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Hadamard matrices

A v × v matrix with {−1, 1}-entries is Hadamard if H · Hτ = v I holds.

Examples:
(

1
)
,

(
1 1
1 −1

)
,


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Main question: for what orders v do Hadamard matrices exist?

Proposition.
If a Hadamard matrix exists, then v = 1, v = 2, or v ≡ 0 (mod 4).

Hadamard conjecture: they exist for all orders v ≡ 0 (mod 4).

Smallest unknown order: v = 668
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices,
Bull. Amer. Phys. Soc. 16 (8) (1971), 825–826.

Paul J. Shlichta, Higher dimensional Hadamard matrices,
IEEE Trans. Inform. Theory 25 (1979), no. 5, 566–572.

An n-dimensional matrix of order v with {−1, 1}-entries

H : {1, . . . , v}n → {−1, 1}

is Hadamard if all (n − 1)-dimensional parallel slices are orthogonal:∑
1≤i1,...,̂ij ,...,in≤v

H(i1, . . . , a, . . . , in)H(i1, . . . , b, . . . , in) = vn−1δab

is proper Hadamard if all 2-dimensional slices are Hadamard matrices.
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Higher-dimensional Hadamard matrices

Yi Xian Yang, X. X. Niu, C. Q. Xu, Theory and applications of
higher-dimensional Hadamard matrices, Second edition, Chapman
and Hall/CRC Press, 2010.

Main question: for what dimensions n and orders v do higher-dimen-
sional Hadamard matrices exist?

Theorem (Y. X. Yang, 1986). “Product construction”
Let h : {1, . . . , v}2 → {−1, 1} be an ordinary Hadamard matrix of order v .
Then H(i1, . . . , in) =

∏
1≤j<k≤n

h(ij , ik)

is an n-dimensional proper Hadamard matrix of order v .

For dimensions n ≥ 3, the order v > 2 of “improper” Hadamard matrices
must be even. They can exist for v ≡ 2 (mod 4)!
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Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).
If the Hadamard conjecture is true, then Hadamard matrices of dimension
n ≥ 4 exist for all even orders v .

What about dimension n = 3 ?
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Higher-dimensional Hadamard matrices
Theorem (Y. X. Yang).
Hadamard matrices of dimension n = 3 exist for orders v = 2 · 3m, m ≥ 0.

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .
Concluding questions: (in book from 2010)
5. Prove or disprove the existence of three-dimensional Hadamard

matrices of orders 4k + 2 6= 2 · 3m.
6. Construct more three-dimensional Hadamard matrices of orders 4k + 2.

V. Krčadinac, M. O. Pavčević, K. Tabak, Three-dimensional Hadamard
matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

Theorem (V. K., M. O. Pavčević, K. Tabak).
Hadamard matrices of dimension n = 3 and order v = q + 1 exist for all
odd prime powers q (proper for q ≡ 3 (mod 4), improper for q ≡ 1 (mod 4)).

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .
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Hadamard matrices of dimension n = 3 and order v = q + 1 exist for all
odd prime powers q (proper for q ≡ 3 (mod 4), improper for q ≡ 1 (mod 4)).

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .
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Higher-dimensional Hadamard matrices
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Higher-dimensional Hadamard matrices
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Higher-dimensional Hadamard matrices

H : PG(1, q)3 → {1,−1}, q ≡ 1 or 3 (mod 4),

H(x , y , z) =



−1, if x = y = z ,

1, if x = y 6= z
or x = z 6= y
or y = z 6= x ,

χ(z − y), if x =∞,

χ(x − z), if y =∞,

χ(y − x), if z =∞,

χ((x − y)(y − z)(z − x)), otherwise.

PG(1, q) = Fq ∪ {∞}
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Prescribed Automorphism Groups

https://vkrcadinac.github.io/PAG/
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For the Open problems session

Question: is there a 3-dimensional Hadamard matrix of order v = 22?
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Symmetric designs
A symmetric (v , k, λ) design is a v × v matrix with {0, 1}-entries such
that A · Aτ = (k − λ) I + λ J holds. The order of the design is n = k − λ.

Example:

(7, 3, 1)

n = 2



1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0


Main question: for what triples (v , k, λ) do symmetric designs exist?

Proposition.
If a symmetric (v , k, λ) design exists, then λ(v − 1) = k(k − 1).
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V. Krčadinac (University of Zagreb) Higher-dimensional matrices and designs 11.6.2024. 13 / 31



Symmetric designs

Theorem.
A Hadamard matrix of order v = 4n exists if and only if a symmetric
(4n − 1, 2n − 1, n − 1) design exists.

A projective plane of order n is a symmeric (n2 + n + 1, n + 1, 1) design.
Question: do they exist for non-prime power orders n?

