Complex dimensions and tube formulas

Goran Radunović

Zagreb Dynamical Systems Workshop 2018

26th October 2018

Joint work with: Michel L. Lapidus, University of California, Riverside, Darko Žubrinić, University of Zagreb

What is a fractal?

What is a fractal?

Figure: The middle-third Cantor set *C*.

What is a fractal?

Figure: The middle-third Cantor set *C*.

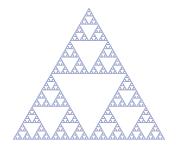


Figure: The Sierpiński gasket S.

• There are several definitions of fractal dimension.

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

 Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

- Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.
- None of the above dimensions give a completely satisfactory definition of a fractal.

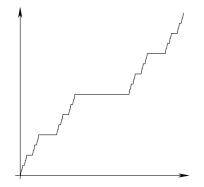


Figure: The Devil's staircase - graph of the Cantor function

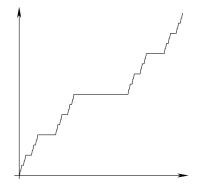


Figure: The Devil's staircase - graph of the Cantor function

All of the known fractal dimensions are equal to 1, i.e., to its topological dimension.

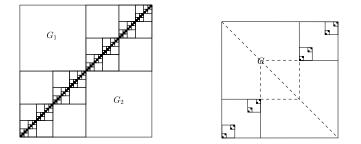


Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

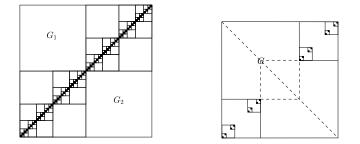


Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also their topological dimension.

• δ -neighbourhood of *A*:

$$\emptyset \neq A \subset \mathbb{R}^N$$

• δ -neighbourhood of *A*:

$$A_{\delta} = \{x \in \mathbb{R}^N : d(x, A) < \delta\}$$

$$0 \neq A \subset \mathbb{R}^N$$

• δ -neighbourhood of *A*:

$$A_{\delta} = \{x \in \mathbb{R}^N : d(x, A) < \delta\}$$

■ *r*-dimensional Minkowski content of *A*:

$$\mathcal{M}^{r}(A) := \lim_{\delta \to 0^{+}} \frac{|A_{\delta}|}{\delta^{N-r}}$$

$$\emptyset \neq A \subset \mathbb{R}^N$$

• δ -neighbourhood of *A*:

$$A_{\delta} = \{x \in \mathbb{R}^N : d(x, A) < \delta\}$$

r-dimensional Minkowski content of A:

$$\mathcal{M}^{r}(A) := \lim_{\delta \to 0^{+}} \frac{|A_{\delta}|}{\delta^{N-r}}$$

Minkowski dimension of A: $\dim_B A = \inf\{r \in \mathbb{R} : \mathcal{M}^r(A) = 0\}$

$$\emptyset \neq A \subset \mathbb{R}^N$$

• δ -neighbourhood of *A*:

$$A_{\delta} = \{x \in \mathbb{R}^N : d(x, A) < \delta\}$$

r-dimensional Minkowski content of A:

$$\mathcal{M}^{r}(A) := \lim_{\delta \to 0^{+}} \frac{|A_{\delta}|}{\delta^{N-r}}$$

Minkowski dimension of A: $\dim_B A = \inf\{r \in \mathbb{R} : \mathcal{M}^r(A) = 0\}$ $= \sup\{r \in \mathbb{R} : \mathcal{M}^r(A) = \infty\}$

• fractal string: $\mathcal{L} = (\ell_j)_{j \ge 1}$ $\ell_j \searrow 0$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1}$$
 $\ell_j \searrow 0$

•
$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} \quad \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function:

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s}$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} | \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function: $\zeta_{\mathcal{L}}$

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s}$$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} \quad \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function: $\zeta_{\mathcal{L}}(s) := \sum_{i=1}^{\infty} \ell_i s^{i}$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^\infty \ell_j{}^s = \sum_{k=1}^\infty 2^{k-1} \left(rac{1}{3^k}
ight)^s =$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} \quad \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

geometric zeta function: $\zeta_{\mathcal{L}}(s) := \sum_{i=1}^{n} \ell_i s^{i}$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s} = \sum_{k=1}^{\infty} 2^{k-1} \left(\frac{1}{3^k}\right)^s = \frac{1}{3^s - 2}.$$

