On 4-designs with three intersection numbers*

Vedran Krčadinac

(joint work with Renata Vlahović Kruc)

University of Zagreb, Croatia

Combinatorial Designs and Codes

12 - 16 July, 2021, Rijeka, Croatia

Satellite event of the 8th European Congress of Mathematics

* This work was fully supported by the Croatian Science Foundation under the projects 6732 and 9752.

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a t-(v, k, λ) design for some λ . Number of blocks: $b = |\mathcal{B}|$, number of blocks through a point: r.

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a t-(v, k, λ) design for some λ . Number of blocks: $b = |\mathcal{B}|$, number of blocks through a point: r.

The set of block intersection numbers of the design is

 $D = \{ |B_1 \cap B_2| : B_1, B_2 \in \mathcal{B}, B_1 \neq B_2 \}.$

The degree of \mathcal{B} is d = |D|.

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a t-(v, k, λ) design for some λ . Number of blocks: $b = |\mathcal{B}|$, number of blocks through a point: r.

The set of block intersection numbers of the design is

$$D = \{ |B_1 \cap B_2| : B_1, B_2 \in \mathcal{B}, B_1 \neq B_2 \}.$$

The degree of \mathcal{B} is d = |D|.

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

$$b \leq inom{v}{d}, \qquad b \geq inom{v}{s}$$
 if $t = 2s$ and $v \geq k + s$

Let V be a set of v points. A design \mathcal{B} is a family of k-subsets of V called blocks. The strength of \mathcal{B} is the maximal t such that \mathcal{B} is a t-(v, k, λ) design for some λ . Number of blocks: $b = |\mathcal{B}|$, number of blocks through a point: r.

The set of block intersection numbers of the design is

$$D = \{ |B_1 \cap B_2| : B_1, B_2 \in \mathcal{B}, B_1 \neq B_2 \}.$$

The degree of \mathcal{B} is d = |D|.

D. K. Ray-Chaudhuri, R. M. Wilson, *On t-designs*, Osaka J. Math. **12** (1975), 737–744.

$$b \leq inom{v}{d}, \qquad b \geq inom{v}{s}$$
 if $t = 2s$ and $v \geq k + s$

Designs with t = 2d are called tight and have exactly $b = \begin{pmatrix} v \\ d \end{pmatrix}$ blocks.

 $d = 1 \Longrightarrow t \leq 2$

(日) (四) (日) (日) (日)

d = 1, $t = 2 \quad \rightsquigarrow \quad \text{Block intersection numbers: } D = \{\lambda\}.$

These are the symmetric (square) designs, characterized by b = v.

* (四) * * (日) * (日) *

d = 1, $t = 2 \quad \rightsquigarrow \quad \text{Block intersection numbers: } D = \{\lambda\}.$

These are the symmetric (square) designs, characterized by b = v.

 $d = 2 \implies t \le 4 \quad \rightsquigarrow \quad \text{Quasi-symmetric designs, } D = \{x, y\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

d = 1, $t = 2 \quad \rightsquigarrow \quad \text{Block intersection numbers: } D = \{\lambda\}.$

These are the symmetric (square) designs, characterized by b = v.

 $d = 2 \implies t \le 4 \quad \rightsquigarrow \quad \text{Quasi-symmetric designs, } D = \{x, y\}.$

 $d = 2, t = 4 \quad \rightsquigarrow \quad \text{Derived Witt design 4-}(23, 7, 1) \text{ and its complement.}$

A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16 (1979), no. 2, 353–356. (and earlier works by N. Ito et al.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

d = 1, $t = 2 \quad \rightsquigarrow \quad \text{Block intersection numbers: } D = \{\lambda\}.$

These are the symmetric (square) designs, characterized by b = v.

 $d = 2 \Longrightarrow t \le 4 \quad \rightsquigarrow \quad \text{Quasi-symmetric designs, } D = \{x, y\}.$

 $d = 2, t = 4 \quad \rightsquigarrow \quad \text{Derived Witt design 4-}(23,7,1) \text{ and its complement.}$

A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16 (1979), no. 2, 353–356. (and earlier works by N. Ito et al.)

d = 2, t = 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

d = 1, $t = 2 \quad \rightsquigarrow \quad \text{Block intersection numbers: } D = \{\lambda\}.$

These are the symmetric (square) designs, characterized by b = v.

