}$ -entries is Hadamard if $H \cdot H^{\tau} = v I$ holds.

Main question: for what orders v do Hadamard matrices exist?

.

A $v \times v$ matrix with $\{-1, 1\}$ -entries is Hadamard if $H \cdot H^{\tau} = v I$ holds.

Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then v = 1, v = 2, or $v \equiv 0 \pmod{4}$.

< □ > < □ > < □ > < □ > < □ > < □ >

A $v \times v$ matrix with $\{-1, 1\}$ -entries is Hadamard if $H \cdot H^{\tau} = v I$ holds.

Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then v = 1, v = 2, or $v \equiv 0 \pmod{4}$.

Hadamard conjecture: they exist for all orders $v \equiv 0 \pmod{4}$.

< □ > < □ > < □ > < □ > < □ > < □ >

A $v \times v$ matrix with $\{-1, 1\}$ -entries is Hadamard if $H \cdot H^{\tau} = v I$ holds.

Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then v = 1, v = 2, or $v \equiv 0 \pmod{4}$.

Hadamard conjecture: they exist for all orders $v \equiv 0 \pmod{4}$.

Smallest unknown order: v = 668

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

An *n*-dimensional matrix of order v with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

An *n*-dimensional matrix of order v with $\{-1,1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

• is Hadamard if all (n-1)-dimensional parallel slices are orthogonal:

$$\sum_{1 \leq i_1, \dots, \widehat{i_j}, \dots, i_n \leq v} H(i_1, \dots, a, \dots, i_n) H(i_1, \dots, b, \dots, i_n) = v^{n-1} \delta_{ab}$$

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

An *n*-dimensional matrix of order v with $\{-1,1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

• is Hadamard if all (n-1)-dimensional parallel slices are orthogonal:

$$\sum_{\leq i_1,\ldots,\widehat{i_j},\ldots,i_n\leq v} H(i_1,\ldots,a,\ldots,i_n)H(i_1,\ldots,b,\ldots,i_n) = v^{n-1}\delta_{ab}$$

• is proper Hadamard if all 2-dimensional slices are Hadamard matrices.

1

Yi Xian Yang, X. X. Niu, C. Q. Xu, *Theory and applications of higher-dimensional Hadamard matrices, Second edition*, Chapman and Hall/CRC Press, 2010.

Yi Xian Yang, X. X. Niu, C. Q. Xu, *Theory and applications of higher-dimensional Hadamard matrices, Second edition*, Chapman and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimensional Hadamard matrices exist?

Yi Xian Yang, X. X. Niu, C. Q. Xu, *Theory and applications of higher-dimensional Hadamard matrices, Second edition*, Chapman and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimensional Hadamard matrices exist?

Theorem (Y. X. Yang, 1986). "Product construction" Let $h : \{1, ..., v\}^2 \rightarrow \{-1, 1\}$ be an ordinary Hadamard matrix of order v. Then $H(i_1, ..., i_n) = \prod_{1 \le j < k \le n} h(i_j, i_k)$ is an a dimensional proper Hadamard matrix of order v.

is an *n*-dimensional proper Hadamard matrix of order v.

くぼう くほう くほう しゅ

Yi Xian Yang, X. X. Niu, C. Q. Xu, *Theory and applications of higher-dimensional Hadamard matrices, Second edition*, Chapman and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimensional Hadamard matrices exist?

Theorem (Y. X. Yang, 1986). "Product construction" Let $h : \{1, ..., v\}^2 \rightarrow \{-1, 1\}$ be an ordinary Hadamard matrix of order v. Then $H(i_1, ..., i_n) = \prod_{1 \le j < k \le n} h(i_j, i_k)$

is an n-dimensional proper Hadamard matrix of order v.

For dimensions $n \ge 3$, the order v > 2 of "improper" Hadamard matrices must be even. They can exist for $v \equiv 2 \pmod{4}!$

くぼう くほう くほう しゅ

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \ge 4$ exist for all even orders v.

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \ge 4$ exist for all even orders v.

What about dimension n = 3?

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \ge 4$ exist for all even orders v.

What about dimension n = 3?

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \ge 4$ exist for all even orders v.

What about dimension n = 3?

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \ge 4$ exist for all even orders v.

What about dimension n = 3?

• • = • •

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders $v = 2 \cdot 3^m$, $m \ge 0$.

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders $v = 2 \cdot 3^m$, $m \ge 0$.

 $v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, \dots$

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders $v = 2 \cdot 3^m$, $m \ge 0$.

