Cubes of Symmetric Designs ¹

Mario Osvin Pavčević ¹ joint with Vedran Krčadinac and Kristijan Tabak

¹Department of Applied Mathematics, Faculty of electrical engineering and computing, University of Zagreb, Croatia

29th Nordic Congress of Mathematicians Aalborg 2023

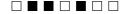
¹This work has been fully supported by the Croatian Science Foundation under the project 9752.

• characteristic vector

- characteristic vector
- *GF*(7)

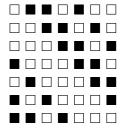
- characteristic vector
- *GF*(7)
- $\{1, 2, 4\}$ is the set of all non-zero squares

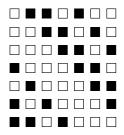
- characteristic vector
- *GF*(7)
- $\{1, 2, 4\}$ is the set of all non-zero squares
- difference set for parameters (7,3,1)



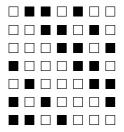
- characteristic vector
- *GF*(7)
- $\{1, 2, 4\}$ is the set of all non-zero squares
- difference set for parameters (7,3,1)

What will happen if I cyclically shift this incidence vector?

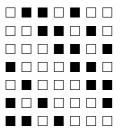




• Development of a difference set



- Development of a difference set
- A matrix indicating incidences between two kind of objects.



- Development of a difference set
- A matrix indicating incidences between two kind of objects.
- Symmetric design with parameters (7,3,1) the Fano plane

How to continue?

Let us continue to the next dimension!

How to continue?

Let us continue to the next dimension!

Construct the second layer of a cube by permuting the rows cyclically, starting with the second row of the incidence matrix:

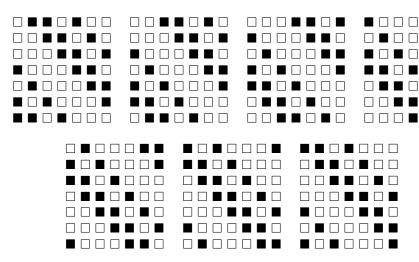
How to continue?

Let us continue to the next dimension!

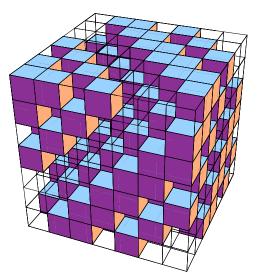
Construct the second layer of a cube by permuting the rows cyclically, starting with the second row of the incidence matrix:

1. layer	2. layer

Incidence cubes



Wow! What a picture!



Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

Questions:

• Does every difference set give a 3-dimensional cube?

7 / 15

Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

- Does every difference set give a 3-dimensional cube?
- Does every 3-dimensional cube come from a difference set in the described way? Other constructions possible?

Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

- Does every difference set give a 3-dimensional cube?
- Does every 3-dimensional cube come from a difference set in the described way? Other constructions possible?
- Higher dimensions?

Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

- Does every difference set give a 3-dimensional cube?
- Does every 3-dimensional cube come from a difference set in the described way? Other constructions possible?
- Higher dimensions?
- Applications?

Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

- Does every difference set give a 3-dimensional cube?
- Does every 3-dimensional cube come from a difference set in the described way? Other constructions possible?
- Higher dimensions?
- Applications?
- Are we the first to who this idea came to mind?

Conclusions:

We have constructed a 3-dimensional 0-1 matrix such that its every 2-dimensional layer (slice) is the incidence matrix of the Fano plane.

- Does every difference set give a 3-dimensional cube?
- Does every 3-dimensional cube come from a difference set in the described way? Other constructions possible?
- Higher dimensions?
- Applications?
- Are we the first to who this idea came to mind?
- . . .

Commercial break

Combinatorial Constructions Conference April 7-13, 2024, Dubrovnik, Croatia

Combinatorial Constructions Conference (CCC) will take place at the Centre for Advanced Academic Studies in Dubrovnik, Croatia.

April 7-13, 2024

Invited Speakers:

Marco Buratti, Italy

Eimear Byrne, Ireland

Dean Crnković. Croatia

Daniel Horsley, Australia

Michael Kiermaier, Germany

Patric Östergård, Finland

Kai-Uwe Schmidt, Germany

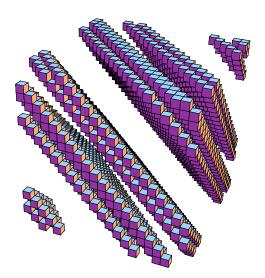
https://web.math.pmf.unizg.hr/acco/meetings.php

Are we the first? Similar ideas found:

- P. J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.
- J. Seberry, *Higher-dimensional orthogonal designs and Hadamard matrices*, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220–223, Lecture Notes in Math. **829**, Springer, Berlin, 1980.
- W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67–81.
- W. de Launey, K. J. Horadam, *A weak difference set construction for higher-dimensional designs*, Des. Codes Cryptogr. **3** (1993), no. 1, 75–87.

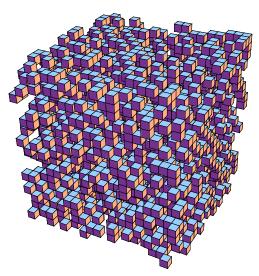
Difference set \Rightarrow cube of designs, YES

Difference set \Rightarrow cube of designs, YES



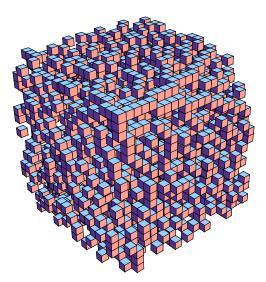
Always cyclic? NO!

Always cyclic? NO!



Cubes always from a difference set? NO!

Cubes always from a difference set? NO!



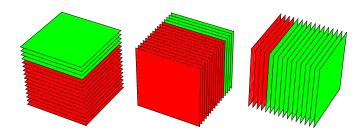
Cube with non-isomorphic slices? YES!

Cube with non-isomorphic slices? YES!

There are many such cubes the slices of which are different 2-(16,6,2) designs.

Cube with non-isomorphic slices? YES!

There are many such cubes the slices of which are different 2-(16,6,2) designs.



Preprints and Info:

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, preprint, 2023. http://arxiv.org/abs/2304.05446

V. Krčadinac, The PAG manual, 2023. https://web.math.pmf.unizg.hr/acco/PAGmanual.pdf

https://web.math.pmf.unizg.hr/krcko/results/cubes.html

What's next?

What's next?

What's next?

Thanks for your attention!