On higher-dimensional Hadamard matrices and designs^

Vedran Krčadinac

University of Zagreb, Croatia

11.6.2024.

[^0]
Hadamard matrices

A $v \times v$ matrix with $\{-1,1\}$-entries is Hadamard if $H \cdot H^{\tau}=v l$ holds.

Hadamard matrices

A $v \times v$ matrix with $\{-1,1\}$-entries is Hadamard if $H \cdot H^{\tau}=v l$ holds.
Examples: $(1), \quad\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right), \quad\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$

Hadamard matrices

A $v \times v$ matrix with $\{-1,1\}$-entries is Hadamard if $H \cdot H^{\tau}=v l$ holds.
Examples: $\quad(1), \quad\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right), \quad\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
Main question: for what orders v do Hadamard matrices exist?

Hadamard matrices

A $v \times v$ matrix with $\{-1,1\}$-entries is Hadamard if $H \cdot H^{\tau}=v l$ holds.
Examples: $\quad(1), \quad\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right), \quad\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then $v=1, v=2$, or $v \equiv 0(\bmod 4)$.

Hadamard matrices

A $v \times v$ matrix with $\{-1,1\}$-entries is Hadamard if $H \cdot H^{\tau}=v l$ holds.
Examples: $\quad(1), \quad\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right), \quad\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then $v=1, v=2$, or $v \equiv 0(\bmod 4)$.

Hadamard conjecture: they exist for all orders $v \equiv 0(\bmod 4)$.

Hadamard matrices

A $v \times v$ matrix with $\{-1,1\}$-entries is Hadamard if $H \cdot H^{\tau}=v l$ holds.
Examples: $\quad(1), \quad\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right), \quad\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then $v=1, v=2$, or $v \equiv 0(\bmod 4)$.

Hadamard conjecture: they exist for all orders $v \equiv 0(\bmod 4)$.
Smallest unknown order: $v=668$

Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with $\{-1,1\}$-entries

$$
H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}
$$

Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with $\{-1,1\}$-entries

$$
H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}
$$

- is Hadamard if all $(n-1)$-dimensional parallel slices are orthogonal:

$$
\sum_{1 \leq i_{1}, \ldots, \hat{i}_{j}, \ldots, i_{n} \leq v} H\left(i_{1}, \ldots, a, \ldots, i_{n}\right) H\left(i_{1}, \ldots, b, \ldots, i_{n}\right)=v^{n-1} \delta_{a b}
$$

Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with $\{-1,1\}$-entries

$$
H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}
$$

- is Hadamard if all $(n-1)$-dimensional parallel slices are orthogonal:

$$
\sum_{1 \leq i_{1}, \ldots, \hat{i}_{j}, \ldots, i_{n} \leq v} H\left(i_{1}, \ldots, a, \ldots, i_{n}\right) H\left(i_{1}, \ldots, b, \ldots, i_{n}\right)=v^{n-1} \delta_{a b}
$$

- is proper Hadamard if all 2-dimensional slices are Hadamard matrices.

Higher-dimensional Hadamard matrices

Yi Xian Yang, X. X. Niu, C. Q. Xu, Theory and applications of higher-dimensional Hadamard matrices, Second edition, Chapman and Hall/CRC Press, 2010.

Higher-dimensional Hadamard matrices

Yi Xian Yang, X. X. Niu, C. Q. Xu, Theory and applications of higher-dimensional Hadamard matrices, Second edition, Chapman and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimensional Hadamard matrices exist?

Higher-dimensional Hadamard matrices

Yi Xian Yang, X. X. Niu, C. Q. Xu, Theory and applications of higher-dimensional Hadamard matrices, Second edition, Chapman and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimensional Hadamard matrices exist?

Theorem (Y. X. Yang, 1986). "Product construction"

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be an ordinary Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is an n-dimensional proper Hadamard matrix of order v.

Higher-dimensional Hadamard matrices

Yi Xian Yang, X. X. Niu, C. Q. Xu, Theory and applications of higher-dimensional Hadamard matrices, Second edition, Chapman and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimensional Hadamard matrices exist?

