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Rudi Mathon
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Rudi Mathon
It appears to me that he regarded combinatorial designs as rare
gems, and computers and algorithms as instruments used to
mine for them. His ultimate goal was to find the gems, but he
also paid attention to developing his craft of efficient algorithm
design and effective computational methods, which he passed on
to the next generation of researchers. The door of his office was
always open, and as a student, I was always welcome to drop by
at any time. Very often I would find him on his computer,
writing programs or verifying results of his ongoing
computational searches. Then, he would share some details of
the particular gems he was looking for: their properties, their
symmetries, their beauty. His eyes would glitter and in those
moments we could catch a glimpse of his appreciation for the
beauty in combinatorial structures.

— Lucia Moura
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Combinatorial configurations & strongly regular graphs

R. C. Bose, Strongly regular graphs, partial geometries and partially
balanced designs, Pacific J. Math. 13 (1963), 389–419.

Definition.
A partial geometry pg(s, t, α) is an incidence structure such that:

every line is incident with s + 1 points
every point is incident with t + 1 lines
every pair of points is incident with at most one line
for every non-incident point-line pair (P, `), there are exactly α
points on ` collinear with P

V. Krčadinac (University of Zagreb) Some nice combinatorial objects 12.4.2024. 6 / 46



Combinatorial configurations & strongly regular graphs

R. C. Bose, Strongly regular graphs, partial geometries and partially
balanced designs, Pacific J. Math. 13 (1963), 389–419.

Definition.
A partial geometry pg(s, t, α) is an incidence structure such that:

every line is incident with s + 1 points
every point is incident with t + 1 lines
every pair of points is incident with at most one line
for every non-incident point-line pair (P, `), there are exactly α
points on ` collinear with P
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Combinatorial configurations & strongly regular graphs

P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 44, Springer-Verlag, 1968.

Definition.
A finite semiplane is a partial linear space with parallelism of lines and
non-collinearity of points being equivalence relations. It is of order n if
the largest degree of a point or line is n + 1.

Theorem.
The set of all degrees in a semiplane is either {n − 1, n, n + 1},
or {n, n + 1}, or {n + 1}.  hyperbolic, parabolic, elliptic

All hyperbolic and parabolic, and most elliptic semiplanes are of the form
P − B, where P is a projective plane of order n, and B is a closed subset.
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V. Krčadinac (University of Zagreb) Some nice combinatorial objects 12.4.2024. 7 / 46



Combinatorial configurations & strongly regular graphs

P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 44, Springer-Verlag, 1968.

Definition.
A finite semiplane is a partial linear space with parallelism of lines and
non-collinearity of points being equivalence relations. It is of order n if
the largest degree of a point or line is n + 1.

Theorem.
The set of all degrees in a semiplane is either {n − 1, n, n + 1},
or {n, n + 1}, or {n + 1}.  hyperbolic, parabolic, elliptic

All hyperbolic and parabolic, and most elliptic semiplanes are of the form
P − B, where P is a projective plane of order n, and B is a closed subset.
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Combinatorial configurations & strongly regular graphs

Exceptions:

R. D. Baker, An elliptic semiplane, J. Combin. Theory Ser. A 25 (1978),
no. 2, 193–195.

(457) configuration based on (15, 7, 3) design.

R. Mathon, Divisible semiplanes, in: Handbook of combinatorial designs.
Second edition (eds. C. J. Colbourn, J. H. Dinitz), Chapman & Hall/CRC,
2007, pp. 729–731.

(13512) configuration based on (45, 12, 3) design.
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Combinatorial configurations & strongly regular graphs
M. Abreu, M. Funk, V. Krčadinac, D. Labbate, Strongly regular
configurations, Des. Codes Cryptogr. 90 (2022), 1881–1897.

Definition.
A strongly regular configuration with parameters (vk ;λ, µ) is a (vk)
configuration with the associated point graph a SRG(v , k(k − 1), λ, µ).