• fractal string:
$$\mathcal{L} = (\ell_j)_{j \ge 1} | \ell_j \searrow 0$$

$$A_{\mathcal{L}} := \{a_k := \sum_{j \ge k} \ell_j : k \ge 1\}$$

• geometric zeta function: $\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s}$

Example (The Middle-Third Cantor String)

The lengths are $(1/3)^k$ each with multiplicity 2^{k-1} , i.e.,

$$\zeta_{\mathcal{L}}(s) := \sum_{j=1}^{\infty} \ell_j^{s} = \sum_{k=1}^{\infty} 2^{k-1} \left(\frac{1}{3^k}\right)^s = \frac{1}{3^s - 2}.$$

The set of complex dimensions: $\left\{ \log_3 2 + \frac{2\pi i \mathbb{Z}}{\log 3} \right\}$.

The Distance Zeta Function - generalization to higher dimensions

• the distance zeta function of $A \subset \mathbb{R}^N$:

$$\zeta_{\mathcal{A}}(s) := \int_{\mathcal{A}_{\delta}} d(x, \mathcal{A})^{s-N} \, dx$$

The Distance Zeta Function - generalization to higher dimensions

• the distance zeta function of $A \subset \mathbb{R}^N$:

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, dx$$

• dependence on δ is inessential

The Distance Zeta Function - generalization to higher dimensions

• the distance zeta function of $A \subset \mathbb{R}^N$:

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, dx$$

 \blacksquare dependence on δ is inessential

$$\zeta_{\mathcal{A}_{\mathcal{L}}}(s) = \frac{2^{1-s}}{s} \zeta_{\mathcal{L}}(s) + \frac{2\delta^s}{s}, \text{ given a large enough } \delta > 0$$

Theorem

(a) $\zeta_A(s)$ is holomorphic on {Re $s > \overline{\dim}_B A$ }, and

Theorem

(a) $\zeta_A(s)$ is holomorphic on {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then $\zeta_A(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then $\zeta_A(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Definition (Complex dimensions)

Assume ζ_A can be meromorphically extended to $W \subseteq \mathbb{C}$.

Theorem

(a) $\zeta_A(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B A$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B A \Rightarrow$ the integral defining $\zeta_A(s)$ diverges (c) If $\exists D = \dim_B A < N$ and $\underline{\mathcal{M}}^D(A) > 0$, then $\zeta_A(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Definition (Complex dimensions)

Assume ζ_A can be meromorphically extended to $W \subseteq \mathbb{C}$. The set of complex dimensions of A visible in W:

$$\mathcal{P}(\zeta_{\mathcal{A}}, W) := \Big\{ \omega \in W : \omega ext{ is a pole of } \zeta_{\mathcal{A}} \Big\}.$$

Example (The standard ternary Cantor set)

Let C be the standard ternary Cantor set in [0,1] and fix $\delta \ge 1/6$.

Example (The standard ternary Cantor set)

Let C be the standard ternary Cantor set in [0,1] and fix $\delta \ge 1/6$.

$$\zeta_{\mathcal{C}}(s) = \frac{2^{1-s}}{s(3^s-2)} + \frac{2\delta^s}{s}, \quad \text{for all } s \in \mathbb{C}$$
(1)

Example (The standard ternary Cantor set)

Let C be the standard ternary Cantor set in [0,1] and fix $\delta \ge 1/6$.

$$\zeta_{\mathcal{C}}(s) = \frac{2^{1-s}}{s(3^s - 2)} + \frac{2\delta^s}{s}, \quad \text{for all } s \in \mathbb{C}$$
(1)
$$\mathcal{P}(\zeta_{\mathcal{C}}) = \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right)$$
(2)

Example (The standard ternary Cantor set)

Let C be the standard ternary Cantor set in [0,1] and fix $\delta \ge 1/6$.