 $d = 2 \Longrightarrow t \le 4 \quad \rightsquigarrow \quad \text{Quasi-symmetric designs, } D = \{x, y\}.$

 $d = 2, t = 4 \quad \rightsquigarrow \quad \text{Derived Witt design 4-}(23, 7, 1) \text{ and its complement.}$

A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka Math. J. 16 (1979), no. 2, 353–356. (and earlier works by N. Ito et al.)

d = 2, t = 3

 $x = 0 \quad \rightsquigarrow \quad \text{Extensions of symmetric designs, classified in:}$

P. J. Cameron, *Extending symmetric designs*, J. Combinatorial Theory Ser. A **14** (1973), 215–220.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

- 3-(4(λ + 1), 2(λ + 1), λ) (Hadamard 3-designs),
- $3 ((\lambda + 1)(\lambda^2 + 5\lambda + 5), (\lambda + 1)(\lambda + 2), \lambda),$
- 3-(496, 40, 3).

→ < ∃ →</p>

- 3-(4(λ + 1), 2(λ + 1), λ) (Hadamard 3-designs),
- $3 ((\lambda + 1)(\lambda^2 + 5\lambda + 5), (\lambda + 1)(\lambda + 2), \lambda),$
- 3-(496, 40, 3).
- $x > 0 \quad \rightsquigarrow$ The only known examples are related to the Witt design. Hypothesis: there are no other examples.

- 3-(4(λ + 1), 2(λ + 1), λ) (Hadamard 3-designs),
- $3 ((\lambda + 1)(\lambda^2 + 5\lambda + 5), (\lambda + 1)(\lambda + 2), \lambda),$
- 3-(496, 40, 3).
- $x > 0 \quad \rightsquigarrow$ The only known examples are related to the Witt design. Hypothesis: there are no other examples.

 $d = 2, t = 2 \quad \rightsquigarrow$ Many known examples, many nontrivial conditions on the parameters, many feasible parameters for which existence is open.

- 3-(4(λ + 1), 2(λ + 1), λ) (Hadamard 3-designs),
- $3 ((\lambda + 1)(\lambda^2 + 5\lambda + 5), (\lambda + 1)(\lambda + 2), \lambda),$
- 3-(496, 40, 3).
- $x > 0 \quad \rightsquigarrow$ The only known examples are related to the Witt design. Hypothesis: there are no other examples.

$$d = 2, t = 2 \quad \rightsquigarrow \quad$$
 Many known examples, many nontrivial conditions
on the parameters, many feasible parameters for
which existence is open.

A. E. Brouwer, H. Van Maldeghem, *Strongly regular graphs*, 2021. https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf

Quasi-symmetric 2-designs

-

v	$_{k}$	λ	y	x	ex	v	$_{k}$	λ	y	x	ex
19	7	7	1	3	=	41	20	57	8	11	?
19	9	16	3	5	=	42	18	51	6	9	?
20	8	14	2	4	=	42	21	60	9	12	?
20	10	18	4	6	=	43	16	40	4	7	?
21	6	4	0	2	!	43	18	51	6	9	-
21	$\overline{7}$	12	1	3	!	45	9	8	1	3	!
21	8	14	2	4	_	45	15	42	3	6	?
21	9	12	3	5	-	45	18	34	6	9	?
22	6	5	0	2	!	45	21	70	9	13	?
22	7	16	1	3	!	46	16	8	4	6	?
22	8	12	2	4	-	46	16	72	4	7	?
23	7	21	1	3	!	49	9	6	1	3	+
24	8	$\overline{7}$	2	4	-	49	13	13	1	4	?
28	7	16	1	3	-	49	16	45	4	7	?
28	12	11	4	6	+	51	15	7	3	5	-
29	7	12	1	3	-	51	21	14	6	9	-
31	7	7	1	3	5	52	16	20	4	7	-
33	9	6	1	3	-	55	15	7	3	5	?
33	15	35	6	9	?	55	15	63	3	6	?
35	7	3	1	3	-	55	16	40	4	8	?
35	14	13	5	8	?	56	12	9	0	3	—
36	16	12	6	8	+	56	15	42	3	6	—
37	9	8	1	3	-	56	16	6	4	6	+
39	12	22	3	6	?	56	16	18	4	8	+
41	9	9	1	3	?	56	20	19	5	8	?
41	17	34	5	8	-	56	21	24	6	9	-