Theorem (Y. X. Yang, 1986). "Product construction"

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be an ordinary Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is an n-dimensional proper Hadamard matrix of order v.

For dimensions $n \geq 3$, the order $v>2$ of "improper" Hadamard matrices must be even. They can exist for $v \equiv 2(\bmod 4)$!

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).
If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \geq 4$ exist for all even orders v.

Higher-dimensional Hadamard matrices

```
Theorem (Y. X. Yang).
If the Hadamard conjecture is true, then Hadamard matrices of dimension
n\geq4 exist for all even orders v.
```


What about dimension $n=3$?

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \geq 4$ exist for all even orders v.

What about dimension $n=3$?

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \geq 4$ exist for all even orders v.

What about dimension $n=3$?

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension $n \geq 4$ exist for all even orders v.

What about dimension $n=3$?

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension $n=3$ exist for orders $v=2 \cdot 3^{m}, m \geq 0$.

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension $n=3$ exist for orders $v=2 \cdot 3^{m}, m \geq 0$.
$v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension $n=3$ exist for orders $v=2 \cdot 3^{m}, m \geq 0$.
$v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$
Concluding questions: (in book from 2010)
5. Prove or disprove the existence of three-dimensional Hadamard matrices of orders $4 k+2 \neq 2 \cdot 3^{m}$.
6. Construct more three-dimensional Hadamard matrices of orders $4 k+2$.

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension $n=3$ exist for orders $v=2 \cdot 3^{m}, m \geq 0$.
$v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$
Concluding questions: (in book from 2010)
5. Prove or disprove the existence of three-dimensional Hadamard matrices of orders $4 k+2 \neq 2 \cdot 3^{m}$.
6. Construct more three-dimensional Hadamard matrices of orders $4 k+2$.
V. Krčadinac, M. O. Pavčević, K. Tabak, Three-dimensional Hadamard matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

Theorem (V. K., M. O. Pavčević, K. Tabak).
Hadamard matrices of dimension $n=3$ and order $v=q+1$ exist for all odd prime powers $q($ proper for $q \equiv 3(\bmod 4)$, improper for $q \equiv 1(\bmod 4))$.

Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension $n=3$ exist for orders $v=2 \cdot 3^{m}, m \geq 0$.
$v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$
Concluding questions: (in book from 2010)
5. Prove or disprove the existence of three-dimensional Hadamard matrices of orders $4 k+2 \neq 2 \cdot 3^{m}$.
6. Construct more three-dimensional Hadamard matrices of orders $4 k+2$.
V. Krčadinac, M. O. Pavčević, K. Tabak, Three-dimensional Hadamard matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

Theorem (V. K., M. O. Pavčević, K. Tabak).
Hadamard matrices of dimension $n=3$ and order $v=q+1$ exist for all odd prime powers $q($ proper for $q \equiv 3(\bmod 4)$, improper for $q \equiv 1(\bmod 4))$.
$v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

Higher-dimensional Hadamard matrices

Higher-dimensional Hadamard matrices

Higher-dimensional Hadamard matrices

Higher-dimensional Hadamard matrices

$H: P G(1, q)^{3} \rightarrow\{1,-1\}, q \equiv 1$ or $3(\bmod 4)$,

$$
H(x, y, z)= \begin{cases}-1, & \text { if } x=y=z, \\ 1, & \text { if } x=y \neq z \\ & \text { or } x=z \neq y, \\ & \text { or } y=z \neq x, \\ \chi(z-y), & \text { if } x=\infty, \\ \chi(x-z), & \text { if } y=\infty, \\ \chi(y-x), & \text { if } z=\infty, \\ \chi((x-y)(y-z)(z-x)), & \text { otherwise. }\end{cases}
$$

$P G(1, q)=\mathbb{F}_{q} \cup\{\infty\}$

Prescribed Automorphism Groups

PAG

Prescribed Automorphism Groups

Version 0.2.3
Released 2024-05-21

Download .tar.gz
View On GitHub

This project is maintained by
Vedran Krcadinac

GAP Package PAG

The PAG package contains functions for constructing combinatorial objects with prescribed automorphism groups.