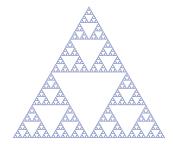
$$\zeta_{\mathcal{C}}(s) = \frac{2^{1-s}}{s(3^s-2)} + \frac{2\delta^s}{s}, \quad \text{for all } s \in \mathbb{C}$$
(1)

$$\mathcal{P}(\zeta_{\mathcal{C}}) = \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right)$$
(2)

Definition (A new proposed definition of fractality)

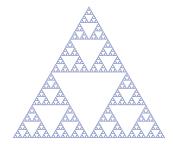
The set A is fractal if it has at least one nonreal complex dimension.

Complex dimensions of the Sierpiński gasket



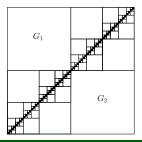
$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi\frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}$$

Complex dimensions of the Sierpiński gasket



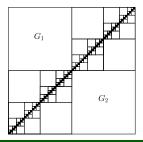
$$egin{aligned} \zeta_{\mathcal{A}}(s;\delta) &= rac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pirac{\delta^s}{s} + 3rac{\delta^{s-1}}{s-1} \ \mathcal{P}(\zeta_{\mathcal{A}}) &= \{0,1\} \cup \left(\log_2 3 + rac{2\pi}{\log 2} i\mathbb{Z}
ight) \end{aligned}$$

Complex dimensions of the 1/2-square fractal



$$\zeta_{\mathcal{A}}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s},$$
(3)

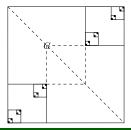
Complex dimensions of the 1/2-square fractal



$$\zeta_{A}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s},$$

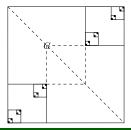
$$\mathcal{P}(\zeta_{A}) := \mathcal{P}(\zeta_{A}, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right).$$
(3)

Complex dimensions of the 1/3-square fractal



$$\zeta_{\mathcal{A}}(s) = \frac{2}{s(3^s - 2)} \left(\frac{6}{s - 1} + Z(s) \right) + \frac{4}{s - 1} + \frac{2\pi}{s}, \qquad (5)$$

Complex dimensions of the 1/3-square fractal



$$\zeta_{\mathcal{A}}(s) = \frac{2}{s(3^{s}-2)} \left(\frac{6}{s-1} + Z(s)\right) + \frac{4}{s-1} + \frac{2\pi}{s}, \qquad (5)$$

$$\mathcal{P}(\zeta_{\mathcal{A}}) := \mathcal{P}(\zeta_{\mathcal{A}}, \mathbb{C}) \subseteq \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right) \cup \{1\}, \qquad (6)$$

Relative fractal drum (A, Ω)

- $\emptyset \neq A \subset \mathbb{R}^N$, $\Omega \subset \mathbb{R}^N$, Lebesgue measurable, i.e., $|\Omega| < \infty$
- upper *r*-dimensional Minkowski content of (A, Ω) :

$$\overline{\mathcal{M}}^r(A,\Omega) := \limsup_{\delta o 0^+} rac{|A_\delta \cap \Omega|}{\delta^{N-r}}$$

■ upper Minkowski dimension of (A, Ω) : $\overline{\dim}_B(A, \Omega) = \inf\{r \in \mathbb{R} : \overline{\mathcal{M}}^r(A, \Omega) = 0\}$

Iower Minkowski content and dimension defined via liminf

Minkowski measurability

$$\underline{\dim}_B(A,\Omega) = \overline{\dim}_B(A,\Omega) \implies \exists \dim_B(A,\Omega)$$

• if $\exists D \in \mathbb{R}$ such that

$$0 < \underline{\mathcal{M}}^{D}(A, \Omega) = \overline{\mathcal{M}}^{D}(A, \Omega) < \infty,$$

we say (A, Ω) is **Minkowski measurable**; in that case $D = \dim_B(A, \Omega)$

if the above inequalities are not satisfied for D, we call (A, Ω)
 Minkowski degenerated

The relative distance zeta function

•
$$(A, \Omega)$$
 RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$

• the distance zeta function of (A, Ω) :

$$\zeta_{A,\Omega}(s;\delta) := \int_{A_{\delta}\cap\Omega} d(x,A)^{s-N} dx$$

 \blacksquare dependence on δ is not essential

The relative distance zeta function

T

•
$$(A, \Omega)$$
 RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$

• the distance zeta function of (A, Ω) :

$$\zeta_{A,\Omega}(s;\delta) := \int_{A_{\delta}\cap\Omega} d(x,A)^{s-N} dx$$

- \blacksquare dependence on δ is not essential
- the complex dimensions of (A, Ω) are defined as the poles of ζ_{A,Ω}

