Quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 5

Renata Vlahović Kruc
(joint work with Vedran Krčadinac)
Combinatorial Designs and Codes
Rijeka, 2021

July 15, 2021

* This work has been supported by Croatian Science Foundation under project 9752.

Introduction

Definition.

A 2- (v, k, λ) design is a set of v points together with a collection of k-element subsets called blocks such that every pair of points is contained in exactly λ blocks.

For a 2-($v, k, \lambda)$ design we denote by b the total number of blocks, and by r the number of blocks through any point:

$$
b=\lambda \cdot \frac{\binom{v}{t}}{\binom{k}{t}}
$$

$$
r=\lambda \cdot \frac{\binom{v-1}{t-1}}{\binom{k-1}{t-1}}
$$

The numbers t, v, k, λ, b and r are parameters of the design.

Introduction

Definition.

A design is quasi-symmetric if any two blocks intersect in either x or y points, for non-negative integers $x<y$.

The numbers x and y are called intersection numbers.

- Any symmetric 2 -design $(v=b)$ is quasi-symmetric with $x=\lambda$ and y is arbitrary.
- Any Steiner 2-design $(\lambda=1)$ is quasi-symmetric with $x=0$ and $y=1$.

Introduction

M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 578-582.

Table An updated table of exceptional quasi-symmetric designs with $2 k \leq v \leq 70$. References not given here can be found in [2049].

No.	v	k	λ	r	b	x	y	Existence	Ref.
1	19	7	7	21	57	1	3	No	$[1674]$
2	19	9	16	36	76	3	5	No	
3	20	10	18	38	76	4	6	No	
4	20	8	14	38	95	2	4	No	$[410]$
5	21	9	12	30	70	3	5	No	$[410]$
6	21	8	14	40	105	2	4	No	$[2044]$
7	21	6	4	16	56	0	2	Yes(1)	$[2044]$
8	21	7	12	40	120	1	3	Yes(1)	
9	22	8	12	36	99	2	4	No	
10	22	6	5	21	77	0	2	Yes(1)	$[2044]$
11	22	7	16	56	176	1	3	Yes(1)	
12	23	7	21	77	253	1	3	Yes(1)	
13	24	8	7	23	69	2	4	No	
14	28	7	16	72	288	1	3	No	$[2044]$
15	28	12	11	27	63	4	6	Yes($\geq 8784)$	$1236,1379,2044,710]$

$2-(28,12,11)$ QSD with $x=4$ and $y=6$

- the first known 2-($28,12,11$) QSDs were constructed as derived designs of symplectic symmetric $2-(64,28,12)$ designs \rightsquigarrow SDP designs
W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33 (1975), 43-58.

Definition.

A symmetric $2-(v, k, \lambda)$ design $(v=b)$ is an SDP design if the symmetric difference of any three blocks is either a block or the complement of a block.

- four symmetric 2 -($64,28,12$) SDP desings yield four quasi-symmetric 2-($28,12,11$) SDP design as derived design
D. Jungnickel, V. D. Tonchev, On symmetric and quasi-symmetric designs with the symmetric difference property and their codes, J. Combin. Theory Ser. A 59 (1992), no. 1, 40-50.

$2-(28,12,11)$ QSD with $x=4$ and $y=6$

- 2- $(28,12,11)$ QSDs were classified with an automorphism of order 7 without fixed points and blocks $\rightsquigarrow 246$ QSD
Y. Ding, S. Houghten, C. Lam, S. Smith, L. Thiel, and V. D. Tonchev, Quasi-symmetric 2-(28, 12, 11) designs with an automorphism of order 7, J. Combin. Des. 6 (1998), no. 3, 213-223.
- the number of $2-(28,12,11)$ QSDs was increased to 58891 using the Kramer-Mesner method adopted for the construction of quasi-symmetric designs with prescribed automorphism groups and a direct construction of quasi-symmetric designs based on Hadamarad matrices and mutually orthogonal Latin squares
V. Krčadinac, R. Vlahović, New quasi-symmetric designs by the Kramer-Mesner method,

Discrete Math. 339 (2016), no. 12, 2884-2890.

$2-(28,12,11)$ QSD with $x=4$ and $y=6$

\mid Aut \mid	$\#$								
1451520	1	512	14	144	12	42	3	12	12908
10752	1	384	102	128	4745	40	2	10	28
4608	3	360	1	120	17	36	33	7	47
1920	4	320	4	96	26039	32	1299	3	172
1536	13	288	10	84	15	28	12	2	62
1344	4	256	258	80	372	24	360	1	9554
768	18	224	8	72	11	21	95		
672	8	192	652	64	110	20	26		
640	1	168	2	60	8	18	7		
576	12	160	564	48	1224	14	50		

Table: The distribution of the known 2- $(28,12,11)$ QSDs by order of full automorphism group.

GOAL: to preform a complete classification of 2-($28,12,11$) QSDs with an automorphism of order 5.

