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A (v, k, λ)-design is a collection of blocks of a size k that are subsets
of a v-element set of points,

any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization.

A collection of k-dimensional vector subspaces (blocks) of a v-dimensional
space Fqv will be called a q-analog of a (v, k, λ)-design if

Any 2-dimensional subspace of Fqv is contained in λ blocks.

A classical example of a (v, k, λ)-design is a Fano plane, a design with
parameters (7, 3, 1).

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from
F27

such that any 2-dimensional subspace of F27 is contained in one block
from a collection of blocks.

It is still unknown if a 2-analog of a Fano plane exists.
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The question of it’s existence was posted in 1974 in Berge C., Ray-
Chaudhuri D.: Unsolved problems.

A first example of a 2-analog of a design was constructed by

Braun M., T. Etzion, Ostergard P., Vardy A., Wassermann A

It was constructed in F213 by Kramer-Mesner method

Kiermaier M., Kurz S., Wassermann A. showed that order of the auto-
morphism group of a binary q-analog of the Fano plane is at most two

Combination of theoretical approach and computer calculations

The main ambient space in which we shall investigate binary Fano plane
is elementary abelian group E27.

We use the following definition: H ⊆ E23[E27] is a binary Fano plane,

if every T ∈ E22[E27] is contained in exactly one H ∈ H.
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This definition is equivalent to a classical definition that is given in terms
of vectors spaces.

We can say that Aut(H) ≤ Aut(E27).

It is also known that |Aut(E27)| = 221 · 341 · 5 · 72 · 31 · 127.

Hence, we will investigate the existence of α ∈ Aut(H) such that
o(α) ∈ {2, 3, 5, 7, 31, 127}.

Aut of order 4

Theorem 0.1 Let β ∈ Aut(E2n) be of order 2. Let F = 1 + Fix(β).
Then |F | ≥ 2n/2.

Let F = E2k. Then E2n/F =
2n−k∑
i=1

xiF for some class representatives xi.

|{xixβi | i ∈ [2n−k]}| = 2n−k and {xixβi | i ∈ [2n−k]} ⊆ F .
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Theorem 0.2 An automorphism of order 2 with 31 fixed point can’t
act on H.
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subgroup 〈c〉 ∼= Z2, then the opposite of the following claim holds.
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Therefore, 2n−k ≤ 2k.

Theorem 0.2 An automorphism of order 2 with 31 fixed point can’t
act on H.

If we assume that the claim is not true, after factorizing by some fixed
subgroup 〈c〉 ∼= Z2, then the opposite of the following claim holds.

Theorem 0.3 Let β ∈ Aut(E26) be of order 2 with 31 fixed point.

Then, there is no E22 tiling of E26 such that
2a+1∑
i=1

Ai+
b∑

j=1

B
〈β〉
j = E26+20

where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.
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Theorem 0.4 An automorphism of order 2 with 63 fixed point can’t
act on H.

Proof: Assume the opposite. Let α ∈ Aut(H) such that o(α) = 2
and |Fix(α)| = 63. Let F = 1 + Fix(α) ∼= E26. Take some H ∈ H
such that Hα 6= H. Then H 
 F and T = H ∩ F = E22. Therefore,
T α = Hα∩F = T. Thus, T ≤ H ∩Hα. Hence, T ∼= E22 is a subgroup
of two different blocks from H. By the definition of H, that is not
possible. Thus, α/H = id. We will argue that this is not possible as

well. Take c 6= 1 and Hc =
∑

c∈H∈H
H. Since Hα = H for all H ∈ Hc,

then cα = c. Then α = id which is a contradiction with o(α) = 2. 2
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Theorem 0.4 An automorphism of order 2 with 63 fixed point can’t
act on H.

