Strictly additive 2-designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti

Portorož, June 2021 This work has been supported by HRZZ grant no. 9752 and no. 6732

> <ロト < 部ト < 言ト < 言ト 言の < で 1/17

Definition (2-Design)

A 2-($v,k,\lambda)$ design is a pair $(\mathcal{P},\mathcal{B})$ such that

- $\blacktriangleright \mathcal{P}$ is a set of v points;
- B is a collection of k-subsets of P (called blocks);
- each 2-subset of \mathcal{P} is contained in λ blocks.

Figure: The Fano plane. 2-(7,3,1) design.

• A 2-design is symmetric if $|\mathcal{P}| = |\mathcal{B}|$.

• A Steiner system is a design with $\lambda = 1$.

Definition (Cageggi, Falcone, Pavone, 2017)

A design $(\mathcal{P},\mathcal{B})$ is additive under an abelian group G if

 $\blacktriangleright \ \mathcal{P} \subseteq G \text{ and }$

$$\blacktriangleright \sum_{x \in B} x = 0, \forall B \in \mathcal{B}.$$

Examples:

Parameters	Group	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}	points and lines of $AG(n, p^m)$
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	points and lines of $PG(n-1, 2)$

Definition (Design)

A 2-($v,k,\lambda)$ design is a pair $(\mathcal{P},\mathcal{B})$ such that

- $\blacktriangleright \mathcal{P}$ is a set of v points;
- B is a collection of k-subsets of P (called blocks);
- each 2-subset of \mathcal{P} is contained in λ blocks.

Definition (Cameron, 1974. Delsarte, 1976.)

A 2- (v,k,λ) design over \mathbb{F}_q is a pair $(\mathcal{P},\mathcal{B})$ such that

- \mathcal{P} is the set of points of PG(v-1,q)
- ▶ \mathcal{B} is a collection of (k-1)-dimensional subspaces PG(v-1,q) (blocks)
- each line is contained in λ blocks.
- Greferath, Pavcevic, Silberstein, Vazquez-Castro. Network Coding and Subspace Designs, Springer, 2018

Definition (Cameron, 1974. Delsarte, 1976.) A 2- (v, k, λ) design over \mathbb{F}_q is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is the set of points of PG(v-1,q)
- ▶ \mathcal{B} is a collection of (k-1)-dimensional subspaces PG(v-1,q) (blocks)
- each line is contained in λ blocks.

Properties:

- 2- (v, k, λ) design over \mathbb{F}_q is a classical 2- $(\frac{q^v-1}{q-1}, \frac{q^k-1}{q-1}, \lambda)$ design
- 2- (v,k,λ) design over \mathbb{F}_2 is additive in \mathbb{Z}_2^v

Parameters	Description	Reference	
$2-(2^v-1,7,7)$, v odd	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Thomas, 1987 + Buratti, A.N., 2019	
2-(8191,7,1)	2 - $(13,3,1)$ design over \mathbb{F}_2	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017	

Definition

 $(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if $\mathcal{P} \subseteq G$ and $\sum_{x \in B} x = 0, \forall B \in \mathcal{B}$.

- strongly additive if $\mathcal{B} = \{B \in \binom{\mathcal{P}}{k} \mid \sum_{x \in B} x = 0\}$
- strictly additive if $\mathcal{P} = G$
- almost strictly additive if $\mathcal{P} = G \setminus \{0\}$

[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	points and lines of $PG(n-1, 2)$
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		points and lines of $AG(n, p^m)$
$(p^2, p, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			points and lines of $AG(2, p)$
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k-\lambda mid k$, prime
(v,k,λ)	G	\checkmark			symmetric design

6/17

Definition

 $(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if $\mathcal{P} \subseteq G$ and $\sum_{x \in B} x = 0, \forall B \in \mathcal{B}.$

- strongly additive if $\mathcal{B} = \{B \in \binom{\mathcal{P}}{k} \mid \sum_{x \in B} x = 0\}$
- strictly additive if $\mathcal{P} = G$
- almost strictly additive if $\mathcal{P} = G \setminus \{0\}$

[Buratti, A.N., 202?]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(2^v - 1, 2^k - 1, \lambda)$	\mathbb{Z}_2^v			\checkmark	(v,k,λ) design over \mathbb{F}_2 , in $PG(v-1,2)$
(8191, 7, 1)	\mathbb{Z}_2^{13}			\checkmark	$(13,3,1)$ design over \mathbb{F}_2 , in $PG(12,2)$

[A.N., Examples and Counterexamples, 2021]

Parameters	Group	Strongly	Strictly	Almost str.	Description
(81, 6, 2)	\mathbb{Z}_3^4		\checkmark		each block is a union of two parallel lines of $AG(4,3)$

Properties:

- it is simple
- ▶ the only known 2-(81, 6, 2) has repeated blocks (Hanani, 1975)
- ▶ 432 blocks are obtained from 16 orbits of \mathbb{Z}_3^4 of size 27 (representatives bellow)

 $\{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)\}$ $\{(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 1, 1, 1), (2, 1, 2, 2)\}$ $\{(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2), (0, 0, 1, 0), (0, 1, 2, 1), (0, 2, 0, 2)\}$ $\{(0, 0, 0, 0), (0, 1, 2, 0), (0, 2, 1, 0), (2, 0, 2, 1), (2, 1, 1, 1), (2, 2, 0, 1)\}$ $\{(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (0, 2, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1)\}$ $\{(0, 0, 0, 0), (1, 0, 1, 0), (2, 0, 2, 0), (0, 1, 0, 0), (1, 1, 1, 0), (2, 1, 2, 0)\}$ $\{(0, 0, 0, 0), (1, 0, 1, 1), (2, 0, 2, 2), (0, 0, 2, 0), (1, 0, 0, 1), (2, 0, 1, 2)\}$ $\{(0, 0, 0, 0), (1, 0, 2, 0), (2, 0, 1, 0), (0, 2, 1, 1), (1, 2, 0, 1), (2, 2, 2, 1)\}$ $\{(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0), (2, 1, 0, 2)\}$ $\{(0, 0, 0, 0), (1, 1, 0, 0), (2, 2, 0, 0), (0, 2, 0, 1), (1, 0, 0, 1), (2, 1, 0, 1)\}$ $\{(0, 0, 0, 0), (1, 1, 0, 1), (2, 2, 0, 2), (0, 2, 2, 0), (1, 0, 2, 1), (2, 1, 2, 2)\}$ $\{(0, 0, 0, 0), (1, 1, 2, 0), (2, 2, 1, 0), (0, 0, 2, 1), (1, 1, 1, 1), (2, 2, 0, 1)\}$ $\{(0, 0, 0, 0), (1, 1, 2, 1), (2, 2, 1, 2), (0, 2, 1, 1), (1, 0, 0, 2), (2, 1, 2, 0)\}$ $\{(0, 0, 0, 0), (1, 1, 2, 2), (2, 2, 1, 1), (0, 2, 2, 0), (1, 0, 1, 2), (2, 1, 0, 1)\}$ $\{(0, 0, 0, 0), (1, 2, 1, 2), (2, 1, 2, 1), (0, 0, 2, 1), (1, 2, 0, 0), (2, 1, 1, 2)\}$

8/17

- \mathcal{P} is the set of points of AG(n,q),
- each block $B \in \mathcal{B}$ is union of k parallel lines of AG(n,q).

Parameters	Group	Strongly	Strictly	Al. str.	Description
k-parallel	\mathbb{Z}_q^n		\checkmark		each block is a union of k parallel lines of AG (n,q)

Definition (Difference Set)

- ▶ G additive group
- k-subset D of G is a (G, k, λ) difference set if each non-zero element of G is covered λ times by the list of differences of D:

$$\Delta D = \{x - y : x \neq y, x, y \in D\} = \lambda \left(G \setminus \{0\}\right)$$

Definition (Difference Family)

- G additive group
- A collection of k-subsets $\mathcal{F} = \{D_1, \dots, D_t\}$ of G is a (G, k, λ) difference family if each non-zero element of G is covered λ times by the list of differences of the blocks:

$$\Delta \mathcal{F} = \uplus \Delta D_i = \lambda \left(G \setminus \{0\} \right)$$

Theorem (Buratti, A.N., 202?) If there exists a (q, k, λ) difference family in \mathbb{F}_q then there exists a strictly additive 2- (q^n, kq, μ) design under $(\mathbb{F}_q^n, +)$ with $\mu = \frac{\lambda(kq-1)}{k-1}$, for every $n \ge 2$.

Proof.Difference family \Rightarrow k-parallel design \Rightarrow strictly additive design

Another example:

Parameters	Group	Strongly	Strictly	Al. str.	Description
(49, 21, 10)	\mathbb{Z}_7^2		\checkmark		(7,3,1) difference set

Properties:

- it is simple
- each block is a union of 3 parallel lines of AG(2,7)
- not isomorphic to the design of Abel, 1996

Corollary [Buratti, A.N., 202?]

