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The strength and the degree of a design

Let V be a set of v points. A design B is a family of k-subsets of V called
blocks. The strength of B is the maximal t such that B is a t-(v , k , λ)
design for some λ. Number of blocks: b = |B|, number of blocks through
a point: r .

The set of block intersection numbers of the design is

D = {|B1 ∩ B2| : B1,B2 ∈ B, B1 6= B2}.
The degree of B is d = |D|.

D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12
(1975), 737–744.
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if t = 2s and v ≥ k + s.

Designs with t = 2d are called tight and have exactly b =
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)
blocks.
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Tight and not so tight designs

d = 1 =⇒ t ≤ 2

d = 1, t = 2  Block intersection numbers: D = {λ}.

These are the symmetric (square) designs, characterized by b = v .

d = 2 =⇒ t ≤ 4  Quasi-symmetric designs, D = {x , y}.

d = 2, t = 4  Derived Witt design 4-(23, 7, 1) and its complement.

A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka
Math. J. 16 (1979), no. 2, 353–356. (and earlier works by N. Ito et al.)

d = 2, t = 3

x = 0  Extensions of symmetric designs, classified in:

P. J. Cameron, Extending symmetric designs, J. Combinatorial Theory
Ser. A 14 (1973), 215–220.
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Vedran Krčadinac (University of Zagreb) Designs with three intersection numbers 15 July 2021 3 / 26



Tight and not so tight designs

3-(4(λ+ 1), 2(λ+ 1), λ) (Hadamard 3-designs),

3-((λ+ 1)(λ2 + 5λ+ 5), (λ+ 1)(λ+ 2), λ),

3-(496, 40, 3).

x > 0  The only known examples are related to the Witt design.

Hypothesis: there are no other examples.

d = 2, t = 2  Many known examples, many nontrivial conditions
on the parameters, many feasible parameters for
which existence is open.

A. E. Brouwer, H. Van Maldeghem, Strongly regular graphs, 2021.
https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf
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Quasi-symmetric 2-designs
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Quasi-symmetric 2-designs
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The Cameron-Delsarte theorem

Theorem (Cameron, Delsarte, 1973.)

In a design of degree d and strength t ≥ 2d − 2, the blocks form a
symmetric association scheme with d classes.

d = 2, t = 2  The block graph is strongly regular.

The eigenvalues of the graph can be computed from the design
parameters 2-(v , k , λ) and the block intersection numbers x , y :

θ0 =
k(r − 1)− x(b − 1)

y − x
, θ1 =

r − λ− k + x

y − x
, θ2 =

x − k

y − x
.

These in turn determine parameters of the block graph SRG (b, θ0, λ, µ):

λ = θ0 + θ1 + θ2 + θ1θ2, µ = θ0 + θ1θ2.
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Designs of degree d = 3

d = 3 =⇒ t ≤ 6. Block intersection numbers: D = {x , y , z}, x < y < z .

d = 3, t = 6  Do not exist!

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417–435.

d = 3, t = 5  The only examples are hypothesized to be the
Witt design 5-(24, 8, 1) and its complement.

Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers,
J. Combin. Theory Ser. A 69 (1995), no. 1, 36–50.

d = 3, t = 4  The Cameron-Deslarte theorem still applies!

The three block graphs form a symmetric 3-class association scheme.

Eigenvalues of the scheme can be computed from the design parameters
4-(v , k , λ) and D = {x , y , z}. They determine intersection numbers of
the scheme and the Krein parameters, giving many nontrivial conditions
(integrality, non-negativity, absolute bound).
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Feasible parameters 4-(v , k , λ) for d = 3 and v ≤ 1000

No. v k λ x y z ∃
1 11 5 1 1 2 3

2 23 8 4 0 2 4

3 23 11 48 3 5 7

4 24 8 5 0 2 4

5 47 11 8 1 3 5

6 71 35 264 14 17 20

7 199 99 2328 44 49 54

8 391 195 9264 90 97 104

9 647 323 25680 152 161 170

10 659 329 390874 153 164 175

11 967 483 57720 230 241 252
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Vedran Krčadinac (University of Zagreb) Designs with three intersection numbers 15 July 2021 12 / 26