Proof: Assume the opposite. Let α ∈ Aut(H) such that o(α) = 2
and |Fix(α)| = 63. Let F = 1 + Fix(α) ∼= E26. Take some H ∈ H
such that Hα 6= H. Then H 
 F and T = H ∩ F = E22. Therefore,
T α = Hα∩F = T. Thus, T ≤ H ∩Hα. Hence, T ∼= E22 is a subgroup
of two different blocks from H. By the definition of H, that is not
possible. Thus, α/H = id. We will argue that this is not possible as

well. Take c 6= 1 and Hc =
∑

c∈H∈H
H. Since Hα = H for all H ∈ Hc,

then cα = c. Then α = id which is a contradiction with o(α) = 2. 2

Corollary 0.5 If α ∈ Aut(H) is of order 2, then |Fix(α)| = 15.
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Theorem 0.6 Let α ∈ Aut(H) is of order 4. Then there are 28 α-

orbits on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
〈α〉
i ,

where a2 is the number of α-orbits on E27 of a size 2.
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from E∗27. Therefore, |F1| = 2k > 1. This means that we need to
analyze cases k = 1, 2, 3, 4.



6/7

JJ
II
J
I

Back

Close

Theorem 0.6 Let α ∈ Aut(H) is of order 4. Then there are 28 α-

orbits on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
〈α〉
i ,

where a2 is the number of α-orbits on E27 of a size 2.

Remark: Since 2k + 2a2 = 24, we get k ≤ 4. From a class equation
and assumption o(α) = 4, we can see that α must have a fixed point
from E∗27. Therefore, |F1| = 2k > 1. This means that we need to
analyze cases k = 1, 2, 3, 4.

Theorem 0.7 If 〈α〉 ↪→ H and α is of order 4, then |1+Fix(α)| ≤ 23

i.e. k = 4 is not possible.



6/7

JJ
II
J
I

Back

Close

Theorem 0.6 Let α ∈ Aut(H) is of order 4. Then there are 28 α-

orbits on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
〈α〉
i ,

where a2 is the number of α-orbits on E27 of a size 2.

Remark: Since 2k + 2a2 = 24, we get k ≤ 4. From a class equation
and assumption o(α) = 4, we can see that α must have a fixed point
from E∗27. Therefore, |F1| = 2k > 1. This means that we need to
analyze cases k = 1, 2, 3, 4.

Theorem 0.7 If 〈α〉 ↪→ H and α is of order 4, then |1+Fix(α)| ≤ 23

i.e. k = 4 is not possible.

From Fix(α) = Fix(α2) we get a contradiction.
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Theorem 0.8 If 〈α〉 ↪→ H and α is of order 4, then |1+Fix(α)| ≥ 22,
i.e. k = 1 is not possible.
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tradiction.
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We start from |H| = 381 = |Fix(α,H)|+2A+4B, where A = |{H 〈α〉 |
H ∈ H, |H 〈α〉| = 2}| and B = |{H 〈α〉 | H ∈ H, |H 〈α〉| = 4}|.
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Theorem 0.8 If 〈α〉 ↪→ H and α is of order 4, then |1+Fix(α)| ≥ 22,
i.e. k = 1 is not possible.

Analyzing |1 + Fix(α̃)|, where α̃ = α/F2 ∈ Aut(F2)., we get a con-
tradiction.

Theorem 0.9 If 〈α〉 ↪→ H and α is of order 4, then |1+Fix(α)| 6= 22,
i.e. k = 2 is not possible.

We start from |H| = 381 = |Fix(α,H)|+2A+4B, where A = |{H 〈α〉 |
H ∈ H, |H 〈α〉| = 2}| and B = |{H 〈α〉 | H ∈ H, |H 〈α〉| = 4}|.

Theorem 0.10 If 〈α〉 ↪→ H and α is of order 4, then |1 + Fix(α)| 6=
23, i.e. k = 3 is not possible.

A long and the most difficult case.
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Theorem 0.11 If α ∈ Aut(E27) and o(α) = 4, then 〈α〉 6↪→ H.
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Thank you for your attention!
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