Strictly additive 2-designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti

Portorož, June 2021
This work has been supported by HRZZ grant no. 9752 and no. 6732

Definition (2-Design)

A $2-(v, k, \lambda)$ design is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is a set of v points;
- \mathcal{B} is a collection of k-subsets of \mathcal{P} (called blocks);
- each 2-subset of \mathcal{P} is contained in λ blocks.

Figure: The Fano plane. 2-(7,3,1) design.

- A 2-design is symmetric if $|\mathcal{P}|=|\mathcal{B}|$.
- A Steiner system is a design with $\lambda=1$.

Definition (Cageggi, Falcone, Pavone, 2017)
A design $(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if

- $\mathcal{P} \subseteq G$ and
- $\sum_{x \in B} x=0, \forall B \in \mathcal{B}$.

Examples:

Parameters	Group	Description
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$	points and lines of $A G\left(n, p^{m}\right)$
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	points and lines of $P G(n-1,2)$

Definition (Design)

A 2- (v, k, λ) design is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is a set of v points;
- \mathcal{B} is a collection of k-subsets of \mathcal{P} (called blocks);
- each 2-subset of \mathcal{P} is contained in λ blocks.

Definition (Cameron, 1974. Delsarte, 1976.)
A 2- (v, k, λ) design over \mathbb{F}_{q} is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is the set of points of $\operatorname{PG}(v-1, q)$
- \mathcal{B} is a collection of $(k-1)$-dimensional subspaces $\mathrm{PG}(v-1, q)$ (blocks)
- each line is contained in λ blocks.
- Greferath, Pavcevic, Silberstein, Vazquez-Castro. Network Coding and Subspace Designs, Springer, 2018

Definition (Cameron, 1974. Delsarte, 1976.)
A 2-(v, k, λ) design over \mathbb{F}_{q} is a pair $(\mathcal{P}, \mathcal{B})$ such that

- \mathcal{P} is the set of points of $\operatorname{PG}(v-1, q)$
- \mathcal{B} is a collection of $(k-1)$-dimensional subspaces $\mathrm{PG}(v-1, q)$ (blocks)
- each line is contained in λ blocks.

Properties:

- 2- (v, k, λ) design over \mathbb{F}_{q} is a classical $2-\left(\frac{q^{v}-1}{q-1}, \frac{q^{k}-1}{q-1}, \lambda\right)$ design
- 2- (v, k, λ) design over \mathbb{F}_{2} is additive in \mathbb{Z}_{2}^{v}

Parameters	Description	Reference
$2-\left(2^{v}-1,7,7\right), v$ odd	$2-(v, 3,7)$ design over \mathbb{F}_{2} for all v odd	Thomas, 1987 + Buratti, A.N., 2019
$2-(8191,7,1)$	$2-(13,3,1)$ design over	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017

Definition

$(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if $\mathcal{P} \subseteq G$ and $\sum_{x \in B} x=0, \forall B \in \mathcal{B}$.

- strongly additive if $\mathcal{B}=\left\{\left.B \in\binom{\mathcal{P}}{k} \right\rvert\, \sum_{x \in B} x=0\right\}$
- strictly additive if $\mathcal{P}=G$
- almost strictly additive if $\mathcal{P}=G \backslash\{0\}$
[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	$\sqrt{ }$			points and lines of $P G(n-1,2)$
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$		$\sqrt{\prime}$		points and lines of $A G\left(n, p^{m}\right)$
$\left(p^{2}, p, 1\right)$	$\mathbb{Z}_{p}^{\frac{p(p-1)}{2}}$	$\sqrt{ }$			points and lines of $A G(2, p)$
(v, k, λ)	$\mathbb{Z}_{k} \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	$\sqrt{ }$			symmetric design, $k-\lambda \nmid k$, prime
(v, k, λ)	G	$\sqrt{ }$			symmetric design

Definition

$(\mathcal{P}, \mathcal{B})$ is additive under an abelian group G if $\mathcal{P} \subseteq G$ and $\sum_{x \in B} x=0, \forall B \in \mathcal{B}$.