The current version of this package is version 0.2 .3 , released on 2024-05-21. For more information, please refer to the package manual. There is also a README file.

Dependencies

This package requires GAP version 4.11
https://vkrcadinac.github.io/PAG/

For the Open problems session

Question: is there a 3-dimensional Hadamard matrix of order $v=22$?

Symmetric designs

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0,1\}$-entries such that $A \cdot A^{\tau}=(k-\lambda) I+\lambda J$ holds. The order of the design is $n=k-\lambda$.

Symmetric designs

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0,1\}$-entries such that $A \cdot A^{\tau}=(k-\lambda) I+\lambda J$ holds. The order of the design is $n=k-\lambda$.
Example:
$(7,3,1)$
$n=2$$\left(\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}\right)$

Symmetric designs

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0,1\}$-entries such that $A \cdot A^{\tau}=(k-\lambda) I+\lambda J$ holds. The order of the design is $n=k-\lambda$.
Example:
$(7,3,1)$
$n=2$$\left(\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}\right)$

Symmetric designs

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0,1\}$-entries such that $A \cdot A^{\tau}=(k-\lambda) I+\lambda J$ holds. The order of the design is $n=k-\lambda$.

Example:

$$
\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Main question: for what triples (v, k, λ) do symmetric designs exist?

Symmetric designs

A symmetric (v, k, λ) design is a $v \times v$ matrix with $\{0,1\}$-entries such that $A \cdot A^{\tau}=(k-\lambda) I+\lambda J$ holds. The order of the design is $n=k-\lambda$.

Example:

$$
\begin{gathered}
(7,3,1) \\
n=2
\end{gathered}
$$

$$
\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Main question: for what triples (v, k, λ) do symmetric designs exist?

Proposition.

If a symmetric (v, k, λ) design exists, then $\lambda(v-1)=k(k-1)$.

Symmetric designs

Theorem.

A Hadamard matrix of order $v=4 n$ exists if and only if a symmetric $(4 n-1,2 n-1, n-1)$ design exists.

Symmetric designs

Theorem.

A Hadamard matrix of order $v=4 n$ exists if and only if a symmetric $(4 n-1,2 n-1, n-1)$ design exists.

A projective plane of order n is a symmeric $\left(n^{2}+n+1, n+1,1\right)$ design. Question: do they exist for non-prime power orders n ?

Symmetric designs

Theorem.

A Hadamard matrix of order $v=4 n$ exists if and only if a symmetric $(4 n-1,2 n-1, n-1)$ design exists.

A projective plane of order n is a symmeric $\left(n^{2}+n+1, n+1,1\right)$ design. Question: do they exist for non-prime power orders n ?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1} y, x, y \in D$ cover $G \backslash\{1\}$ exactly λ times.

Symmetric designs

Theorem.

A Hadamard matrix of order $v=4 n$ exists if and only if a symmetric $(4 n-1,2 n-1, n-1)$ design exists.

A projective plane of order n is a symmeric $\left(n^{2}+n+1, n+1,1\right)$ design. Question: do they exist for non-prime power orders n ?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1} y, x, y \in D$ cover $G \backslash\{1\}$ exactly λ times.

Theorem.

If D is a (v, k, λ) difference set in $G=\left\{g_{1}, \ldots, g_{v}\right\}$, then

$$
A=\left(a_{i j}\right), \quad a_{i j}=\left[g_{i} \cdot g_{j} \in D\right]= \begin{cases}1, & \text { if } g_{i} \cdot g_{j} \in D \\ 0, & \text { otherwise }\end{cases}
$$

is a symmetric (v, k, λ) design with G as a regular automorphism group.

Symmetric designs

Theorem.

A Hadamard matrix of order $v=4 n$ exists if and only if a symmetric $(4 n-1,2 n-1, n-1)$ design exists.

A projective plane of order n is a symmeric $\left(n^{2}+n+1, n+1,1\right)$ design. Question: do they exist for non-prime power orders n ?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1} y, x, y \in D$ cover $G \backslash\{1\}$ exactly λ times.