Parameters	Group	Strictly	Description	Reference
$(q^n, 2q, 2q - 1)$	\mathbb{Z}_q^n	\checkmark	(q,2,1) DF, q odd	patterned starter
$(q^n, 3q, \frac{3q-1}{2})$	\mathbb{Z}_q^n	\checkmark	(q, 3, 1) DF, $q \equiv 1 \pmod{6}$	Peltesohn, 1938
$(q^n, 4q, \frac{4q-1}{3})$	\mathbb{Z}_q^n	\checkmark	(q, 4, 1) DF, $q \equiv 1 \pmod{12}$	Chen, Zhu, 1999
$(q^n, 5q, \frac{5q-1}{4})$	\mathbb{Z}_q^n	\checkmark	(q, 5, 1) DF, $q \equiv 1 \pmod{20}$	Chen, Zhu, 1999
$(q^n, 6q, \frac{6q-1}{5})$	\mathbb{Z}_q^n	\checkmark	(q, 6, 1) DF, $q \equiv 1 \pmod{30}$ except possibly $q = 61$	Chen, Zhu, 1998
$(q^n, \frac{q(q-1)}{2}, \frac{q^2-q-2}{2})$	\mathbb{Z}_q^n	\checkmark	$(q, \frac{q-1}{2}, \frac{q-3}{4}) \text{ DS,}$ $q \equiv 3 \pmod{4}$	Paley difference set
$(q^n, kq, kq - 1)$	\mathbb{Z}_q^n	\checkmark	(q, k, k-1) DF, $q \equiv 1 \pmod{k}$	Wilson, 1972
$(q^n, kq, \frac{kq-1}{2})$	\mathbb{Z}_q^n	\checkmark	$(q,k,rac{k-1}{2})$ DF, $q\equiv 1 \pmod{k}$, q,k odd	Wilson, 1972
$\left[(q^n, kq, \frac{k(kq-1)}{k-1})\right]$	\mathbb{Z}_q^n	\checkmark	$(q, k, \overline{k}) DF, q \equiv 1 \pmod{k-1}$	Wilson, 1972
$(q^n, kq, \frac{k(kq-1)}{2(k-1)})$	\mathbb{Z}_q^n	\checkmark	$(q, k, \frac{k}{2})$ DF, $q \equiv 1 \pmod{k-1}$	Wilson, 1972

First try:

- We know:
- (v, k, 1) difference family \mathcal{F} in $G \Rightarrow 2-(v, k, 1)$ design with $(\mathcal{P}, \mathcal{B})$

$$\blacktriangleright \mathcal{F} = \{D_1, \dots, D_t\} \text{ in } G \quad \Rightarrow \quad \mathcal{B} = \{B_i = D_i + g : 1 \le i \le n, g \in G\}$$

- ▶ Possible idea: Choose blocks D_1, \ldots, D_t such that $\sum_{x \in D_i} x = 0$
- We hope:

$$\sum_{x \in B_i} x = \sum_{x \in D_i + g} x = 0$$

► Unfortunately, this is not true. ⇒⇐

Theorem (Buratti, A.N., 202?)

If $k \not\equiv 2 \pmod{4}$ and $k \neq 2^n \cdot 3$, there are infinitely many values of v for which there exists a strictly additive 2-(v, k, 1) design.

Few ideas from the proof (1).

- $[k \not\equiv 2 \pmod{4}]$ G abelian group od order k such that $\sum_{x \in G} = 0$
- ▶ If you can construct $(kp^n, k, k, 1)$ DF in $G \times \mathbb{F}_{p^n}$ relative to $G \times \{0\}$, p a prime divisor of k:

$$\Delta D_1 \cup \dots \cup \Delta D_t = G \times \mathbb{F}_{q^n} \setminus G \times \{0\}$$

such that

$$\sum_{x \in D_i} x = 0$$

then we have:

$$\sum_{x\in D_i+g} x=0 \text{ and } \sum_{x\in G\times \{y\}} x=0$$

• We get a Steiner design with $\mathcal{B} = \{D_i + g\} \bigcup \{G \times \{y\}\}$

14/17

Theorem (Buratti, A.N., 202?)

If $k \not\equiv 2 \pmod{4}$ and $k \neq 2^n \cdot 3$, there are infinitely many values of v for which there exists a strictly additive 2-(v, k, 1) design.

Few ideas from the proof (2).

Does such DF exists?

▶ $[k \neq 2^n \cdot 3]$ It can be constructed from (k, k, λ) strong DF in G such that

$$\Delta C_1 \cup \dots \cup \Delta C_s = \lambda G$$
 and $\sum_{x \in C_i} x = 0$

• $v = k \cdot p^n$, is huge, p prime divisor of k

Theorem (Buratti, A.N., 202?)

If $k \not\equiv 2 \pmod{4}$ and $k \neq 2^n \cdot 3$, there are infinitely many values of v for which there exists a strictly additive 2-(v, k, 1) design.

Constructing examples is computationally hard.

k	3	4	5
	AG(n,3)	AG(n,4)	AG(n,5)

k	6	7	8	9	10
	$2^1 \cdot 3$	AG(n,7)	AG(n,8)	AG(n,9)	$2 \pmod{4}$

k	11	12	13	14	15
	AG(n,11)	$2^2 \cdot 3$	AG(n, 13)	$2 \pmod{4}$?

 $\blacktriangleright v = 15 \cdot 5^n, n \ge 10^7$

Thank you for your attention!