- strongly additive if $\mathcal{B}=\left\{\left.B \in\binom{\mathcal{P}}{k} \right\rvert\, \sum_{x \in B} x=0\right\}$
- strictly additive if $\mathcal{P}=G$
- almost strictly additive if $\mathcal{P}=G \backslash\{0\}$
[Buratti, A.N., 202?]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(2^{v}-1,2^{k}-1, \lambda\right)$	\mathbb{Z}_{2}^{v}			$\sqrt{ }$	(v, k, λ) design over \mathbb{F}_{2}, in $P G(v-1,2)$
$(8191,7,1)$	\mathbb{Z}_{2}^{13}			$\sqrt{(13,3,1) \text { design over } \mathbb{F}_{2},}$	

[A.N., Examples and Counterexamples, 2021]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(81,6,2)$	\mathbb{Z}_{3}^{4}		$\sqrt{2}$		each block is a union of two parallel lines of $A G(4,3)$

Properties:

- it is simple
- the only known 2-(81, 6, 2) has repeated blocks (Hanani, 1975)
- 432 blocks are obtained from 16 orbits of \mathbb{Z}_{3}^{4} of size 27 (representatives bellow)

```
\(\{(0,0,0,0),(0,0,0,1),(0,0,0,2),(0,1,0,0),(0,1,0,1),(0,1,0,2)\}\)
\(\{(0,0,0,0),(0,0,1,1),(0,0,2,2),(2,1,0,0),(2,1,1,1),(2,1,2,2)\}\)
\(\{(0,0,0,0),(0,1,1,1),(0,2,2,2),(0,0,1,0),(0,1,2,1),(0,2,0,2)\}\)
\(\{(0,0,0,0),(0,1,2,0),(0,2,1,0),(2,0,2,1),(2,1,1,1),(2,2,0,1)\}\)
\(\{(0,0,0,0),(1,0,0,0),(2,0,0,0),(0,2,2,1),(1,2,2,1),(2,2,2,1)\}\)
\(\{(0,0,0,0),(1,0,1,0),(2,0,2,0),(0,1,0,0),(1,1,1,0),(2,1,2,0)\}\)
\(\{(0,0,0,0),(1,0,1,1),(2,0,2,2),(0,0,2,0),(1,0,0,1),(2,0,1,2)\}\)
\(\{(0,0,0,0),(1,0,2,0),(2,0,1,0),(0,2,1,1),(1,2,0,1),(2,2,2,1)\}\)
\(\{(0,0,0,0),(1,0,2,2),(2,0,1,1),(0,1,2,1),(1,1,1,0),(2,1,0,2)\}\)
\(\{(0,0,0,0),(1,1,0,0),(2,2,0,0),(0,2,0,1),(1,0,0,1),(2,1,0,1)\}\)
\(\{(0,0,0,0),(1,1,0,1),(2,2,0,2),(0,2,2,0),(1,0,2,1),(2,1,2,2)\}\)
\(\{(0,0,0,0),(1,1,2,0),(2,2,1,0),(0,0,2,1),(1,1,1,1),(2,2,0,1)\}\)
\(\{(0,0,0,0),(1,1,2,1),(2,2,1,2),(0,2,1,1),(1,0,0,2),(2,1,2,0)\}\)
\(\{(0,0,0,0),(1,1,2,2),(2,2,1,1),(0,2,2,0),(1,0,1,2),(2,1,0,1)\}\)
\(\{(0,0,0,0),(1,2,1,2),(2,1,2,1),(0,0,2,1),(1,2,0,0),(2,1,1,2)\}\)
\(\{(0,0,0,0),(1,2,2,0),(2,1,1,0),(0,2,2,1),(1,1,1,1),(2,0,0,1)\}\)
```


Definition

A 2-($q^{n}, k q, \lambda$) design $(\mathcal{P}, \mathcal{B})$ is k-parallel if

- \mathcal{P} is the set of points of $\operatorname{AG}(n, q)$,
- each block $B \in \mathcal{B}$ is union of k parallel lines of $\operatorname{AG}(n, q)$.