Example:

$D=\{0,1,3\}$ is a $(7,3,1)$ difference set in $G=\mathbb{Z}_{7}=\{0, \ldots, 6\}$

Symmetric designs

Theorem.

A Hadamard matrix of order $v=4 n$ exists if and only if a symmetric $(4 n-1,2 n-1, n-1)$ design exists.

A projective plane of order n is a symmeric $\left(n^{2}+n+1, n+1,1\right)$ design. Question: do they exist for non-prime power orders n ?

A (v, k, λ) difference set is a k-subset $D \subseteq G$ of a group of order v such that the "differences" $x^{-1} y, x, y \in D$ cover $G \backslash\{1\}$ exactly λ times.

Example:

$D=\{0,1,3\}$ is a $(7,3,1)$ difference set in $G=\mathbb{Z}_{7}=\{0, \ldots, 6\}$
Symmetric $(25,9,3)$ designs exist, but there are no $(25,9,3)$ difference sets in any group of order 25.

Cubes of symmetric designs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An n-dimensional cube of symmetric (v, k, λ) designs is a function

$$
A:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}
$$

such that all 2-dimensional slices are symmetric (v, k, λ) designs.

Cubes of symmetric designs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An n-dimensional cube of symmetric (v, k, λ) designs is a function

$$
A:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}
$$

such that all 2-dimensional slices are symmetric (v, k, λ) designs.

Warwick de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, D. Flannery, Algebraic design theory, American Mathematical Society, 2011.

Cubes of symmetric designs

Theorem.

If D is a (v, k, λ) difference set in $G=\left\{g_{1}, \ldots, g_{v}\right\}$, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{1}} \cdots g_{i_{n}} \in D\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.

Cubes of symmetric designs

Theorem.

If D is a (v, k, λ) difference set in $G=\left\{g_{1}, \ldots, g_{v}\right\}$, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{1}} \cdots g_{i_{n}} \in D\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.

Example: $\{0,1,3\} \subseteq \mathbb{Z}_{7}$
is a $(7,3,1)$ difference set

Cubes of symmetric designs

Theorem.

If D is a (v, k, λ) difference set in $G=\left\{g_{1}, \ldots, g_{v}\right\}$, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{1}} \cdots g_{i_{n}} \in D\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.

Example: $\{0,1,3\} \subseteq \mathbb{Z}_{7}$ is a $(7,3,1)$ difference set

A 3-cube of symmetric $(7,3,1)$ designs:

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

If $\left\{D_{1}, \ldots, D_{v}\right\}$ is a family of (v, k, λ) difference sets in $G=\left\{g_{1}, \ldots, g_{v}\right\}$ that are blocks of a symmetric (v, k, λ) design, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in D_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

If $\left\{D_{1}, \ldots, D_{v}\right\}$ is a family of (v, k, λ) difference sets in $G=\left\{g_{1}, \ldots, g_{v}\right\}$ that are blocks of a symmetric (v, k, λ) design, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in D_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.
Usually: $\quad D_{i}=g_{i} \cdot D$, i.e. the family is the development of a single D

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

If $\left\{D_{1}, \ldots, D_{v}\right\}$ is a family of (v, k, λ) difference sets in $G=\left\{g_{1}, \ldots, g_{v}\right\}$ that are blocks of a symmetric (v, k, λ) design, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in D_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.
Usually: $\quad D_{i}=g_{i} \cdot D$, i.e. the family is the development of a single D

$$
\begin{aligned}
& D=\{0,1,4,14,16\} \subseteq \mathbb{Z}_{21} \\
& D_{i}=i+D, i=0, \ldots, 20
\end{aligned}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

If $\left\{D_{1}, \ldots, D_{v}\right\}$ is a family of (v, k, λ) difference sets in $G=\left\{g_{1}, \ldots, g_{v}\right\}$ that are blocks of a symmetric (v, k, λ) design, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in D_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.
Usually: $\quad D_{i}=g_{i} \cdot D$, i.e. the family is the development of a single D
$D=\{0,1,4,14,16\} \subseteq \mathbb{Z}_{21}$
$D_{i}=i+D, i=0, \ldots, 20$
A 3-cube of $(21,5,1)$ designs
(projective planes of order 4)