(103; 3, 4)

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A
25 (1978), 242–250.
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Proper & primitive strongly regular configurations

No. (vk ;λ, µ) #Cf No. (vk ;λ, µ) #Cf
1 (103; 3, 4) 2 12 (636; 13, 15) 4
2 (133; 2, 3) 1 13 (647; 26, 30) 29
3 (163; 2, 2) 1 14 (818; 37, 42) ?
4 (254; 5, 6) 0 15 (856; 11, 10) ?
5 (365; 10, 12) 1 16 (857; 20, 21) ?
6 (415; 9, 10) ? 17 (965; 4, 4) 1
7 (454; 3, 3) 0 18 (997; 21, 15) ?
8 (494; 5, 2) 0 19 (1009; 50, 56) 1
9 (496; 17, 20) 1 20 (1059; 51, 45) ?

10 (507; 35, 36) 211 21 (1138; 27, 28) ?
11 (616; 14, 15) ? 22 (1208; 28, 24) 1
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Proper & primitive strongly regular configurations

Theorem.
Let P be a projective plane of order n ≥ 5 and A, B, C be three non-collinear
points. By deleting all points on the lines AB, AC , BC and all lines through
the points A, B, C , there remains a strongly regular (vk ;λ, µ) configuration
with v = (n − 1)2, k = n − 2, λ = (n − 4)2 + 1, and µ = (n − 3)(n − 4).

Theorem.
For every prime power q, there are at least four strongly regular (vk ;λ, µ) con-
figuration with parameters v = (q2 + 1)(q4 + q3 + q2 + q + 1), k = q2 + q + 1,
λ = q3 + 2q2 + q − 1, and µ = (q + 1)2. One of them is the semipartial geometry
LP(4, q), and three are not semipartial geometries.

Theorem.

There are no strongly regular (vk ;λ, µ) configurations with v =
((k

2
)

+ 1
)2

,
λ =

(k
2
)
− 1, and µ = 2.
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Higher-dimensional Hadamard matrices
Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566–572.

Definition.
A Hadamard matrix of dimension n and order v is a function

H : {1, . . . , v}n → {−1, 1}
such that all parallel (n − 1)-dimensional slices are mutually orthogonal.
It is proper if all 2-dimensional slices are ordinary Hadamard matrices.

Y. X. Yang, X. X. Niu, C. Q. Xu, Theory and applications of higher-
dimensional Hadamard matrices, Second edition, CRC Press, 2010.

Theorem (Y. X. Yang, 1986).
Let h : {1, . . . , v}2 → {−1, 1} be an ordinary Hadamard matrix of order v .
Then H(i1, . . . , in) =

∏
1≤j<k≤n

h(ij , ik)

is a proper n-dimensional Hadamard matrix of order v .
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Higher-dimensional Hadamard matrices
“Improper” Hadamard matrices of dimension n ≥ 3 can exist for

v ≡ 2 (mod 4)

Theorem (Y. X. Yang).
If the Hadamard conjecture is true, then Hadamard matrices of dimension
n ≥ 4 exist for all even orders v .

What about dimension n = 3 ?
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Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).
Hadamard matrices of dimension n = 3 exist for orders v = 2 · 3m, m ≥ 0.

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .

V. Krčadinac, M. O. Pavčević, K. Tabak, Three-dimensional Hadamard
matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

Theorem.
Hadamard matrices of dimension n = 3 and order v = q + 1 exist for all
odd prime powers q.

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .
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Higher-dimensional Hadamard matrices
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Higher-dimensional Hadamard matrices
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Higher-dimensional Hadamard matrices
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Higher-dimensional Hadamard matrices

H : PG(1, q)3 → {1,−1}, q ≡ 1 or 3 (mod 4),

H(x , y , z) =



−1, if x = y = z ,

1, if x = y 6= z
or x = z 6= y
or y = z 6= x ,

χ(z − y), if x =∞,

χ(x − z), if y =∞,

χ(y − x), if z =∞,

χ((x − y)(y − z)(z − x)), otherwise.
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Higher-dimensional designs
W. de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs,
to appear in Ars Mathematica Contemporanea.