The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$
- the distance zeta function of (A, Ω) :

$$\zeta_{\mathcal{A},\Omega}(s;\delta) := \int_{\mathcal{A}_{\delta}\cap\Omega} d(x,\mathcal{A})^{s-N} \, dx$$

- dependence on δ is not essential
- the complex dimensions of (A, Ω) are defined as the poles of ζ_{A,Ω}
- take Ω to be an open neighborhood of A in order to recover the classical ζ_A

Embeddings in higher dimensions

Theorem

• (A, Ω) such that $\overline{D} := \overline{\dim}_B(A, \Omega) < N$ and fix a > 0

Then, the following functional equation is valid:

$$\zeta_{\mathcal{A}\times\{0\},\Omega\times[-a,a]}(s) = \frac{\sqrt{\pi}\,\Gamma\left(\frac{N-s}{2}\right)}{\Gamma\left(\frac{N+1-s}{2}\right)}\zeta_{\mathcal{A},\Omega}(s) + E(s;a). \tag{7}$$

E(s; a) is meromorphic on \mathbb{C} with a set of simple poles contained in $\{N + 2k : k \in \mathbb{N}_0\}$.

Embeddings in higher dimensions

Theorem

• (A, Ω) such that $\overline{D} := \overline{\dim}_B(A, \Omega) < N$ and fix a > 0

Then, the following functional equation is valid:

$$\zeta_{A\times\{0\},\Omega\times[-a,a]}(s) = \frac{\sqrt{\pi}\,\Gamma\left(\frac{N-s}{2}\right)}{\Gamma\left(\frac{N+1-s}{2}\right)}\zeta_{A,\Omega}(s) + E(s;a). \tag{7}$$

E(s; a) is meromorphic on \mathbb{C} with a set of simple poles contained in $\{N + 2k : k \in \mathbb{N}_0\}$.

- complex dimensions of an RFD are independent of the ambient space
- determine complex dimensions of RFDs by decomposing them into relative fractal subdrums

Figure: The Cantor dust

			:: :: :: ::
	:: :: :: ::	:: :: :: ::	
::::	:: :: :: ::	::::	::::
:: :: :: ::		:: ::	:: :: :: ::

Figure: $C \times C$ where *C* is the middle-third Cantor set.

Complex dimensions of the Cantor dust

Example

Let $A:=C^{(1/3)} imes C^{(1/3)}$ be the Cantor dust and $\Omega:=[0,1]^2.$ Then,

$$\zeta_{A,\Omega}(s) = \frac{8}{s(3^s - 4)} \left(\frac{I(s)}{6^s} + \frac{\Gamma(\frac{1-s}{2})}{\Gamma(\frac{2-s}{2})} \frac{\sqrt{\pi}}{6^s s(3^s - 2)} + E(s; 6^{-1}) \right),$$

where $I(s) = 2^{-1}B_{1/2}(1/2, (1-s)/2)$ is entire.

Complex dimensions of the Cantor dust

Example

Let $A:=C^{(1/3)} imes C^{(1/3)}$ be the Cantor dust and $\Omega:=[0,1]^2.$ Then,

$$\zeta_{A,\Omega}(s) = \frac{8}{s(3^s - 4)} \left(\frac{I(s)}{6^s} + \frac{\Gamma(\frac{1-s}{2})}{\Gamma(\frac{2-s}{2})} \frac{\sqrt{\pi}}{6^s s(3^s - 2)} + E(s; 6^{-1}) \right),$$

where $I(s) = 2^{-1}B_{1/2}(1/2, (1-s)/2)$ is entire.

$$\mathcal{P}(\zeta_{\mathcal{A},\Omega}) \subseteq \left(\log_3 4 + rac{2\pi}{\log 3} i\mathbb{Z}
ight) \cup \left(\log_3 2 + rac{2\pi}{\log 3} i\mathbb{Z}
ight) \cup \{0\}.$$

