Sequence dominance in shift-invariant spaces

Tomislav Berić University of Zagreb

For a given function $\psi \in L^2(\mathbb{R})$ we study the system of integer translates $B_{\psi} = \{T_k \psi : k \in \mathbb{Z}\}$, where T_k is the translation operator. Numerous properties of B_{ψ} can be described via its periodization function $p_{\psi}(\xi) = \sum_{k \in \mathbb{Z}} \left| \widehat{\psi}(\xi + k) \right|^2$. For ψ we define its associated coefficient space $\operatorname{Cof}_{\psi}$ as the set of all the sequences $(c_k)_{k \in \mathbb{Z}}$ for which $\sum c_k T_k \psi$ converges in the L^2 norm (with respect to the ordering $0, 1, -1, 2, -2, \ldots$ of \mathbb{Z}). There are two important special cases: when $\operatorname{Cof}_{\psi}$ contains $\ell^2(\mathbb{Z})$, in which case we say that B_{ψ} has the (H)-property, and when $\operatorname{Cof}_{\psi}$ is contained in $\ell^2(\mathbb{Z})$, when we say that B_{ψ} has the (B)-property. Characterization of the (H)-property via the periodization function is already known. The (B)-property seems to be much more difficult to characterize and we will characterize it in two important special cases: when the periodization function has a certain degree of smoothness and when the system B_{ψ} has the (H)-property alongside the (B)-property.

This is joint work with Hrvoje Šikić.