Polar decomposition of the linear pencil

Slaviša Djordjević
Benémerita Universidad Autónoma de Puebla, México

For a pair of operators $A, B \in \mathcal{B}(H)$, the operator $A-\lambda B, \lambda \in \mathbb{C}$, is called the linear pencil of an ordered pair (A, B). The spectrum of a linear pencil is the set

$$
\sigma(A, B)=\{\lambda \in \mathbb{C}: A-\lambda B \text { is not invertible }\}
$$

and $\rho(A, B)=\mathbb{C} \backslash \sigma(A, B)$ is called the resolvent set of the linear pencil (A, B).

We recall that the polar decomposition of any bounded linear operator T between complex Hilbert spaces is a canonical factorization as the product of a partial isometry and a non-negative operator, that is, $T=U|T|$, where U is a partial isometry and $|T|=\sqrt{T^{*} T}$ is a non-negative operator.

In this talk we introduct the (spherical) polar decomposition of a linear pencil of an ordered pair (A, B) and we give some properties of it. Using this way of decomposition of a pair of operators, we are able to define several type of Aluthge transforms for a linear pencil of operators.

Co-authors: Jasang Yoon and Jaewoong Kim