Definition.
An n-dimensional cube of symmetric (v , k, λ) designs is a function

C : {1, . . . , v}n → {0, 1}
such that all 2-dimensional slices are inc. matrices of (v , k, λ) designs.

(7, 3, 1)
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Cubes of symmetric designs

Theorem.
Let D be a (v , k, λ) difference set in the group G . Order the group
elements as g1, . . . , gv . Then the function C(i1, . . . , in) = [gi1 · · · gin ∈ D]
is an n-dimensional cube of (v , k, λ) designs.

(21, 5, 1)
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Cubes of symmetric designs

Theorem.
Let G = {g1, . . . , gv} be a group and D = {B1, . . . ,Bv} a (v , k, λ) design
with all of its blocks being (v , k, λ) difference sets in G . Then
C(i1, . . . , in) = [gi2 · · · gin ∈ Bi1 ] is an n-dim. cube of (v , k, λ) designs.

(21, 5, 1)
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with all of its blocks being (v , k, λ) difference sets in G . Then
C(i1, . . . , in) = [gi2 · · · gin ∈ Bi1 ] is an n-dim. cube of (v , k, λ) designs.

(21, 5, 1)
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Cubes of symmetric designs
All (16, 6, 2) group 3-cubes:

ID Structure #Dc #Gc #Gc−#Dc
1 Z16 0 0 0
2 Z 2

4 3 58 55
3 (Z4 × Z2) : Z2 4 87 83
4 Z4 : Z4 3 84 81
5 Z8 × Z2 2 108 106
6 Z8 : Z2 2 36 34
7 D16 0 0 0
8 QD16 2 52 50
9 Q16 2 73 71

10 Z4 × Z2
2 2 133 131

11 Z2 × D8 2 54 52
12 Z2 × Q8 2 199 197
13 (Z4 × Z2) : Z2 2 79 77
14 Z4

2 1 10 9
27 973 946
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Cubes of symmetric designs
There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Group Z4
2: D1 = {B1, . . . ,B16}
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Cubes of symmetric designs
There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Group Z2 × Q8: D1 = {B1, . . . ,B16}
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Cubes of symmetric designs
There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Group Z4
2: D2 = {B1, . . . ,B16}
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Cubes of symmetric designs
There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Group Z4
2: D3 = {B1, . . . ,B16}
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Cubes of symmetric designs
There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Group Z2 × Z8: D3 = {B1, . . . ,B8,B9, . . . ,B16}
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Cubes of symmetric designs
There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Group Z2 × Q8: D2 = {B1, . . . ,B8,B9, . . . ,B16}
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Cubes of symmetric designs

Theorem.
For every m ≥ 2 and n ≥ 3, there are at least two inequivalent

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))
group n-cubes that are not difference cubes.
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Cubes of symmetric designs
Non-group cube:
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Cubes of symmetric designs
Non-group cube:

Proposition.
There are at least 1423 inequivalent (16, 6, 2) non-group 3-cubes.
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Mosaics of combinatorial designs
O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.

Definition.
A mosaic of combinatorial designs is a v × b matrix with entries from
{1, . . . , c} such that for each i , the entries containing i are incidences
of a combinatorial ti -(v , ki , λi ) design.

t1-(v , k1, λ1)⊕ t2-(v , k2, λ2)⊕ · · · ⊕ tc -(v , kc , λc)
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Mosaics of combinatorial designs
O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.

Definition.
A mosaic of combinatorial designs is a v × b matrix with entries from
{1, . . . , c} such that for each i , the entries containing i are incidences
of a combinatorial ti -(v , ki , λi ) design.

2-(9, 3, 1)⊕ 2-(9, 3, 1)⊕ 2-(9, 3, 1)

1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 2 3 1 2 3 1
1 2 3 3 1 2 3 1 2 3 1 2
2 3 1 1 2 3 2 3 1 3 1 2
2 3 1 2 3 1 3 1 2 1 2 3
2 3 1 3 1 2 1 2 3 2 3 1
3 1 2 1 2 3 3 1 2 2 3 1
3 1 2 2 3 1 1 2 3 3 1 2
3 1 2 3 1 2 2 3 1 1 2 3


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Mosaics of combinatorial designs
O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.