 $v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, \dots$

Concluding questions: (in book from 2010)

- **5.** Prove or disprove the existence of three-dimensional Hadamard matrices of orders $4k + 2 \neq 2 \cdot 3^m$.
- **6.** Construct more three-dimensional Hadamard matrices of orders 4k + 2.

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders $v = 2 \cdot 3^m$, $m \ge 0$.

 $v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, \dots$

Concluding questions: (in book from 2010)

- **5.** Prove or disprove the existence of three-dimensional Hadamard matrices of orders $4k + 2 \neq 2 \cdot 3^m$.
- **6.** Construct more three-dimensional Hadamard matrices of orders 4k + 2.

V. Krčadinac, M. O. Pavčević, K. Tabak, *Three-dimensional Hadamard matrices of Paley type*, Finite Fields Appl. **92** (2023), 102306.

Theorem (V. K., M. O. Pavčević, K. Tabak).

Hadamard matrices of dimension n = 3 and order v = q + 1 exist for all odd prime powers q (proper for $q \equiv 3 \pmod{4}$, improper for $q \equiv 1 \pmod{4}$).

イロト イヨト イヨト

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders $v = 2 \cdot 3^m$, $m \ge 0$.

 $v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, \dots$

Concluding questions: (in book from 2010)

- **5.** Prove or disprove the existence of three-dimensional Hadamard matrices of orders $4k + 2 \neq 2 \cdot 3^m$.
- **6.** Construct more three-dimensional Hadamard matrices of orders 4k + 2.

V. Krčadinac, M. O. Pavčević, K. Tabak, *Three-dimensional Hadamard matrices of Paley type*, Finite Fields Appl. **92** (2023), 102306.

Theorem (V. K., M. O. Pavčević, K. Tabak).

Hadamard matrices of dimension n = 3 and order v = q + 1 exist for all odd prime powers q (proper for $q \equiv 3 \pmod{4}$, improper for $q \equiv 1 \pmod{4}$).

 $v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, \dots$

ヘロト 人間ト 人団ト 人団ト

11.6.2024. 7 / 31

-

• • • • • • • • • • • •

11.6.2024. 8 / 31

11.6.2024. 9 / 31

イロト イヨト イヨト イヨ

$$H: PG(1,q)^3 \to \{1,-1\}, \ q \equiv 1 \text{ or } 3 \pmod{4},$$

$$H(x, y, z) = \begin{cases} -1, & \text{if } x = y = z, \\ 1, & \text{if } x = y \neq z \\ & \text{or } x = z \neq y \\ & \text{or } y = z \neq x, \end{cases}$$
$$\chi(z - y), & \text{if } x = \infty, \\ \chi(x - z), & \text{if } y = \infty, \\ \chi(y - x), & \text{if } z = \infty, \\ \chi((x - y)(y - z)(z - x)), & \text{otherwise.} \end{cases}$$

 $PG(1,q) = \mathbb{F}_q \cup \{\infty\}$

11.6.2024. 10 / 31

∃ >

Prescribed Automorphism Groups

PAG

Prescribed Automorphism Groups

Version 0.2.3 Released 2024-05-21

Download .tar.gz

This project is maintained by Vedran Krcadinac

GAP Package PAG

The PAG package contains functions for constructing combinatorial objects with prescribed automorphism groups.

The current version of this package is version 0.2.3, released on 2024-05-21. For more information, please refer to the package manual. There is also a **README** file.

Dependencies

This package requires GAP version 4.11

https://vkrcadinac.github.io/PAG/

V. Krčadinac (University of Zagreb)

Higher-dimensional matrices and designs

11.6.2024 11 / 31

Question: is there a 3-dimensional Hadamard matrix of order v = 22?

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0, 1\}$ -entries such that $A \cdot A^{\tau} = (k - \lambda)I + \lambda J$ holds. The order of the design is $n = k - \lambda$.

A (1) > A (2) > A

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0, 1\}$ -entries such that $A \cdot A^{\tau} = (k - \lambda) I + \lambda J$ holds. The order of the design is $n = k - \lambda$.

Example:(7,3,1) $\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0, 1\}$ -entries such that $A \cdot A^{\tau} = (k - \lambda) I + \lambda J$ holds. The order of the design is $n = k - \lambda$.

Example: $(1 \ 1 \ 0 \ 1 \ 0 \ 0)$

(7, 3, 1)n = 2

$$\begin{array}{c} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{array}$$

.

