On 4-designs with three intersection numbers*

Vedran Krčadinac
(joint work with Renata Vlahović Kruc)
University of Zagreb, Croatia

Combinatorial Designs and Codes
 12-16 July, 2021, Rijeka, Croatia

Satellite event of the 8th European Congress of Mathematics

[^0]
The strength and the degree of a design

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a $t-(v, k, \lambda)$ design for some λ. Number of blocks: $b=|\mathcal{B}|$, number of blocks through a point: r.

The strength and the degree of a design

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a $t-(v, k, \lambda)$ design for some λ. Number of blocks: $b=|\mathcal{B}|$, number of blocks through a point: r.

The set of block intersection numbers of the design is

$$
D=\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\} .
$$

The degree of \mathcal{B} is $d=|D|$.

The strength and the degree of a design

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a $t-(v, k, \lambda)$ design for some λ. Number of blocks: $b=|\mathcal{B}|$, number of blocks through a point: r.

The set of block intersection numbers of the design is

$$
D=\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\} .
$$

The degree of \mathcal{B} is $d=|D|$.
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

$$
b \leq\binom{ v}{d}, \quad b \geq\binom{ v}{s} \text { if } t=2 s \text { and } v \geq k+s
$$

The strength and the degree of a design

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a $t-(v, k, \lambda)$ design for some λ. Number of blocks: $b=|\mathcal{B}|$, number of blocks through a point: r.

The set of block intersection numbers of the design is

$$
D=\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\} .
$$

The degree of \mathcal{B} is $d=|D|$.
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

$$
b \leq\binom{ v}{d}, \quad b \geq\binom{ v}{s} \text { if } t=2 s \text { and } v \geq k+s
$$

Designs with $t=2 d$ are called tight and have exactly $b=\binom{v}{d}$ blocks.

Tight and not so tight designs

$$
d=1 \Longrightarrow t \leq 2
$$

Tight and not so tight designs

$$
d=1 \Longrightarrow t \leq 2
$$

$d=1, t=2 \rightsquigarrow$ Block intersection numbers: $D=\{\lambda\}$.
These are the symmetric (square) designs, characterized by $b=v$.

Tight and not so tight designs

$d=1 \Longrightarrow t \leq 2$
$d=1, t=2 \rightsquigarrow$ Block intersection numbers: $D=\{\lambda\}$.
These are the symmetric (square) designs, characterized by $b=v$.
$d=2 \Longrightarrow t \leq 4 \longrightarrow$ Quasi-symmetric designs, $D=\{x, y\}$.

Tight and not so tight designs

$d=1 \Longrightarrow t \leq 2$
$d=1, t=2 \rightsquigarrow$ Block intersection numbers: $D=\{\lambda\}$.
These are the symmetric (square) designs, characterized by $b=v$.
$d=2 \Longrightarrow t \leq 4 \rightsquigarrow$ Quasi-symmetric designs, $D=\{x, y\}$.
$d=2, t=4 \rightsquigarrow$ Derived Witt design 4-(23, 7, 1) and its complement.
A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16 (1979), no. 2, 353-356. (and earlier works by N. Ito et al.)

Tight and not so tight designs

$d=1 \Longrightarrow t \leq 2$
$d=1, t=2 \rightsquigarrow$ Block intersection numbers: $D=\{\lambda\}$.
These are the symmetric (square) designs, characterized by $b=v$.
$d=2 \Longrightarrow t \leq 4 \rightsquigarrow$ Quasi-symmetric designs, $D=\{x, y\}$.
$d=2, t=4 \rightsquigarrow$ Derived Witt design 4- $(23,7,1)$ and its complement.
A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16 (1979), no. 2, 353-356. (and earlier works by N. Ito et al.)
$d=2, t=3$

Tight and not so tight designs

$d=1 \Longrightarrow t \leq 2$
$d=1, t=2 \rightsquigarrow$ Block intersection numbers: $D=\{\lambda\}$.
These are the symmetric (square) designs, characterized by $b=v$.
$d=2 \Longrightarrow t \leq 4 \rightsquigarrow$ Quasi-symmetric designs, $D=\{x, y\}$.
$d=2, t=4 \rightsquigarrow$ Derived Witt design 4-(23, 7, 1) and its complement.
A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16 (1979), no. 2, 353-356. (and earlier works by N. Ito et al.)
$d=2, t=3$
$x=0 \rightsquigarrow$ Extensions of symmetric designs, classified in:
P. J. Cameron, Extending symmetric designs, J. Combinatorial Theory Ser. A 14 (1973), 215-220.