Vedran Krčadinac (University of Zagreb) Designs with three intersection numbers

・ロト ・日下・ ・ ヨト・

Quasi-symmetric 2-designs

-

v	$_{k}$	λ	y	x	ex		v	$_{k}$	λ	y	x	ex
19	7	7	1	3	=	-	41	20	57	8	11	?
19	9	16	3	5	=		42	18	51	6	9	?
20	8	14	2	4	=		42	21	60	9	12	?
20	10	18	4	6	=		43	16	40	4	7	?
21	6	4	0	2	!		43	18	51	6	9	-
21	$\overline{7}$	12	1	3	!		45	9	8	1	3	!
21	8	14	2	4	-		45	15	42	3	6	?
21	9	12	3	5	-		45	18	34	6	9	?
22	6	5	0	2	!		45	21	70	9	13	?
22	7	16	1	3	!		46	16	8	4	6	?
22	8	12	2	4	-		46	16	72	4	7	?
23	7	21	1	3	!		49	9	6	1	3	+
24	8	7	2	4	-		49	13	13	1	4	?
28	7	16	1	3	-		49	16	45	4	7	?
28	12	11	4	6	+		51	15	7	3	5	-
29	7	12	1	3	-		51	21	14	6	9	-
31	7	7	1	3	5		52	16	20	4	7	-
33	9	6	1	3	-		55	15	7	3	5	?
33	15	35	6	9	?		55	15	63	3	6	?
35	7	3	1	3	-		55	16	40	4	8	?
35	14	13	5	8	?		56	12	9	0	3	-
36	16	12	6	8	+		56	15	42	3	6	-
37	9	8	1	3	-		56	16	6	4	6	+
39	12	22	3	6	?		56	16	18	4	8	+
41	9	9	1	3	?		56	20	19	5	8	?
41	17	34	5	8	-		56	21	24	6	9	-

Vedran Krčadinac (University of Zagreb) Designs with three intersection numbers

・ロト ・日下・ ・ ヨト・

Quasi-symmetric 2-designs

_

v	$_{k}$	λ	y	x	ex		v	k	λ	y	x	ex
19	7	7	1	3	=	_	41	20	57	8	11	?
19	9	16	3	5	=		42	18	51	6	9	?
20	8	14	2	4	=		42	21	60	9	12	?
20	10	18	4	6	=		43	16	40	4	7	?
21	6	4	0	2	!		43	18	51	6	9	-
21	$\overline{7}$	12	1	3	!		45	9	8	1	3	1
21	8	14	2	4	-		45	15	42	3	6	?
21	9	12	3	5	-		45	18	34	6	9	?
22	6	5	0	2	!		45	21	70	9	13	?
22	$\overline{7}$	16	1	3	!		46	16	8	4	6	?
22	8	12	2	4	-		46	16	72	4	7	?
23	7	21	1	3	!		49	9	6	1	3	+
24	8	7	2	4	_		49	13	13	1	4	?
28	7	16	1	3	-		49	16	45	4	7	?
28	12	11	4	6	+		51	15	7	3	5	-
29	7	12	1	3	-		51	21	14	6	9	-
31	$\overline{7}$	7	1	3	5		52	16	20	4	7	-
33	9	6	1	3	-		55	15	7	3	5	- ?
33	15	35	6	9	?		55	15	63	3	6	?
35	7	3	1	3	-		55	16	40	4	8	?
35	14	13	5	8	?		56	12	9	0	3	-
36	16	12	6	8	+		56	15	42	3	6	-
37	9	8	1	3	-		56	16	6	4	6	+
39	12	22	3	6	?		56	16	18	4	8	+
41	9	9	1	3	?		56	20	19	5	8	?
41	17	34	5	8	-		56	21	24	6	9	_

Vedran Krčadinac (University of Zagreb) Designs with three intersection numbers

In a design of degree d and strength $t \ge 2d - 2$, the blocks form a symmetric association scheme with d classes.

In a design of degree d and strength $t \ge 2d - 2$, the blocks form a symmetric association scheme with d classes.

 $d = 2, t = 2 \quad \rightsquigarrow \quad$ The block graph is strongly regular.

In a design of degree d and strength $t \ge 2d - 2$, the blocks form a symmetric association scheme with d classes.

 $d = 2, t = 2 \quad \rightsquigarrow \quad$ The block graph is strongly regular.

The eigenvalues of the graph can be computed from the design parameters 2- (v, k, λ) and the block intersection numbers x, y:

$$\theta_0 = \frac{k(r-1) - x(b-1)}{y - x}, \quad \theta_1 = \frac{r - \lambda - k + x}{y - x}, \quad \theta_2 = \frac{x - k}{y - x}.$$

In a design of degree d and strength $t \ge 2d - 2$, the blocks form a symmetric association scheme with d classes.

 $d = 2, t = 2 \quad \rightsquigarrow \quad$ The block graph is strongly regular.

