Lacing designs in PAG*

Vedran Krčadinac

University of Zagreb, Croatia

29.6.2022.

^{*} This work was fully supported by the Croatian Science Foundation under the project 9752.

The PAG package

PAG

Prescribed Automorphism Groups

0.1.2

Abstract

PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.

PAG 0.1.2 – Manual and installation

The PAG manual is available at:

https://web.math.pmf.unizg.hr/acco/publications.php

Contents

1	The	PAG Package
	1.1	Getting Started
	1.2	Installation
	1.3	More Worked Examples
2	The	PAG Functions
	2.1	Working With Permutation Groups
	2.2	Generating Orbits
	2.3	Constructing Objects
	2.4	Inspecting Objects and Other Functions
	2.5	Global Options
Ref	eren	ces
Ind	ex	

PAG 0.1.2 – Manual and installation

The PAG manual is available at:

https://web.math.pmf.unizg.hr/acco/publications.php

Contents

ı		PAG Package
	1.1	Getting Started
	1.2	Installation
	1.3	More Worked Examples
2	The	PAG Functions
	2.1	Working With Permutation Groups
	2.2	Generating Orbits
	2.3	Constructing Objects
	2.4	Inspecting Objects and Other Functions
	2.5	Global Options
Re	feren	ices
n	dex	

The installation files can be obtained from the authors. Please write to vedran.krcadinac@math.hr.

PAG 0.1.2 - Implemented so far

Constructing combinatorial designs by the Kramer-Mesner method:

- Generating G-orbits of k-subsets of V [GAP code]
 - → Orderly algorithm using GAP package images
 - → Algorithm for short orbits
- Computing the Kramer-Mesner matrix [GAP code]
- Solving 0-1 systems by A. Wassermann's LLL solver [interface to C program]
- Transforming solutions to GAP package **DESIGN** format [GAP code]
- Command KramerMesnerSearch that does everything automatically

PAG 0.1.2 - To do list

Enhancements of the Kramer-Mesner method:

- Tactical decomposition matrices
- Quasi-symmetric designs: good orbits, compatibility matrices
- More solvers: Gurobi, Minion...

Other construction methods and types of objects:

- Quasi-symmetric designs by clique search
- Configurations
- Strongly regular graphs
- Latin squares

The island Pag

Source: https://www.google.com/maps/place/Pag

6/24

The island Pag

Source: https://www.google.com/maps/place/Pag

The island Pag – North shore

The island Pag – North shore

The island Pag – Sheep

The island Pag – Cheese

 $Source: \verb|https://www.paskasirana.com||\\$

The island Pag – Salt

Source: https://solana-pag.hr

The island Pag – Lacemaking

Source: https://en.wikipedia.org/wiki/Pag_(town)

The island Pag – Lacemaking

Source: https://ich.unesco.org/en/RL/lacemaking-in-croatia-00245

4 D > 4 A > 4 B > 4 B >

Source: https://www.plakati.com.hr

Source: https://www.plakati.com.hr

t- (v, k, λ)

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t = 2, 3, 4, 5 \dots$$

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t = 2, 3, 4, 5 \dots$$

$$k = t + 1, t + 2, \ldots, \lfloor v/2 \rfloor$$

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t = 2, 3, 4, 5 \dots$$

$$k = t + 1, t + 2, \ldots, \lfloor v/2 \rfloor$$

 $\lambda =$ smallest number such that t-(v, k, λ) are admissible (λ_{\min})

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t = 2, 3, 4, 5 \dots$$

$$k = t + 1, t + 2, \ldots, \lfloor v/2 \rfloor$$

 $\lambda =$ smallest number such that t-(v, k, λ) are admissible (λ_{min})

$$v = 8$$

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t = 2, 3, 4, 5...$$

$$k = t + 1, t + 2, \dots, |v/2|$$

 $\lambda =$ smallest number such that t-(v, k, λ) are admissible (λ_{min})

$$v = 8$$

$$t = 3$$

$$t$$
- (v, k, λ)

v =degree of the permutation group

$$t = 2, 3, 4, 5 \dots$$

$$k = t + 1, t + 2, \dots, |v/2|$$

 $\lambda =$ smallest number such that t-(v, k, λ) are admissible (λ_{min})

$$v = 8$$

t=3 $k=4 \rightsquigarrow \lambda_{\min}=1 \rightsquigarrow 3-(8,4,1)$ [extended Fano plane]