Tight and not so tight designs

- 3-(4 $(\lambda+1), 2(\lambda+1), \lambda)$ (Hadamard 3-designs),
- $3-\left((\lambda+1)\left(\lambda^{2}+5 \lambda+5\right),(\lambda+1)(\lambda+2), \lambda\right)$,
- 3-(496, 40, 3).

Tight and not so tight designs

- 3-(4 $(\lambda+1), 2(\lambda+1), \lambda)$ (Hadamard 3-designs),
- $3-\left((\lambda+1)\left(\lambda^{2}+5 \lambda+5\right),(\lambda+1)(\lambda+2), \lambda\right)$,
- 3-(496, 40, 3).
$x>0 \rightsquigarrow$ The only known examples are related to the Witt design.
Hypothesis: there are no other examples.

Tight and not so tight designs

- 3-(4 $(\lambda+1), 2(\lambda+1), \lambda)$ (Hadamard 3-designs),
- $3-\left((\lambda+1)\left(\lambda^{2}+5 \lambda+5\right),(\lambda+1)(\lambda+2), \lambda\right)$,
- 3-(496, 40, 3).
$x>0 \rightsquigarrow$ The only known examples are related to the Witt design.
Hypothesis: there are no other examples.
$d=2, t=2 \rightsquigarrow$ Many known examples, many nontrivial conditions on the parameters, many feasible parameters for which existence is open.

Tight and not so tight designs

- 3-(4 $(\lambda+1), 2(\lambda+1), \lambda)$ (Hadamard 3-designs),
- $3-\left((\lambda+1)\left(\lambda^{2}+5 \lambda+5\right),(\lambda+1)(\lambda+2), \lambda\right)$,
- 3-(496, 40, 3).
$x>0 \rightsquigarrow$ The only known examples are related to the Witt design.
Hypothesis: there are no other examples.
$d=2, t=2 \rightsquigarrow$ Many known examples, many nontrivial conditions on the parameters, many feasible parameters for which existence is open.
A. E. Brouwer, H. Van Maldeghem, Strongly regular graphs, 2021. https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf

Quasi-symmetric 2-designs

v	k	λ	y	x	ex
19	7	7	1	3	$=$
19	9	16	3	5	$=$
20	8	14	2	4	$=$
20	10	18	4	6	$=$
21	6	4	0	2	$!$
21	7	12	1	3	$!$
21	8	14	2	4	-
21	9	12	3	5	-
22	6	5	0	2	$!$
22	7	16	1	3	$!$
22	8	12	2	4	-
23	7	21	1	3	$!$
24	8	7	2	4	-
28	7	16	1	3	-
28	12	11	4	6	+
29	7	12	1	3	-
31	7	7	1	3	5
33	9	6	1	3	-
33	15	35	6	9	$?$
35	7	3	1	3	-
35	14	13	5	8	$?$
36	16	12	6	8	+
37	9	8	1	3	-
39	12	22	3	6	$?$
41	9	9	1	3	$?$
41	17	34	5	8	-

v	k	λ	y	x	ex
41	20	57	8	11	$?$
42	18	51	6	9	$?$
42	21	60	9	12	$?$
43	16	40	4	7	$?$
43	18	51	6	9	-
45	9	8	1	3	$!$
45	15	42	3	6	$?$
45	18	34	6	9	$?$
45	21	70	9	13	$?$
46	16	8	4	6	$?$
46	16	72	4	7	$?$
49	9	6	1	3	+
49	13	13	1	4	$?$
49	16	45	4	7	$?$
51	15	7	3	5	-
51	21	14	6	9	-
52	16	20	4	7	-
55	15	7	3	5	$?$
55	15	63	3	6	$?$
55	16	40	4	8	$?$
56	12	9	0	3	-
56	15	42	3	6	-
56	16	6	4	6	+
56	16	18	4	8	+
56	20	19	5	8	$?$
56	21	24	6	9	-

Quasi-symmetric 2-designs

v	k	λ	y	x	ex
19	7	7	1	3	$=$
19	9	16	3	5	$=$
20	8	14	2	4	$=$
20	10	18	4	6	$=$
21	6	4	0	2	$!$
21	7	12	1	3	$!$
21	8	14	2	4	-
21	9	12	3	5	-
22	6	5	0	2	$!$
22	7	16	1	3	$!$
22	8	12	2	4	-
23	7	21	1	3	$!$
24	8	7	2	4	-
28	7	16	1	3	-
28	12	11	4	6	+
29	7	12	1	3	-
31	7	7	1	3	5
33	9	6	1	3	-
33	15	35	6	9	$?$
35	7	3	1	3	-
35	14	13	5	8	$?$
36	16	12	6	8	+
37	9	8	1	3	-
39	12	22	3	6	$?$
41	9	9	1	3	$?$
41	17	34	5	8	-