Orbit matrices and indexing

Let $\mathcal{V}_{1}, \ldots, \mathcal{V}_{m}$ and $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$ be the point- and block-orbits of a $2-(v, k, \lambda)$ design with respect to a group of automorphism G.

Let $\nu_{i}=\left|\mathcal{V}_{i}\right|$ and $\beta_{i}=\left|\mathcal{B}_{i}\right|: \sum_{i=1}^{m} \nu_{i}=v$ and $\sum_{j=1}^{n} \beta_{j}=b$.
For $1 \leq i \leq m$ and $1 \leq j \leq n$ let

$$
a_{i j}=\left|\left\{P \in \mathcal{V}_{i} \mid P \in B\right\}\right| .
$$

This number $a_{i j}$ does not depend on the choice of B.

Orbit matrices and indexing

The matrix $A=\left[a_{i j}\right]$ has the following properties:

1. $\sum_{i=1}^{m} a_{i j}=k$,
2. $\sum_{j=1}^{n} \frac{\beta_{j}}{\nu_{i}} a_{i j}=r$,
3. $\sum_{j=1}^{n} \frac{\beta_{j}}{\nu_{i^{\prime}}} a_{i j} a_{i^{\prime} j}= \begin{cases}\lambda \nu_{i}, & \text { for } i \neq i^{\prime}, \\ \lambda\left(\nu_{i}-1\right)+r, & \text { for } i=i^{\prime} .\end{cases}$

A matrix with these properties is called an orbit matrix for $2-(v, k, \lambda)$ and G.
For a quasi-symmetric design with intersection numbers x and y, the matrix A has the additional properties

$$
\text { 4. } \sum_{i=1}^{m} \frac{\beta_{j}}{\nu_{i}} a_{i j} a_{i j^{\prime}}= \begin{cases}s x+\left(\beta_{j}-s\right) y, & \text { for } j \neq j^{\prime}, 0 \leq s \leq \beta_{j}, \\ s x+\left(\beta_{j}-1-s\right) y+k, & \text { for } j=j^{\prime}, 0 \leq s<\beta_{j} .\end{cases}
$$

An orbit matrix satisfying these equations is called good.

Orbit matrices and indexing

The construction based on orbit matrices consist of two steps:
1 Find all good orbit matrices A with properties 1.-4., up to rearrangements of rows and columns.
2 Indexing orbit matrices: refine each matrix A in all possible ways to an incidence matrix of a design.

$$
\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{1, m} & \cdots & a_{m, n}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
N_{1,1} & \cdots & N_{1, n} \\
\vdots & \ddots & \vdots \\
N_{1, m} & \cdots & N_{m, n}
\end{array}\right]
$$

Classification of 2-(28, 12, 11) QSDs

Let α be an automorphism of order 5 of a 2- $(28,12,11)$ designs with intersection numbers $x=4$ and $y=6$.

Lemma.

The automorphism α has three fix points and blocks.

$$
\begin{aligned}
\rightsquigarrow \nu & =(1,1,1,5,5,5,5,5) \\
\beta & =(1,1,1,5,5,5,5,5,5,5,5,5,5,5,5,5)
\end{aligned}
$$

Classification of 2-(28, 12, 11) QSDs

$$
\begin{aligned}
& B_{1}=\left[\begin{array}{lllllllllllllll}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & & & & & & & & & & & & \\
5 & 5 & 5 & & & & & & & & & & & & \\
5 & 0 & 0 & & & & & & & & & & & & \\
0 & 5 & 0 & & & & & & ? & & & & & & \\
0 & 0 & 5 & & & & & & & & & & & & \\
0 & 0 & 0 & & & & & & & & & & & &
\end{array}\right], \\
& B_{2}=\left[\begin{array}{lllllllllllllll}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & & & & & & & & & & & & \\
5 & 5 & 0 & & & & & & & & & & & & \\
5 & 0 & 5 & & & & & & & & & & & & \\
0 & 5 & 5 & & & & & & ? & & & & & & \\
0 & 0 & 0 & & & & & & & & & & & & \\
0 & 0 & 0 & & & & & & & & & & &
\end{array}\right] .
\end{aligned}
$$

Classification of 2-($28,12,11)$ QSDs

Orbit matrices of type B_{1} :
■ 62370 orbit matrices

- 198 good orbit matrices
- 3449 non-isomorphic designs

Orbit matrices of type B_{2} :

- 55573 orbit matrices
- 241 good orbit matrices
- 28247 non-isomorphic designs

Theorem.

There are exactly 31696 quasi-symmetric $2-(28,12,11)$ designs with intersection numbers $x=4, y=6$ and an automorphism of order 5 .

Classification of $2-(28,12,11)$ QSDs

\mid Aut \mid	$\#$						
1451520	1	320	4	60	8	5	878
1920	4	160	564	40	2		
640	1	120	17	20	26		
360	1	80	372	10	29818		

Table: The distribution of 2- $(28,12,11)$ QSDs with an automorphism of order 5 by order of full automorphism group.

Thank you for your attention!

