On Automorphisms of a binary Fano plane

Kristijan Tabak
Rochester Institute of Technology, Croatia Campus

Combinatorial Designs and Codes, 12 - 16. July 2021, Rijeka, Croatia

This work has been fully supported by Croatian Science Foundation under the projects 6732

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points,

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, any two points are contained in λ blocks.

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization.

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization.
A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points,
any two points are contained in λ blocks.
A q-analog of a (v, k, λ) design is a natural generalization.
A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if

Any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points,
any two points are contained in λ blocks.
A q-analog of a (v, k, λ) design is a natural generalization.
A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if

Any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.
A classical example of a (v, k, λ)-design is a Fano plane, a design with parameters $(7,3,1)$.

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points,
any two points are contained in λ blocks.
A q-analog of a (v, k, λ) design is a natural generalization.
A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if

Any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.
A classical example of a (v, k, λ)-design is a Fano plane, a design with parameters $(7,3,1)$.

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from $\mathbb{F}_{2^{7}}$

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points,
any two points are contained in λ blocks.
A q-analog of a (v, k, λ) design is a natural generalization.
A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if

Any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.
A classical example of a (v, k, λ)-design is a Fano plane, a design with parameters $(7,3,1)$.

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from $\mathbb{F}_{2^{7}}$
such that any 2 -dimensional subspace of $\mathbb{F}_{2^{7}}$ is contained in one block from a collection of blocks.

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points,
any two points are contained in λ blocks.
A q-analog of a (v, k, λ) design is a natural generalization.
A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if

Any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.
A classical example of a (v, k, λ)-design is a Fano plane, a design with parameters $(7,3,1)$.

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from $\mathbb{F}_{2^{7}}$
such that any 2-dimensional subspace of $\mathbb{F}_{2^{7}}$ is contained in one block from a collection of blocks.

It is still unknown if a 2-analog of a Fano plane exists.

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2 -analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method

Kiermaier M., Kurz S., Wassermann A. showed that order of the automorphism group of a binary q-analog of the Fano plane is at most two

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method

Kiermaier M., Kurz S., Wassermann A. showed that order of the automorphism group of a binary q-analog of the Fano plane is at most two

Combination of theoretical approach and computer calculations

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method

Kiermaier M., Kurz S., Wassermann A. showed that order of the automorphism group of a binary q-analog of the Fano plane is at most two

Combination of theoretical approach and computer calculations
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method

Kiermaier M., Kurz S., Wassermann A. showed that order of the automorphism group of a binary q-analog of the Fano plane is at most two

Combination of theoretical approach and computer calculations
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.

We use the following definition: $\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane,

The question of it's existence was posted in 1974 in Berge C., RayChaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by
Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method

Kiermaier M., Kurz S., Wassermann A. showed that order of the automorphism group of a binary q-analog of the Fano plane is at most two

Combination of theoretical approach and computer calculations
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.

We use the following definition: $\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.
It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127$.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.
It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127$.
Hence, we will investigate the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.
It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127$.
Hence, we will investigate the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$.

Aut of order 4

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.
It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127$.
Hence, we will investigate the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$.

Aut of order 4

Theorem 0.1 Let $\beta \in \operatorname{Aut}\left(E_{2^{n}}\right)$ be of order 2. Let $F=1+\operatorname{Fix}(\beta)$. Then $|F| \geq 2^{n / 2}$.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.

We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.
It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127$.
Hence, we will investigate the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$.

Aut of order 4

Theorem 0.1 Let $\beta \in \operatorname{Aut}\left(E_{2^{n}}\right)$ be of order 2. Let $F=1+\operatorname{Fix}(\beta)$. Then $|F| \geq 2^{n / 2}$.

Let $F=E_{2^{k}}$. Then $E_{2^{n}} / F=\sum_{i=1}^{2^{n-k}} x_{i} F$ for some class representatives x_{i}.

This definition is equivalent to a classical definition that is given in terms of vectors spaces.
We can say that $\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$.
It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127$.
Hence, we will investigate the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$.

Aut of order 4

Theorem 0.1 Let $\beta \in \operatorname{Aut}\left(E_{2^{n}}\right)$ be of order 2. Let $F=1+\operatorname{Fix}(\beta)$. Then $|F| \geq 2^{n / 2}$.

Let $F=E_{2^{k}}$. Then $E_{2^{n}} / F=\sum_{i=1}^{2^{n-k}} x_{i} F$ for some class representatives x_{i}.
$\left|\left\{x_{i} x_{i}^{\beta} \mid i \in\left[2^{n-k}\right]\right\}\right|=2^{n-k}$ and $\left\{x_{i} x_{i}^{\beta} \mid i \in\left[2^{n-k}\right]\right\} \subseteq F$.