v	k	λ	y	x	ex
41	20	57	8	11	$?$
42	18	51	6	9	$?$
42	21	60	9	12	$?$
43	16	40	4	7	$?$
43	18	51	6	9	-
45	9	8	1	3	$!$
45	15	42	3	6	$?$
45	18	34	6	9	$?$
45	21	70	9	13	$?$
46	16	8	4	6	$?$
46	16	72	4	7	$?$
49	9	6	1	3	+
49	13	13	1	4	$?$
49	16	45	4	7	$?$
51	15	7	3	5	-
51	21	14	6	9	-
52	16	20	4	7	-
55	15	7	3	5	$?$
55	15	63	3	6	$?$
55	16	40	4	8	$?$
56	12	9	0	3	-
56	15	42	3	6	-
56	16	6	4	6	+
56	16	18	4	8	+
56	20	19	5	8	$?$
56	21	24	6	9	-

Quasi-symmetric 2-designs

v	k	λ	y	x	ex
19	7	7	1	3	$=$
19	9	16	3	5	$=$
20	8	14	2	4	$=$
20	10	18	4	6	$=$
21	6	4	0	2	$!$
21	7	12	1	3	$!$
21	8	14	2	4	-
21	9	12	3	5	-
22	6	5	0	2	$!$
22	7	16	1	3	$!$
22	8	12	2	4	-
23	7	21	1	3	$!$
24	8	7	2	4	-
28	7	16	1	3	-
28	12	11	4	6	+
29	7	12	1	3	-
31	7	7	1	3	5
33	9	6	1	3	-
33	15	35	6	9	$?$
35	7	3	1	3	-
35	14	13	5	8	$?$
36	16	12	6	8	+
37	9	8	1	3	-
39	12	22	3	6	$?$
41	9	9	1	3	$?$
41	17	34	5	8	-

v	k	λ	y	x	ex
41	20	57	8	11	$?$
42	18	51	6	9	$?$
42	21	60	9	12	$?$
43	16	40	4	7	$?$
43	18	51	6	9	-
45	9	8	1	3	$!$
45	15	42	3	6	$?$
45	18	34	6	9	$?$
45	21	70	9	13	$?$
46	16	8	4	6	$?$
46	16	72	4	7	$?$
49	9	6	1	3	+
49	13	13	1	4	$?$
49	16	45	4	7	$?$
51	15	7	3	5	-
51	21	14	6	9	-
52	16	20	4	7	-
55	15	7	3	5	$?$
55	15	63	3	6	$?$
55	16	40	4	8	$?$
56	12	9	0	3	-
56	15	42	3	6	-
56	16	6	4	6	+
56	16	18	4	8	+
56	20	19	5	8	$?$
56	21	24	6	9	-

The Cameron-Delsarte theorem

Theorem (Cameron, Delsarte, 1973.)

In a design of degree d and strength $t \geq 2 d-2$, the blocks form a symmetric association scheme with d classes.

The Cameron-Delsarte theorem

Theorem (Cameron, Delsarte, 1973.)

In a design of degree d and strength $t \geq 2 d-2$, the blocks form a symmetric association scheme with d classes.
$d=2, t=2 \rightsquigarrow$ The block graph is strongly regular.

The Cameron-Delsarte theorem

Theorem (Cameron, Delsarte, 1973.)

In a design of degree d and strength $t \geq 2 d-2$, the blocks form a symmetric association scheme with d classes.
$d=2, t=2 \rightsquigarrow$ The block graph is strongly regular.

The eigenvalues of the graph can be computed from the design parameters $2-(v, k, \lambda)$ and the block intersection numbers x, y :

$$
\theta_{0}=\frac{k(r-1)-x(b-1)}{y-x}, \quad \theta_{1}=\frac{r-\lambda-k+x}{y-x}, \quad \theta_{2}=\frac{x-k}{y-x} .
$$

The Cameron-Delsarte theorem

Theorem (Cameron, Delsarte, 1973.)

In a design of degree d and strength $t \geq 2 d-2$, the blocks form a symmetric association scheme with d classes.
$d=2, t=2 \rightsquigarrow$ The block graph is strongly regular.