Parameters	Group	Strongly	Strictly	AI. str.	Description
k-parallel	\mathbb{Z}_{q}^{n}		\checkmark		each block is a union of k parallel lines of $\mathrm{AG}(n, q)$

Definition (Difference Set)

- G additive group
- k-subset D of G is a (G, k, λ) difference set if each non-zero element of G is covered λ times by the list of differences of D :

$$
\Delta D=\{x-y: x \neq y, x, y \in D\}=\lambda(G \backslash\{0\})
$$

Definition (Difference Family)

- G additive group
- A collection of k-subsets $\mathcal{F}=\left\{D_{1}, \ldots, D_{t}\right\}$ of G is a (G, k, λ) difference family if each non-zero element of G is covered λ times by the list of differences of the blocks:

$$
\Delta \mathcal{F}=\uplus \Delta D_{i}=\lambda(G \backslash\{0\})
$$

Theorem (Buratti, A.N., 202?)
If there exists a (q, k, λ) difference family in \mathbb{F}_{q} then there exists a strictly additive $2-\left(q^{n}, k q, \mu\right)$ design under $\left(\mathbb{F}_{q}^{n},+\right)$ with $\mu=\frac{\lambda(k q-1)}{k-1}$, for every $n \geq 2$.

Proof.
Difference family $\Rightarrow k$-parallel design \Rightarrow strictly additive design

Another example:

Parameters	Group	Strongly	Strictly	Al. str.	Description
$(49,21,10)$	\mathbb{Z}_{7}^{2}		\checkmark		$(7,3,1)$ difference set

Properties:

- it is simple
- each block is a union of 3 parallel lines of $A G(2,7)$
- not isomorphic to the design of Abel, 1996

Corollary [Buratti, A.N., 202?]

Parameters	Group	Strictly	Description	Reference
$\left(q^{n}, 2 q, 2 q-1\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$(q, 2,1)$ DF, q odd	patterned starter
$\left(q^{n}, 3 q, \frac{3 q-1}{2}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & (q, 3,1) \mathrm{DF}, \\ & q \equiv 1(\bmod 6) \end{aligned}$	Peltesohn, 1938
$\left(q^{n}, 4 q, \frac{4 q-1}{3}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & (q, 4,1) \mathrm{DF} \\ & q \equiv 1(\bmod 12) \end{aligned}$	Chen, Zhu, 1999
$\left(q^{n}, 5 q, \frac{5 q-1}{4}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & (q, 5,1) \mathrm{DF}, \\ & q \equiv 1(\bmod 20) \end{aligned}$	Chen, Zhu, 1999
$\left(q^{n}, 6 q, \frac{6 q-1}{5}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$(q, 6,1) \mathrm{DF}$, $q \equiv 1(\bmod 30)$ except possibly $q=61$	Chen, Zhu, 1998
$\left(q^{n}, \frac{q(q-1)}{2}, \frac{q^{2}-q-2}{2}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & \left(q, \frac{q-1}{2}, \frac{q-3}{4}\right) \mathrm{DS}, \\ & q \equiv 3(\bmod 4) \end{aligned}$	Paley difference set
$\left(q^{n}, k q, k q-1\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & (q, k, k-1) \mathrm{DF}, \\ & q \equiv 1(\bmod k) \end{aligned}$	Wilson, 1972
$\left(q^{n}, k q, \frac{k q-1}{2}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & \left(q, k, \frac{k-1}{2}\right) \mathrm{DF}, \\ & q \equiv 1(\bmod k), q, k \text { odd } \end{aligned}$	Wilson, 1972
$\left(q^{n}, k q, \frac{k(k q-1)}{k-1}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & (q, k, k) \mathrm{DF}, \\ & q \equiv 1(\bmod k-1) \end{aligned}$	Wilson, 1972
$\left(q^{n}, k q, \frac{k(k q-1)}{2(k-1)}\right)$	\mathbb{Z}_{q}^{n}	$\sqrt{ }$	$\begin{aligned} & \left(q, k, \frac{k}{2}\right) \mathrm{DF}, \\ & q \equiv 1(\bmod k-1) \end{aligned}$	Wilson, 1972