The eigenvalues of the graph can be computed from the design parameters 2- (v, k, λ) and the block intersection numbers x, y:

$$heta_0=rac{k(r-1)-x(b-1)}{y-x},\quad heta_1=rac{r-\lambda-k+x}{y-x},\quad heta_2=rac{x-k}{y-x}.$$

These in turn determine parameters of the block graph $SRG(b, \theta_0, \overline{\lambda}, \overline{\mu})$:

$$\overline{\lambda} = \theta_0 + \theta_1 + \theta_2 + \theta_1 \theta_2, \quad \overline{\mu} = \theta_0 + \theta_1 \theta_2.$$

 $d = 3 \implies t \le 6$. Block intersection numbers: $D = \{x, y, z\}, x < y < z$.

< □ > < □ > < □ > < □ > < □ > < □ >

 $d = 3 \implies t \le 6$. Block intersection numbers: $D = \{x, y, z\}, x < y < z$. $d = 3, t = 6 \implies Do not exist!$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

 $d = 3 \implies t \le 6$. Block intersection numbers: $D = \{x, y, z\}, x < y < z$. $d = 3, t = 6 \quad \rightsquigarrow \quad \text{Do not exist!}$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

 $d = 3, t = 5 \quad \rightsquigarrow$ The only examples are hypothesized to be the Witt design 5-(24, 8, 1) and its complement.

Y. J. Ionin, M. S. Shrikhande, 5-*designs with three intersection numbers*, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

 $d = 3 \implies t \le 6$. Block intersection numbers: $D = \{x, y, z\}, x < y < z$. $d = 3, t = 6 \quad \rightsquigarrow \quad Do \text{ not exist!}$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

 $d = 3, t = 5 \quad \rightsquigarrow$ The only examples are hypothesized to be the Witt design 5-(24, 8, 1) and its complement.

Y. J. Ionin, M. S. Shrikhande, 5-*designs with three intersection numbers*, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

d = 3, t = 4 \rightarrow The Cameron-Deslarte theorem still applies! The three block graphs form a symmetric 3-class association scheme.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

 $d = 3 \implies t \le 6$. Block intersection numbers: $D = \{x, y, z\}, x < y < z$. $d = 3, t = 6 \quad \rightsquigarrow \quad Do \text{ not exist!}$

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

 $d = 3, t = 5 \quad \rightsquigarrow$ The only examples are hypothesized to be the Witt design 5-(24, 8, 1) and its complement.

Y. J. Ionin, M. S. Shrikhande, 5-*designs with three intersection numbers*, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

d = 3, t = 4 \rightsquigarrow The Cameron-Deslarte theorem still applies! The three block graphs form a symmetric 3-class association scheme.

Eigenvalues of the scheme can be computed from the design parameters $4-(v, k, \lambda)$ and $D = \{x, y, z\}$. They determine intersection numbers of the scheme and the Krein parameters, giving many nontrivial conditions (integrality, non-negativity, absolute bound).

・ロト ・四ト ・ヨト ・ ヨト

No.	V	k	λ	X	у	Ζ	Ξ
1	11	5	1	1	2	3	
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

No.	V	k	λ	x	y	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	
2	23	8	4	0	2	4		
3	23	11	48	3	5	7		
4	24	8	5	0	2	4		
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

 $\det 5-(12, 6, 1)$

No.	V	k	λ	x	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	der 5-(12, 6, 1)
2	23	8	4	0	2	4		
3	23	11	48	3	5	7		
4	24	8	5	0	2	4	\checkmark	5-(24, 8, 1)
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

No.	V	k	λ	x	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	der 5-(12, 6, 1)
2	23	8	4	0	2	4	\checkmark	res 5-(24, 8, 1)
3	23	11	48	3	5	7		
4	24	8	5	0	2	4	\checkmark	5-(24, 8, 1)
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

No.	V	k	λ	x	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	der 5-(12, 6, 1)
2	23	8	4	0	2	4	\checkmark	res 5-(24, 8, 1)
3	23	11	48	3	5	7		
4	24	8	5	0	2	4	\checkmark	5-(24, 8, 1)
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

No.	V	k	λ	x	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	de
2	23	8	4	0	2	4	\checkmark	re
3	23	11	48	3	5	7	\checkmark	M
4	24	8	5	0	2	4	\checkmark	5-
5	47	11	8	1	3	5		
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

der 5-(12, 6, 1) res 5-(24, 8, 1) M_{23} 5-(24, 8, 1)

No.	V	k	λ	x	у	Ζ	Ξ
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

der 5-(12, 6, 1) res 5-(24, 8, 1) der 5-(24, 12, 48), M_{24} 5-(24, 8, 1)