Feasible parameters 4-(v , k , λ) for d = 3 and v ≤ 1000

No. v k λ x y z ∃
1 11 5 1 1 2 3 X der 5-(12, 6, 1)

2 23 8 4 0 2 4 X res 5-(24, 8, 1)

3 23 11 48 3 5 7

4 24 8 5 0 2 4 X 5-(24, 8, 1)

5 47 11 8 1 3 5

6 71 35 264 14 17 20

7 199 99 2328 44 49 54

8 391 195 9264 90 97 104

9 647 323 25680 152 161 170

10 659 329 390874 153 164 175

11 967 483 57720 230 241 252
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Feasible parameters 4-(v , k , λ) for d = 3 and v ≤ 1000

No. v k λ x y z ∃
1 11 5 1 1 2 3 X der 5-(12, 6, 1)

2 23 8 4 0 2 4 X res 5-(24, 8, 1)

3 23 11 48 3 5 7 X der 5-(24, 12, 48)

4 24 8 5 0 2 4 X 5-(24, 8, 1)

5 47 11 8 1 3 5 X der 5-(48, 12, 8),

6 71 35 264 14 17 20 |PGL(2, 47)| = 103776

7 199 99 2328 44 49 54

8 391 195 9264 90 97 104

9 647 323 25680 152 161 170

10 659 329 390874 153 164 175

11 967 483 57720 230 241 252

V. D. Tonchev, Quasi-symmetric 2-(31, 7, 7) designs and a revision of Hamada’s

conjecture, J. Combin. Theory Ser. A 42 (1986), no. 1, 104–110.
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6 71 35 264 14 17 20 ?

7 199 99 2328 44 49 54 ?
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10 659 329 390874 153 164 175 ?

11 967 483 57720 230 241 252 ?
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5 47 11 8 1 3 5 X der 5-(48, 12, 8)

6 71 35 264 14 17 20 ?


der 5-(v + 1, k + 1, λ)

7 199 99 2328 44 49 54 ?

8 391 195 9264 90 97 104 ?

9 647 323 25680 152 161 170 ?

10 659 329 390874 153 164 175 ?

11 967 483 57720 230 241 252 ?
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9 647 323 25680 152 161 170 ?
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Feasible parameters 4-(v , k , λ) for d = 3 and v ≤ 1000

No. v k λ x y z ∃
1 11 5 1 1 2 3 X der 5-(12, 6, 1)

2 23 8 4 0 2 4 X res 5-(24, 8, 1)

3 23 11 48 3 5 7 X der 5-(24, 12, 48)

4 24 8 5 0 2 4 X 5-(24, 8, 1)

5 47 11 8 1 3 5 X der 5-(48, 12, 8)

6 71 35 264 14 17 20 ?


der 5-(v + 1, k + 1, λ)

v = 2k + 1

7 199 99 2328 44 49 54 ?

8 391 195 9264 90 97 104 ?

9 647 323 25680 152 161 170 ?

10 659 329 390874 153 164 175 ?

11 967 483 57720 230 241 252 ?

Gx is distance-regular of diameter 3  metric (P-polynomial) scheme
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Feasible parameters 4-(v , k , λ) for d = 3 and v ≤ 1000

No. v k λ x y z ∃
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2 23 8 4 0 2 4 X res 5-(24, 8, 1)

3 23 11 48 3 5 7 X der 5-(24, 12, 48)

4 24 8 5 0 2 4 X 5-(24, 8, 1)

5 47 11 8 1 3 5 X der 5-(48, 12, 8)
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7 199 99 2328 44 49 54 ?

8 391 195 9264 90 97 104 ?

9 647 323 25680 152 161 170 ?

10 659 329 390874 153 164 175 ?

11 967 483 57720 230 241 252 ?

Gy is strongly regular, θ1,2 = ±k , θ1,2 6= ±k
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The End

Thanks for your attention!
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