Definition.
A mosaic of combinatorial designs is a v × b matrix with entries from
{1, . . . , c} such that for each i , the entries containing i are incidences
of a combinatorial ti -(v , ki , λi ) design.

2-(9, 3, 1)⊕ 2-(9, 3, 1)⊕ 2-(9, 3, 1)
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Mosaics of combinatorial designs
O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.

Definition.
A mosaic of combinatorial designs is a v × b matrix with entries from
{1, . . . , c} such that for each i , the entries containing i are incidences
of a combinatorial ti -(v , ki , λi ) design.

Theorem.
If there exists a resolvable t-(v , k, λ) design, then there exists a c-mosaic

t-(v , k, λ)⊕ · · · ⊕ t-(v , k, λ)

for c = v/k.
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Mosaics of combinatorial designs
A. Ćustić, V. Krčadinac, Y. Zhou, Tiling groups with difference sets,
Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.

Definition.
Let G be a finite group of order v with identity element 0. A (v , k, λ)
tiling of G is a collection {D1, . . . ,Dt} of mutually disjoint (v , k, λ)
difference sets such that D1 ∪ · · · ∪ Dt = G \ {0}.

(31, 6, 1)
tiling of Z31
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Mosaics of combinatorial designs

https://www.imaginary.org/gallery/difference-bracelets
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Mosaics of combinatorial designs
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Mosaics of combinatorial designs

(31, 6, 1)⊕ (31, 6, 1)⊕ (31, 6, 1)⊕ (31, 6, 1)⊕ (31, 6, 1)⊕ (31, 1, 0)
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Mosaics of combinatorial designs

(31, 6, 1)⊕ (31, 6, 1)⊕ (31, 6, 1)⊕ (31, 6, 1)⊕ (31, 6, 1)⊕ (31, 1, 0)
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Mosaics of combinatorial designs

Theorem.
If there exists a (v , k, λ) tiling of a group, then exists a (c + 1)-mosaic

(v , k, λ)⊕ · · · ⊕ (v , k, λ)⊕ (v , 1, 0)

for c = (v − 1)/k = (k − 1)/λ.

(q2 + q + 1, q + 1, 1)⊕ · · · ⊕ (q2 + q + 1, q + 1, 1)⊕ (q2 + q + 1, 1, 0)

q 2 3 4 5 7 8 9 · · ·
Tiling X 7 7 X X X ? · · ·

Mosaic
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Mosaics of combinatorial designs

Theorem.
If there exists a (v , k, λ) tiling of a group, then exists a (c + 1)-mosaic

(v , k, λ)⊕ · · · ⊕ (v , k, λ)⊕ (v , 1, 0)

for c = (v − 1)/k = (k − 1)/λ.

(q2 + q + 1, q + 1, 1)⊕ · · · ⊕ (q2 + q + 1, q + 1, 1)⊕ (q2 + q + 1, 1, 0)

q 2 3 4 5 7 8 9 · · ·
Tiling X 7 7 X X X ? · · ·

Mosaic X ? ? X X X ? · · ·

V. Krčadinac (University of Zagreb) Some nice combinatorial objects 12.4.2024. 44 / 46



Mosaics of combinatorial designs

Theorem.
If there exists a (v , k, λ) tiling of a group, then exists a (c + 1)-mosaic

(v , k, λ)⊕ · · · ⊕ (v , k, λ)⊕ (v , 1, 0)

for c = (v − 1)/k = (k − 1)/λ.

(q2 + q + 1, q + 1, 1)⊕ · · · ⊕ (q2 + q + 1, q + 1, 1)⊕ (q2 + q + 1, 1, 0)

q 2 3 4 5 7 8 9 · · ·
Tiling X 7 7 X X X ? · · ·

Mosaic X X ? X X X ? · · ·
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The End
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Closing
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