Source: https://www.plakati.com.hr

Source: https://www.plakati.com.hr

Source: https://www.plakati.com.hr

Source: https://www.plakati.com.hr

a := (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16);b:=(1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13);g2:=Group(a,b); c := (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);g22:=Group(a,b,c);

Source: https://www.plakati.com.hr

```
g3:=Image(IsomorphismPermGroup(DihedralGroup(16)));

Group([ (1,2)(3,16)(4,14)(5,8)(6,15)(7,11)(9,13)(10,12),

(1,3,4,9,5,10,11,15)(2,6,7,12,8,13,14,16),

(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),

(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)])
```

```
g3:=Image(IsomorphismPermGroup(DihedralGroup(16)));
Group([(1,2)(3,16)(4,14)(5,8)(6,15)(7,11)(9,13)(10,12),
(1,3,4,9,5,10,11,15)(2,6,7,12,8,13,14,16),
(1.4.5.11)(2.7.8.14)(3.9.10.15)(6.12.13.16),
(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)
StructureDescription(g1);
                               StructureDescription(g22);
StructureDescription(g2);
                                "C2 x D16"
StructureDescription(g3);
"D16"
Orbits(g1); Orbits(g2);
[ [ 1, 2, 8, 3, 7, 4, 6, 5 ], [ 9, 10, 15, 11, 14, 16, 12, 13 ] ]
Orbits(g22); Orbits(g3);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 16, 9, 10, 14, 11, 15, 12, 13 ] ]
                                           ◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○
```

v = 16

$$v = 16$$

 $t = 2$ $k = 3 \rightsquigarrow \lambda_{\min} = 2 \rightsquigarrow 2\text{-}(16, 3, 2)$
 $k = 4 \rightsquigarrow \lambda_{\min} = 1 \rightsquigarrow 2\text{-}(16, 4, 1)$ [affine plane of order 4]
 $k = 5 \rightsquigarrow \lambda_{\min} = 4 \rightsquigarrow 2\text{-}(16, 5, 4)$
 $k = 6 \rightsquigarrow \lambda_{\min} = 1 \rightsquigarrow 2\text{-}(16, 6, 1)$ 2-(16, 6, 2) [biplane of order 4]
 $k = 7 \rightsquigarrow \lambda_{\min} = 14 \rightsquigarrow 2\text{-}(16, 7, 14)$
 $k = 8 \rightsquigarrow \lambda_{\min} = 7 \rightsquigarrow 2\text{-}(16, 8, 7)$

$$\begin{array}{lll} v = 16 \\ t = 2 & k = 3 \leadsto \lambda_{\min} = 2 \leadsto 2\text{-}(16,3,2) \\ & k = 4 \leadsto \lambda_{\min} = 1 \leadsto 2\text{-}(16,4,1) \text{ [affine plane of order 4]} \\ & k = 5 \leadsto \lambda_{\min} = 4 \leadsto 2\text{-}(16,5,4) \\ & k = 6 \leadsto \lambda_{\min} = 1 \leadsto 2\text{-}(16,6,1) \text{ 2-}(16,6,2) \text{ [biplane of order 4]} \\ & k = 7 \leadsto \lambda_{\min} = 14 \leadsto 2\text{-}(16,7,14) \\ & k = 8 \leadsto \lambda_{\min} = 7 \leadsto 2\text{-}(16,8,7) \\ \\ t = 3 & k = 4 \leadsto \lambda_{\min} = 1 \leadsto 3\text{-}(16,4,1) \text{ [Steiner quadruple system]} \\ & k = 5 \leadsto \lambda_{\min} = 6 \leadsto 3\text{-}(16,5,6) \\ & k = 6 \leadsto \lambda_{\min} = 2 \leadsto 3\text{-}(16,6,2) \text{ 3-}(16,6,4) \\ & k = 7 \leadsto \lambda_{\min} = 5 \leadsto 3\text{-}(16,7,5) \\ & k = 8 \leadsto \lambda_{\min} = 3 \leadsto 3\text{-}(16,8,3) \end{array}$$

$$v = 16$$

 $t = 5$ $k = 6 \rightsquigarrow \lambda_{min} = 1 \rightsquigarrow 5-(16, 6, 1)$
 $5-(16, 6, 2)$?
 $5-(16, 6, 3)$

The End

Thanks for your attention!