Therefore, $2^{n-k} \leq 2^{k}$.

Therefore, $2^{n-k} \leq 2^{k}$.

Theorem 0.2 An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Therefore, $2^{n-k} \leq 2^{k}$.

Theorem 0.2 An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

If we assume that the claim is not true, after factorizing by some fixed subgroup $\langle c\rangle \cong \mathbb{Z}_{2}$, then the opposite of the following claim holds.

Therefore, $2^{n-k} \leq 2^{k}$.

Theorem 0.2 An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

If we assume that the claim is not true, after factorizing by some fixed subgroup $\langle c\rangle \cong \mathbb{Z}_{2}$, then the opposite of the following claim holds.

Theorem 0.3 Let $\beta \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 2 with 31 fixed point. Then, there is no $E_{2^{2}}$ tiling of $E_{2^{6}}$ such that $\sum_{i=1}^{2 a+1} A_{i}+\sum_{j=1}^{b} B_{j}^{\langle\beta\rangle}=E_{2^{6}}+20$ where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.

Theorem 0.4 An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Theorem 0.4 An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Proof: Assume the opposite. Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha)=2$ and $|\operatorname{Fix}(\alpha)|=63$. Let $F=1+\operatorname{Fix}(\alpha) \cong E_{2^{6}}$. Take some $H \in \mathcal{H}$ such that $H^{\alpha} \neq H$. Then $H \nless F$ and $T=H \cap F=E_{2^{2}}$. Therefore, $T^{\alpha}=H^{\alpha} \cap F=T$. Thus, $T \leq H \cap H^{\alpha}$. Hence, $T \cong E_{2^{2}}$ is a subgroup of two different blocks from \mathcal{H}. By the definition of \mathcal{H}, that is not possible. Thus, $\alpha / \mathcal{H}=i d$. We will argue that this is not possible as well. Take $c \neq 1$ and $\mathcal{H}_{c}=\sum_{c \in H} H$. Since $H^{\alpha}=H$ for all $H \in \mathcal{H}_{c}$, then $c^{\alpha}=c$. Then $\alpha=i d$ which is a contradiction with $o(\alpha)=2$. \square

Theorem 0.4 An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Proof: Assume the opposite. Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha)=2$ and $|\operatorname{Fix}(\alpha)|=63$. Let $F=1+\operatorname{Fix}(\alpha) \cong E_{2^{6}}$. Take some $H \in \mathcal{H}$ such that $H^{\alpha} \neq H$. Then $H \nless F$ and $T=H \cap F=E_{2^{2}}$. Therefore, $T^{\alpha}=H^{\alpha} \cap F=T$. Thus, $T \leq H \cap H^{\alpha}$. Hence, $T \cong E_{2^{2}}$ is a subgroup of two different blocks from \mathcal{H}. By the definition of \mathcal{H}, that is not possible. Thus, $\alpha / \mathcal{H}=i d$. We will argue that this is not possible as well. Take $c \neq 1$ and $\mathcal{H}_{c}=\sum H$. Since $H^{\alpha}=H$ for all $H \in \mathcal{H}_{c}$, then $c^{\alpha}=c$. Then $\alpha=i d$ which is a contradiction with $o(\alpha)=2$. \square

Corollary 0.5 If $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 2, then $|\operatorname{Fix}(\alpha)|=15$.

Theorem 0.6 Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4. Then there are 28α orbits on $E_{2^{7}}$ of a size 4. Furthermore, Fix $\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2 .

Theorem 0.6 Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4. Then there are 28α orbits on $E_{2^{7}}$ of a size 4. Furthermore, Fix $\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2 .

Remark: Since $2^{k}+2 a_{2}=2^{4}$, we get $k \leq 4$. From a class equation and assumption $o(\alpha)=4$, we can see that α must have a fixed point from $E_{2^{7}}^{*}$. Therefore, $\left|F_{1}\right|=2^{k}>1$. This means that we need to analyze cases $k=1,2,3,4$.

Theorem 0.6 Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4. Then there are 28α orbits on $E_{2^{7}}$ of a size 4. Furthermore, Fix $\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2 .

Remark: Since $2^{k}+2 a_{2}=2^{4}$, we get $k \leq 4$. From a class equation and assumption $o(\alpha)=4$, we can see that α must have a fixed point from $E_{2^{7}}^{*}$. Therefore, $\left|F_{1}\right|=2^{k}>1$. This means that we need to analyze cases $k=1,2,3,4$.

Theorem 0.7 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1+\operatorname{Fix}(\alpha)| \leq 2^{3}$ i.e. $k=4$ is not possible.