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0, 1\}$ -entries such that $A \cdot A^{\tau} = (k - \lambda) I + \lambda J$ holds. The order of the design is $n = k - \lambda$.

Main question: for what triples (v, k, λ) do symmetric designs exist?

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0, 1\}$ -entries such that $A \cdot A^{\tau} = (k - \lambda) I + \lambda J$ holds. The order of the design is $n = k - \lambda$.

Main question: for what triples (v, k, λ) do symmetric designs exist?

Theorem.

A Hadamard matrix of order v = 4n exists if and only if a symmetric (4n - 1, 2n - 1, n - 1) design exists.

∃ >

Theorem.

A Hadamard matrix of order v = 4n exists if and only if a symmetric (4n - 1, 2n - 1, n - 1) design exists.

A projective plane of order *n* is a symmetric $(n^2 + n + 1, n + 1, 1)$ design. Question: do they exist for non-prime power orders *n*?

Theorem.

A Hadamard matrix of order v = 4n exists if and only if a symmetric (4n - 1, 2n - 1, n - 1) design exists.

A projective plane of order *n* is a symmetric $(n^2 + n + 1, n + 1, 1)$ design. Question: do they exist for non-prime power orders *n*?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1}y$, $x, y \in D$ cover $G \setminus \{1\}$ exactly λ times.

Theorem.

A Hadamard matrix of order v = 4n exists if and only if a symmetric (4n - 1, 2n - 1, n - 1) design exists.

A projective plane of order *n* is a symmetric $(n^2 + n + 1, n + 1, 1)$ design. Question: do they exist for non-prime power orders *n*?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1}y$, $x, y \in D$ cover $G \setminus \{1\}$ exactly λ times.

Theorem.

If D is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A = (a_{ij}), \quad a_{ij} = [g_i \cdot g_j \in D] = \begin{cases} 1, & \text{if } g_i \cdot g_j \in D, \\ 0, & \text{otherwise} \end{cases}$$

is a symmetric (v, k, λ) design with G as a regular automorphism group.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem.

A Hadamard matrix of order v = 4n exists if and only if a symmetric (4n - 1, 2n - 1, n - 1) design exists.

A projective plane of order *n* is a symmetric $(n^2 + n + 1, n + 1, 1)$ design. Question: do they exist for non-prime power orders *n*?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1}y$, $x, y \in D$ cover $G \setminus \{1\}$ exactly λ times.

Example:

 $D = \{0,1,3\}$ is a (7,3,1) difference set in $G = \mathbb{Z}_7 = \{0,\ldots,6\}$

Theorem.

A Hadamard matrix of order v = 4n exists if and only if a symmetric (4n - 1, 2n - 1, n - 1) design exists.

A projective plane of order *n* is a symmetric $(n^2 + n + 1, n + 1, 1)$ design. Question: do they exist for non-prime power orders *n*?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1}y$, $x, y \in D$ cover $G \setminus \{1\}$ exactly λ times.

Example:

 $D = \{0,1,3\}$ is a (7,3,1) difference set in $G = \mathbb{Z}_7 = \{0,\ldots,6\}$

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference sets in any group of order 25.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An *n*-dimensional cube of symmetric (v, k, λ) designs is a function

$$A:\{1,\ldots,\nu\}^n\to\{0,1\}$$

such that all 2-dimensional slices are symmetric (v, k, λ) designs.

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An *n*-dimensional cube of symmetric (v, k, λ) designs is a function

$$A:\{1,\ldots,\nu\}^n\to\{0,1\}$$

such that all 2-dimensional slices are symmetric (v, k, λ) designs.

Warwick de Launey, *On the construction of n-dimensional designs from* 2-*dimensional designs*, Australas. J. Combin. **1** (1990), 67–81.

W. de Launey, D. Flannery, *Algebraic design theory*, American Mathematical Society, 2011.

Theorem.

If D is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,\ldots,i_n)=[g_{i_1}\cdots g_{i_n}\in D]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Theorem.

If D is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,\ldots,i_n)=[g_{i_1}\cdots g_{i_n}\in D]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Example: $\{0, 1, 3\} \subseteq \mathbb{Z}_7$ is a (7, 3, 1) difference set

Theorem.