First try:

- We know:
- $(v, k, 1)$ difference family \mathcal{F} in $G \quad \Rightarrow \quad 2-(v, k, 1)$ design with $(\mathcal{P}, \mathcal{B})$
- $\mathcal{F}=\left\{D_{1}, \ldots, D_{t}\right\}$ in $G \Rightarrow \mathcal{B}=\left\{B_{i}=D_{i}+g: 1 \leq i \leq n, g \in G\right\}$
- Possible idea: Choose blocks D_{1}, \ldots, D_{t} such that $\sum_{x \in D_{i}} x=0$
- We hope:

$$
\sum_{x \in B_{i}} x=\sum_{x \in D_{i}+g} x=0
$$

- Unfortunately, this is not true. $\Rightarrow \Leftarrow$

Theorem (Buratti, A.N., 202?)
If $k \not \equiv 2(\bmod 4)$ and $k \neq 2^{n} \cdot 3$, there are infinitely many values of v for which there exists a strictly additive 2- $(v, k, 1)$ design.

Few ideas from the proof (1).

- $[k \not \equiv 2(\bmod 4)] \quad G$ abelian group od order k such that $\sum_{x \in G}=0$
- If you can construct $\left(k p^{n}, k, k, 1\right)$ DF in $G \times \mathbb{F}_{p^{n}}$ relative to $G \times\{0\}, p$ a prime divisor of k :

$$
\Delta D_{1} \cup \cdots \cup \Delta D_{t}=G \times \mathbb{F}_{q^{n}} \backslash G \times\{0\}
$$

- such that

$$
\sum_{x \in D_{i}} x=0
$$

- then we have:

$$
\sum_{x \in D_{i}+g} x=0 \text { and } \sum_{x \in G \times\{y\}} x=0
$$

- We get a Steiner design with $\mathcal{B}=\left\{D_{i}+g\right\} \bigcup\{G \times\{y\}\}$

Theorem (Buratti, A.N., 202?)
If $k \not \equiv 2(\bmod 4)$ and $k \neq 2^{n} \cdot 3$, there are infinitely many values of v for which there exists a strictly additive 2- $(v, k, 1)$ design.

Few ideas from the proof (2).

- Does such DF exists?
- $\left[k \neq 2^{n} \cdot 3\right] \quad$ It can be constructed from (k, k, λ) strong DF in G such that

$$
\Delta C_{1} \cup \cdots \cup \Delta C_{s}=\lambda G \text { and } \sum_{x \in C_{i}} x=0
$$

- $v=k \cdot p^{n}$, is huge, p prime divisor of k

Theorem (Buratti, A.N., 202?)
If $k \not \equiv 2(\bmod 4)$ and $k \neq 2^{n} \cdot 3$, there are infinitely many values of v for which there exists a strictly additive 2- $(v, k, 1)$ design.

Constructing examples is computationally hard.

k	3	4	5
	$\mathrm{AG}(n, 3)$	$\mathrm{AG}(n, 4)$	$\mathrm{AG}(n, 5)$

k	6	7	8	9	10
	$2^{1} \cdot 3$	$\mathrm{AG}(n, 7)$	$\mathrm{AG}(n, 8)$	$\mathrm{AG}(n, 9)$	$2(\bmod 4)$

k	11	12	13	14	15
	AG $(n, 11)$	$2^{2} \cdot 3$	AG $(n, 13)$	$2(\bmod 4)$	$?$

- $v=15 \cdot 5^{n}, n \geq 10^{7}$

Thank you for your attention!