A (v , k, λ) difference set is a k-subset D ⊆ G of a group of order v such
that the “differences” x−1y , x , y ∈ D cover G \ {1} exactly λ times.

Theorem.
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A = (aij), aij = [ gi · gj ∈ D ] =
{

1, if gi · gj ∈ D,

0, otherwise
is a symmetric (v , k, λ) design with G as a regular automorphism group.
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A (v , k, λ) difference set is a k-subset D ⊆ G of a group of order v such
that the “differences” x−1y , x , y ∈ D cover G \ {1} exactly λ times.

Theorem.
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A = (aij), aij = [ gi · gj ∈ D ] =
{

1, if gi · gj ∈ D,

0, otherwise
is a symmetric (v , k, λ) design with G as a regular automorphism group.
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Example:

D = {0, 1, 3} is a (7, 3, 1) difference set in G = Z7 = {0, . . . , 6}

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference
sets in any group of order 25.
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Cubes of symmetric designs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An n-dimensional cube of symmetric (v , k, λ) designs is a function

A : {1, . . . , v}n → {0, 1}

such that all 2-dimensional slices are symmetric (v , k, λ) designs.

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

W. de Launey, D. Flannery, Algebraic design theory, American Mathe-
matical Society, 2011.

V. Krčadinac (University of Zagreb) Higher-dimensional matrices and designs 11.6.2024. 16 / 31

https://arxiv.org/abs/2304.05446


Cubes of symmetric designs
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Cubes of symmetric designs

Theorem.
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi1 · · · gin ∈ D ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Example: {0, 1, 3} ⊆ Z7
is a (7, 3, 1) difference set

A 3-cube of symmetric
(7, 3, 1) designs:
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
If {D1, . . . ,Dv} is a family of (v , k, λ) difference sets in G = {g1, . . . , gv}
that are blocks of a symmetric (v , k, λ) design, then

A(i1, . . . , in) = [ gi2 · · · gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Usually: Di = gi · D, i.e. the family is the development of a single D

D = {0, 1, 4, 14, 16} ⊆ Z21

Di = i + D, i = 0, . . . , 20

A 3-cube of (21, 5, 1) designs
(projective planes of order 4)
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
If {D1, . . . ,Dv} is a family of (v , k, λ) difference sets in G = {g1, . . . , gv}
that are blocks of a symmetric (v , k, λ) design, then

A(i1, . . . , in) = [ gi2 · · · gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

G = 〈a, b | a3 = b7 = 1, ba = ab2〉

D1 = {1, a, b, b3, a2b2}

D2 = {a2b6, b6, a2b3, a2b4, a}

D3 = {1, a2, ab, b2, b6}
...

D21 = {a2b2, ab3, ab5, b6, ab6}
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If {D1, . . . ,Dv} is a family of (v , k, λ) difference sets in G = {g1, . . . , gv}
that are blocks of a symmetric (v , k, λ) design, then

A(i1, . . . , in) = [ gi2 · · · gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

G = 〈a, b | a3 = b7 = 1, ba = ab2〉

D1 = {1, a, b, b3, a2b2}

D2 = {a2b6, b6, a2b3, a2b4, a}

D3 = {1, a2, ab, b2, b6}
...

D21 = {a2b2, ab3, ab5, b6, ab6}
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

Example: m = 2, (16, 6, 2)

There are three such designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Red design, Green design, Blue design
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

G = Z4
2: D1 = {D1, . . . ,D16}
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

G = Z2 × Z8: D2 = {D1, . . . ,D16}
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

G = Z2 × Q8: D3 = {D1, . . . ,D16}
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V. Krčadinac (University of Zagreb) Higher-dimensional matrices and designs 11.6.2024. 25 / 31
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Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

G = Z2 × Z8: D3 = {D1, . . . ,D8,D9, . . . ,D16}

V. Krčadinac (University of Zagreb) Higher-dimensional matrices and designs 11.6.2024. 26 / 31



Cubes of symmetric designs
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V. Krčadinac (University of Zagreb) Higher-dimensional matrices and designs 11.6.2024. 27 / 31



Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

Theorem (V. K., M. O. Pavčević, K. Tabak).
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are not difference cubes.

Proposition.
There are at least 1423 inequivalent non-group 3-cubes of symmetric
(16, 6, 2) designs.
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For the Open problems session

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference
sets in any group of order 25.

Question: are there n-cubes of symmetric (25, 9, 3) designs for n ≥ 3?

Thanks for your attention!

V. Krčadinac (University of Zagreb) Higher-dimensional matrices and designs 11.6.2024. 31 / 31



For the Open problems session

Symmetric (25, 9, 3) designs exist, but there are no (25, 9, 3) difference
sets in any group of order 25.

Question: are there n-cubes of symmetric (25, 9, 3) designs for n ≥ 3?

Thanks for your attention!
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