If D is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,\ldots,i_n)=[g_{i_1}\cdots g_{i_n}\in D]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Example: $\{0, 1, 3\} \subseteq \mathbb{Z}_7$ is a (7, 3, 1) difference set

A 3-cube of symmetric (7, 3, 1) designs:

If $\{D_1, \ldots, D_v\}$ is a family of (v, k, λ) difference sets in $G = \{g_1, \ldots, g_v\}$ that are blocks of a symmetric (v, k, λ) design, then

$$A(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

If $\{D_1, \ldots, D_v\}$ is a family of (v, k, λ) difference sets in $G = \{g_1, \ldots, g_v\}$ that are blocks of a symmetric (v, k, λ) design, then

$$A(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Usually: $D_i = g_i \cdot D$, i.e. the family is the development of a single D

If $\{D_1, \ldots, D_v\}$ is a family of (v, k, λ) difference sets in $G = \{g_1, \ldots, g_v\}$ that are blocks of a symmetric (v, k, λ) design, then

$$A(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Usually: $D_i = g_i \cdot D$, i.e. the family is the development of a single D

 $D = \{0, 1, 4, 14, 16\} \subseteq \mathbb{Z}_{21}$ $D_i = i + D, i = 0, \dots, 20$

If $\{D_1, \ldots, D_v\}$ is a family of (v, k, λ) difference sets in $G = \{g_1, \ldots, g_v\}$ that are blocks of a symmetric (v, k, λ) design, then

$$A(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Usually: $D_i = g_i \cdot D$, i.e. the family is the development of a single D

 $D = \{0, 1, 4, 14, 16\} \subseteq \mathbb{Z}_{21}$ $D_i = i + D, \ i = 0, \dots, 20$

A 3-cube of (21, 5, 1) designs (projective planes of order 4)

If $\{D_1, \ldots, D_v\}$ is a family of (v, k, λ) difference sets in $G = \{g_1, \ldots, g_v\}$ that are blocks of a symmetric (v, k, λ) design, then

$$A(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

$$G = \langle a, b \mid a^{3} = b^{7} = 1, \ ba = ab^{2} \rangle$$
$$D_{1} = \{1, a, b, b^{3}, a^{2}b^{2}\}$$
$$D_{2} = \{a^{2}b^{6}, b^{6}, a^{2}b^{3}, a^{2}b^{4}, a\}$$
$$D_{3} = \{1, a^{2}, ab, b^{2}, b^{6}\}$$
$$\vdots$$
$$D_{21} = \{a^{2}b^{2}, ab^{3}, ab^{5}, b^{6}, ab^{6}\}$$

If $\{D_1, \ldots, D_v\}$ is a family of (v, k, λ) difference sets in $G = \{g_1, \ldots, g_v\}$ that are blocks of a symmetric (v, k, λ) design, then

$$A(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Example: m = 2, (16, 6, 2)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Example: m = 2, (16, 6, 2)

There are three such designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

A B > A B >

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Example: m = 2, (16, 6, 2)

There are three such designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$ Red design, Green design, Blue design

く 何 ト く ヨ ト く ヨ ト

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2^4: \quad \mathcal{D}_1 = \{\mathcal{D}_1, \dots, \mathcal{D}_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2^4: \quad \mathcal{D}_1 = \{D_1, \ldots, D_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2 \times \mathbb{Z}_8$: $\mathcal{D}_2 = \{D_1, \ldots, D_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2 \times Q_8: \quad \mathcal{D}_3 = \{D_1, \ldots, D_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2^4: \quad \mathcal{D}_2 = \{D_1, \dots, D_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2^4: \quad \mathcal{D}_2 = \{ \underline{D}_1, \dots, \underline{D}_{16} \}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2^4: \quad \mathcal{D}_3 = \{\mathcal{D}_1, \dots, \mathcal{D}_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2 \times \mathbb{Z}_8: \quad \mathcal{D}_3 = \{\mathcal{D}_1, \dots, \mathcal{D}_8, \mathcal{D}_9, \dots, \mathcal{D}_{16}\}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

 $G = \mathbb{Z}_2 \times Q_8: \quad \mathcal{D}_2 = \{ D_1, \dots, D_8, D_9, \dots, D_{16} \}$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Non-group cubes?

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Non-group cubes?

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Non-group cubes?

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are not difference cubes.

Proposition.

There are at least 1423 inequivalent non-group 3-cubes of symmetric (16, 6, 2) designs.

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference sets in any group of order 25.

11.6.2024. 31 / 31

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference sets in any group of order 25.

Question: are there *n*-cubes of symmetric (25, 9, 3) designs for $n \ge 3$?

11.6.2024

31 / 31

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference sets in any group of order 25.

Question: are there *n*-cubes of symmetric (25, 9, 3) designs for $n \ge 3$?

Thanks for your attention!