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

If $\left\{D_{1}, \ldots, D_{v}\right\}$ is a family of (v, k, λ) difference sets in $G=\left\{g_{1}, \ldots, g_{v}\right\}$ that are blocks of a symmetric (v, k, λ) design, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in D_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.

$$
\begin{aligned}
& G=\left\langle a, b \mid a^{3}=b^{7}=1, b a=a b^{2}\right\rangle \\
& D_{1}=\left\{1, a, b, b^{3}, a^{2} b^{2}\right\} \\
& D_{2}=\left\{a^{2} b^{6}, b^{6}, a^{2} b^{3}, a^{2} b^{4}, a\right\} \\
& D_{3}=\left\{1, a^{2}, a b, b^{2}, b^{6}\right\} \\
& \quad \vdots \\
& D_{21}=\left\{a^{2} b^{2}, a b^{3}, a b^{5}, b^{6}, a b^{6}\right\}
\end{aligned}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

If $\left\{D_{1}, \ldots, D_{v}\right\}$ is a family of (v, k, λ) difference sets in $G=\left\{g_{1}, \ldots, g_{v}\right\}$ that are blocks of a symmetric (v, k, λ) design, then

$$
A\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in D_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric (v, k, λ) designs.

$$
\begin{aligned}
& G=\left\langle a, b \mid a^{3}=b^{7}=1, b a=a b^{2}\right\rangle \\
& D_{1}=\left\{1, a, b, b^{3}, a^{2} b^{2}\right\} \\
& D_{2}=\left\{a^{2} b^{6}, b^{6}, a^{2} b^{3}, a^{2} b^{4}, a\right\} \\
& D_{3}=\left\{1, a^{2}, a b, b^{2}, b^{6}\right\} \\
& \vdots \\
& D_{21}=\left\{a^{2} b^{2}, a b^{3}, a b^{5}, b^{6}, a b^{6}\right\}
\end{aligned}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.
Example: $m=2,(16,6,2)$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

Example: $m=2,(16,6,2)$
There are three such designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.
Example: $m=2,(16,6,2)$
There are three such designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

Red design, Green design, Blue design

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{1}=\left\{D_{1}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{1}=\left\{D_{1}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2} \times \mathbb{Z}_{8}: \quad \mathcal{D}_{2}=\left\{D_{1}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2} \times Q_{8}: \quad \mathcal{D}_{3}=\left\{D_{1}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.
$G=\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{2}=\left\{D_{1}, \ldots, D_{16}\right\}$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{2}=\left\{D_{1}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{3}=\left\{D_{1}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2} \times \mathbb{Z}_{8}: \quad \mathcal{D}_{3}=\left\{D_{1}, \ldots, D_{8}, D_{9}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

$$
G=\mathbb{Z}_{2} \times Q_{8}: \quad \mathcal{D}_{2}=\left\{D_{1}, \ldots, D_{8}, D_{9}, \ldots, D_{16}\right\}
$$

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.
Non-group cubes?

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.
Non-group cubes?

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.
Non-group cubes?

Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).

For every $m \geq 2$ and $n \geq 3$, there are n-cubes of symmetric

$$
\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)
$$

designs that are not difference cubes.

Proposition.

There are at least 1423 inequivalent non-group 3-cubes of symmetric $(16,6,2)$ designs.

For the Open problems session

Symmetric $(25,9,3)$ designs exist, but there are no $(25,9,3)$ difference sets in any group of order 25 .

For the Open problems session

Symmetric $(25,9,3)$ designs exist, but there are no $(25,9,3)$ difference sets in any group of order 25.

Question: are there n-cubes of symmetric $(25,9,3)$ designs for $n \geq 3$?

For the Open problems session

Symmetric $(25,9,3)$ designs exist, but there are no $(25,9,3)$ difference sets in any group of order 25.

Question: are there n-cubes of symmetric $(25,9,3)$ designs for $n \geq 3$?

Thanks for your attention!

[^0]: * This work was fully supported by the Croatian Science Foundation under the project 9752.