The eigenvalues of the graph can be computed from the design parameters $2-(v, k, \lambda)$ and the block intersection numbers x, y :

$$
\theta_{0}=\frac{k(r-1)-x(b-1)}{y-x}, \quad \theta_{1}=\frac{r-\lambda-k+x}{y-x}, \quad \theta_{2}=\frac{x-k}{y-x} .
$$

These in turn determine parameters of the block graph $\operatorname{SRG}\left(b, \theta_{0}, \bar{\lambda}, \bar{\mu}\right)$:

$$
\bar{\lambda}=\theta_{0}+\theta_{1}+\theta_{2}+\theta_{1} \theta_{2}, \quad \bar{\mu}=\theta_{0}+\theta_{1} \theta_{2}
$$

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Block intersection numbers: $D=\{x, y, z\}, x<y<z$.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Block intersection numbers: $D=\{x, y, z\}, x<y<z$.
$d=3, t=6 \quad \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Block intersection numbers: $D=\{x, y, z\}, x<y<z$.
$d=3, t=6 \quad \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$d=3, t=5 \rightsquigarrow$ The only examples are hypothesized to be the Witt design 5-($24,8,1$) and its complement.
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Block intersection numbers: $D=\{x, y, z\}, x<y<z$.
$d=3, t=6 \quad \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$d=3, t=5 \rightsquigarrow$ The only examples are hypothesized to be the Witt design 5-(24, 8, 1) and its complement.
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.
$d=3, t=4 \quad \rightsquigarrow$ The Cameron-Deslarte theorem still applies!
The three block graphs form a symmetric 3-class association scheme.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Block intersection numbers: $D=\{x, y, z\}, x<y<z$.
$d=3, t=6 \quad \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$d=3, t=5 \rightsquigarrow$ The only examples are hypothesized to be the Witt design 5-(24, 8, 1) and its complement.
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.
$d=3, t=4 \quad \rightsquigarrow$ The Cameron-Deslarte theorem still applies!
The three block graphs form a symmetric 3-class association scheme.
Eigenvalues of the scheme can be computed from the design parameters $4-(v, k, \lambda)$ and $D=\{x, y, z\}$. They determine intersection numbers of the scheme and the Krein parameters, giving many nontrivial conditions (integrality, non-negativity, absolute bound).

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	\checkmark
res 5-(12, $(24,8,1)$							
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	\checkmark
der 5-(12, 6, 1)							
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	res 5-(24, 8, 1)
3	23	11	48	3	5	7	\checkmark	M_{23}
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	$\operatorname{res} 5-(24,8,1)$
3	23	11	48	3	5	7	\checkmark	$\operatorname{der} 5-(24,12,48), M_{24}$
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	$\operatorname{res~5-(24,~8,~1)~}$
3	23	11	48	3	5	7	\checkmark	$\operatorname{der} 5-(24,12,48)$
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	$\operatorname{res} 5-(24,8,1)$
3	23	11	48	3	5	7	\checkmark	$\operatorname{der} 5-(24,12,48)$
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5	\checkmark	$\left\|\mathbb{Z}_{47} \rtimes \mathbb{Z}_{23}\right\|=1081$
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	$\operatorname{res~5-(24,~8,~1)~}$
3	23	11	48	3	5	7	\checkmark	$\operatorname{der} 5-(24,12,48)$
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5	\checkmark	$\operatorname{der} 5-(48,12,8)$,
6	71	35	264	14	17	20		$\|P G L(2,47)\|=103776$
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	$\operatorname{res} 5-(24,8,1)$
3	23	11	48	3	5	7	\checkmark	$\operatorname{der} 5-(24,12,48)$
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5	\checkmark	$\operatorname{der} 5-(48,12,8)$,
6	71	35	264	14	17	20		$\|P G L(2,47)\|=103776$
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

V. D. Tonchev, Quasi-symmetric 2-(31, 7, 7) designs and a revision of Hamada's conjecture, J. Combin. Theory Ser. A 42 (1986), no. 1, 104-110.

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	$\operatorname{der} 5-(12,6,1)$
2	23	8	4	0	2	4	\checkmark	$\operatorname{res~5-(24,~8,~1)~}$
3	23	11	48	3	5	7	\checkmark	$\operatorname{der} 5-(24,12,48)$
4	24	8	5	0	2	4	\checkmark	$5-(24,8,1)$
5	47	11	8	1	3	5	\checkmark	$\operatorname{der} 5-(48,12,8)$
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
$\operatorname{der} 5-(12,6,1)$							
4	24	8	5	0	2	4	\checkmark
$\operatorname{res} 5-(24,8,1)$							
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	$?$
	$\operatorname{der} 5-(24,12,48)$						
7	199	99	2328	44	49	54	$?$
8	391	195	9264	90	97	104	$?$
9	647	323	25680	152	161	170	$?$
10	659	329	390874	153	164	175	$?$
11	967	483	57720	230	241	252	$?$

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	der 5-(12, 6, 1)
2	23	8	4	0	2	4	\checkmark	res 5-($24,8,1$)
3	23	11	48	3	5	7	\checkmark	der 5-($24,12,48)$
4	24	8	5	0	2	4	\checkmark	5-($24,8,1$)
5	47	11	8	1	3	5	\checkmark	der 5-(48, 12, 8)
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	der 5- $(v+1, k+1, \lambda)$
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?)