Theorem 0.6 Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4. Then there are 28α orbits on $E_{2^{7}}$ of a size 4. Furthermore, Fix $\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2 .

Remark: Since $2^{k}+2 a_{2}=2^{4}$, we get $k \leq 4$. From a class equation and assumption $o(\alpha)=4$, we can see that α must have a fixed point from $E_{2^{7}}^{*}$. Therefore, $\left|F_{1}\right|=2^{k}>1$. This means that we need to analyze cases $k=1,2,3,4$.

Theorem 0.7 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1+\operatorname{Fix}(\alpha)| \leq 2^{3}$ i.e. $k=4$ is not possible.

From Fix $(\alpha)=$ Fix $\left(\alpha^{2}\right)$ we get a contradiction.

Theorem 0.8 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Theorem 0.8 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Analyzing $|1+\operatorname{Fix}(\widetilde{\alpha})|$, where $\widetilde{\alpha}=\alpha / F_{2} \in \operatorname{Aut}\left(F_{2}\right)$., we get a contradiction.

Theorem 0.8 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+F i x(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Analyzing $|1+\operatorname{Fix}(\widetilde{\alpha})|$, where $\widetilde{\alpha}=\alpha / F_{2} \in \operatorname{Aut}\left(F_{2}\right)$., we get a contradiction.

Theorem 0.9 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $\mid 1+$ Fix $(\alpha) \mid \neq 2^{2}$, i.e. $k=2$ is not possible.

Theorem 0.8 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+F i x(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Analyzing $|1+\operatorname{Fix}(\widetilde{\alpha})|$, where $\widetilde{\alpha}=\alpha / F_{2} \in \operatorname{Aut}\left(F_{2}\right)$., we get a contradiction.

Theorem 0.9 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $\mid 1+$ Fix $(\alpha) \mid \neq 2^{2}$, i.e. $k=2$ is not possible.

We start from $|\mathcal{H}|=381=|\operatorname{Fix}(\alpha, \mathcal{H})|+2 A+4 B$, where $A=\mid\left\{H^{\langle\alpha\rangle} \mid\right.$ $\left.H \in \mathcal{H},\left|H^{\langle\alpha\rangle}\right|=2\right\} \mid$ and $B=\left|\left\{H^{\langle\alpha\rangle}\left|H \in \mathcal{H},\left|H^{\langle\alpha\rangle}\right|=4\right\} \mid\right.\right.$.

Theorem 0.8 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+F i x(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Analyzing $|1+\operatorname{Fix}(\widetilde{\alpha})|$, where $\widetilde{\alpha}=\alpha / F_{2} \in \operatorname{Aut}\left(F_{2}\right)$., we get a contradiction.

Theorem 0.9 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $\mid 1+$ Fix $(\alpha) \mid \neq 2^{2}$, i.e. $k=2$ is not possible.

We start from $|\mathcal{H}|=381=|\operatorname{Fix}(\alpha, \mathcal{H})|+2 A+4 B$, where $A=\mid\left\{H^{\langle\alpha\rangle} \mid\right.$ $\left.H \in \mathcal{H},\left|H^{\langle\alpha\rangle}\right|=2\right\} \mid$ and $B=\left|\left\{H^{\langle\alpha\rangle}\left|H \in \mathcal{H},\left|H^{\langle\alpha\rangle}\right|=4\right\} \mid\right.\right.$.

Theorem 0.10 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq$ 2^{3}, i.e. $k=3$ is not possible.

Theorem 0.8 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Analyzing $|1+\operatorname{Fix}(\widetilde{\alpha})|$, where $\widetilde{\alpha}=\alpha / F_{2} \in \operatorname{Aut}\left(F_{2}\right)$., we get a contradiction.

Theorem 0.9 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $\mid 1+$ Fix $(\alpha) \mid \neq 2^{2}$, i.e. $k=2$ is not possible.

We start from $|\mathcal{H}|=381=\mid$ Fix $(\alpha, \mathcal{H}) \mid+2 A+4 B$, where $A=\mid\left\{H^{\langle\alpha\rangle} \mid\right.$ $\left.H \in \mathcal{H},\left|H^{\langle\alpha\rangle}\right|=2\right\} \mid$ and $B=\left|\left\{H^{\langle\alpha\rangle}\left|H \in \mathcal{H},\left|H^{\langle\alpha\rangle}\right|=4\right\} \mid\right.\right.$.

Theorem 0.10 If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq$ 2^{3}, i.e. $k=3$ is not possible.

A long and the most difficult case.

Theorem 0.11 If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.

Theorem 0.11 If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.

Thank you for your attention!

Theorem 0.11 If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.

Thank you for your attention!