No.	V	k	λ	x	у	Ζ	Ε
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

der 5-(12, 6, 1) res 5-(24, 8, 1) der 5-(24, 12, 48) 5-(24, 8, 1)

No.	V	k	λ	x	у	Ζ	E
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

der 5-(12, 6, 1)
res 5-(24, 8, 1)
der 5-(24, 12, 48)
5-(24, 8, 1)
$$|\mathbb{Z}_{47} \rtimes \mathbb{Z}_{23}| = 1081$$

No.	V	k	λ	x	у	Ζ	E
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

der 5-(12, 6, 1)
res 5-(24, 8, 1)
der 5-(24, 12, 48)
5-(24, 8, 1)
der 5-(48, 12, 8),
$$|PGL(2, 47)| = 103776$$

No.	v	k	λ	x	у	Ζ	E
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

der 5-(12, 6, 1)
res 5-(24, 8, 1)
der 5-(24, 12, 48)
5-(24, 8, 1)
der 5-(48, 12, 8),
$$|PGL(2, 47)| = 103776$$

V. D. Tonchev, *Quasi-symmetric* 2-(31,7,7) *designs and a revision of Hamada's conjecture*, J. Combin. Theory Ser. A **42** (1986), no. 1, 104–110.

No.	v	k	λ	x	у	Ζ	E
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

der 5-(12, 6, 1)res 5-(24, 8, 1)der 5-(24, 12, 48)5-(24, 8, 1)der 5-(48, 12, 8)

No.	V	k	λ	x	у	Ζ	Ξ
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	?
7	199	99	2328	44	49	54	?
8	391	195	9264	90	97	104	?
9	647	323	25680	152	161	170	?
10	659	329	390874	153	164	175	?
11	967	483	57720	230	241	252	?

der
$$5-(12, 6, 1)$$

res $5-(24, 8, 1)$
der $5-(24, 12, 48)$
 $5-(24, 8, 1)$
der $5-(48, 12, 8)$

No.	V	k	λ	x	у	Ζ	E	
1	11	5	1	1	2	3	\checkmark	
2	23	8	4	0	2	4	\checkmark	
3	23	11	48	3	5	7	\checkmark	
4	24	8	5	0	2	4	\checkmark	
5	47	11	8	1	3	5	\checkmark	
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	

der 5-(12, 6, 1)res 5-(24, 8, 1)der 5-(24, 12, 48)5-(24, 8, 1)der 5-(48, 12, 8)

 $\left\{ \operatorname{der} 5\operatorname{-}(v+1,k+1,\lambda) \right.$

No.	V	k	λ	X	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	der 5
2	23	8	4	0	2	4	\checkmark	res 5-
3	23	11	48	3	5	7	\checkmark	$\det 5$
4	24	8	5	0	2	4	\checkmark	5-(24
5	47	11	8	1	3	5	\checkmark	$\mathrm{der}5$
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	de
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	J

der 5-(12, 6, 1)res 5-(24, 8, 1) der 5-(24, 12, 48)5-(24, 8, 1) der 5-(48, 12, 8) $der 5-(v + 1, k + 1, \lambda)$

v = 2k + 1

No.	V	k	λ	x	y	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	der 5-(12, 6, 1)
2	23	8	4	0	2	4	\checkmark	res 5-(24, 8, 1)
3	23	11	48	3	5	7	\checkmark	der 5-(24, 12, 48)
4	24	8	5	0	2	4	\checkmark	5-(24, 8, 1)
5	47	11	8	1	3	5	\checkmark	der 5-(48, 12, 8)
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	$\int \mathrm{der}5\text{-}(v+1,k+1,\lambda)$
9	647	323	25680	152	161	170	?	$\int v = 2k + 1$
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	J

 G_x is distance-regular of diameter 3 \rightsquigarrow metric (*P*-polynomial) scheme

No.	V	k	λ	X	y	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	$\det 5-(12, 6, 1)$
2	23	8	4	0	2	4	\checkmark	res 5-(24, 8, 1)
3	23	11	48	3	5	7	\checkmark	der 5-(24, 12, 48)
4	24	8	5	0	2	4	\checkmark	5-(24, 8, 1)
5	47	11	8	1	3	5	\checkmark	der 5-(48, 12, 8)
6	71	35	264	14	17	20	?)
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	$\int \operatorname{der} \operatorname{5-}(v+1,k+1,\lambda)$
9	647	323	25680	152	161	170	?	$\int v = 2k + 1$
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	J

 G_y is strongly regular, $\theta_{1,2} = \pm k$, $\theta_{1,2} \neq \pm k$

Thanks for your attention!

- (E