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

\(\left.\begin{array}{|c|ccc|ccc|c|l}\hline No. \& v \& k \& \lambda \& x \& y \& z \& \exists \&

1 \& 11 \& 5 \& 1 \& 1 \& 2 \& 3 \& \checkmark \& \operatorname{der} 5-(12,6,1)

2 \& 23 \& 8 \& 4 \& 0 \& 2 \& 4 \& \checkmark \& \operatorname{res} 5-(24,8,1)

3 \& 23 \& 11 \& 48 \& 3 \& 5 \& 7 \& \checkmark \& \operatorname{der} 5-(24,12,48)

4 \& 24 \& 8 \& 5 \& 0 \& 2 \& 4 \& \checkmark \& 5-(24,8,1)

5 \& 47 \& 11 \& 8 \& 1 \& 3 \& 5 \& \checkmark \& \operatorname{der} 5-(48,12,8)

6 \& 71 \& 35 \& 264 \& 14 \& 17 \& 20 \& ?

7 \& 199 \& 99 \& 2328 \& 44 \& 49 \& 54 \& ?

8 \& 391 \& 195 \& 9264 \& 90 \& 97 \& 104 \& ?

9 \& 647 \& 323 \& 25680 \& 152 \& 161 \& 170 \& ?

10 \& 659 \& 329 \& 390874 \& 153 \& 164 \& 175 \& ?

11 \& 967 \& 483 \& 57720 \& 230 \& 241 \& 252 \& ?\end{array}\right\}\)| |
| :---: |

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

\(\left.\begin{array}{|c|ccc|ccc|c|l}\hline No. \& v \& k \& \lambda \& x \& y \& z \& \exists \&

1 \& 11 \& 5 \& 1 \& 1 \& 2 \& 3 \& \checkmark \& \operatorname{der} 5-(12,6,1)

2 \& 23 \& 8 \& 4 \& 0 \& 2 \& 4 \& \checkmark \& \operatorname{res} 5-(24,8,1)

3 \& 23 \& 11 \& 48 \& 3 \& 5 \& 7 \& \checkmark \& \operatorname{der} 5-(24,12,48)

4 \& 24 \& 8 \& 5 \& 0 \& 2 \& 4 \& \checkmark \& 5-(24,8,1)

5 \& 47 \& 11 \& 8 \& 1 \& 3 \& 5 \& \checkmark \& \operatorname{der} 5-(48,12,8)

6 \& 71 \& 35 \& 264 \& 14 \& 17 \& 20 \& ?

7 \& 199 \& 99 \& 2328 \& 44 \& 49 \& 54 \& ?

8 \& 391 \& 195 \& 9264 \& 90 \& 97 \& 104 \& ?

9 \& 647 \& 323 \& 25680 \& 152 \& 161 \& 170 \& ?

10 \& 659 \& 329 \& 390874 \& 153 \& 164 \& 175 \& ?

11 \& 967 \& 483 \& 57720 \& 230 \& 241 \& 252 \& ?\end{array}\right\}\)| |
| :---: |

G_{X} is distance-regular of diameter $3 \rightsquigarrow$ metric (P-polynomial) scheme

Feasible parameters $4-(v, k, \lambda)$ for $d=3$ and $v \leq 1000$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	der 5-($12,6,1)$
2	23	8	4	0	2	4	\checkmark	res 5-($24,8,1)$
3	23	11	48	3	5	7	\checkmark	der 5-($24,12,48)$
4	24	8	5	0	2	4	\checkmark	5-($24,8,1$)
5	47	11	8	1	3	5	\checkmark	der 5-($48,12,8)$
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	der 5- $(v+1, k+1, \lambda)$
9	647	323	25680	152	161	170	?	\} $v=2 k+1$
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?)

G_{y} is strongly regular, $\quad \theta_{1,2}= \pm k, \quad \theta_{1,2} \neq \pm k$

The End

Thanks for your attention!

[^0]: ${ }^{\star}$ This work was fully supported by the Croatian Science Foundation under the projects 6732 and 9752.