Complex dimensions of the Cantor dust

Example

Let $A := C^{(1/3)} \times C^{(1/3)}$ be the Cantor dust and $\Omega := [0,1]^2$. Then,

$$\zeta_{A,\Omega}(s) = \frac{8}{s(3^s - 4)} \left(\frac{I(s)}{6^s} + \frac{\Gamma(\frac{1-s}{2})}{\Gamma(\frac{2-s}{2})} \frac{\sqrt{\pi}}{6^s s(3^s - 2)} + E(s; 6^{-1}) \right),$$

where $I(s) = 2^{-1}B_{1/2}(1/2, (1-s)/2)$ is entire.

$$\mathcal{P}(\zeta_{\mathcal{A},\Omega}) \subseteq \left(\log_3 4 + rac{2\pi}{\log 3} i\mathbb{Z}
ight) \cup \left(\log_3 2 + rac{2\pi}{\log 3} i\mathbb{Z}
ight) \cup \{0\}.$$

• $B_x(a,b) = \int_0^x t^{a-1}(1-t)^{b-1} dt$; the incomplete beta func.

The connection with the Minkowski content

Theorem

 (A, Ω) such that $0 < \underline{\mathcal{M}}^{D}(A, \Omega) \le \overline{\mathcal{M}}^{D}(A, \Omega) < \infty$ and D < N. Assume that $\zeta_{A,\Omega}(s)$ can be meromorphically extended to a neighborhood of s = D.

The connection with the Minkowski content

Theorem

 (A, Ω) such that $0 < \underline{\mathcal{M}}^{D}(A, \Omega) \le \overline{\mathcal{M}}^{D}(A, \Omega) < \infty$ and D < N. Assume that $\zeta_{A,\Omega}(s)$ can be meromorphically extended to a neighborhood of s = D.

Then, D is a simple pole of $\zeta_A(s, \Omega)$, and

$$\underline{\mathcal{M}}^{D}(A,\Omega) \leq \frac{\operatorname{res}(\zeta_{A,\Omega},D)}{N-D} \leq \overline{\mathcal{M}}^{D}(A,\Omega).$$

The connection with the Minkowski content

Theorem

 (A, Ω) such that $0 < \underline{\mathcal{M}}^{D}(A, \Omega) \le \overline{\mathcal{M}}^{D}(A, \Omega) < \infty$ and D < N. Assume that $\zeta_{A,\Omega}(s)$ can be meromorphically extended to a neighborhood of s = D.

Then, D is a simple pole of $\zeta_A(s, \Omega)$, and

$$\underline{\mathcal{M}}^{D}(A,\Omega) \leq \frac{\operatorname{res}(\zeta_{A,\Omega},D)}{N-D} \leq \overline{\mathcal{M}}^{D}(A,\Omega).$$

If (A, Ω) is Minkowski measurable, then

$$\mathcal{M}^D(A,\Omega) = rac{\operatorname{\mathsf{res}}(\zeta_{A,\Omega},D)}{N-D}.$$

The relative tube zeta function

$$(A, \Omega)$$
 an RFD in \mathbb{R}^N and fix $\delta > 0$

• the tube zeta function of (A, Ω) :

$$\widetilde{\zeta}_{\mathcal{A},\Omega}(s;\delta) := \int_0^{\delta} t^{s-N-1} |\mathcal{A}_t \cap \Omega| \, \mathrm{d}t$$

 \blacksquare dependence on δ is inessential

The relative tube zeta function

$$(A, \Omega)$$
 an RFD in \mathbb{R}^N and fix $\delta > 0$

• the tube zeta function of (A, Ω) :

$$\widetilde{\zeta}_{\mathcal{A},\Omega}(s;\delta) := \int_0^{\delta} t^{s-N-1} |\mathcal{A}_t \cap \Omega| \, \mathrm{d}t$$

- dependence on δ is inessential
- analogous holomorphicity theorem holds for $\tilde{\zeta}_{A,\Omega}(s; \delta)$
- a functional equation connecting the two zeta functions:

$$\zeta_{\mathcal{A},\Omega}(s;\delta) = \delta^{s-N} |\mathcal{A}_{\delta} \cap \Omega| + (N-s) \widetilde{\zeta}_{\mathcal{A},\Omega}(s;\delta)$$

Fractal tube formulas for relative fractal drums

• An asymptotic formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

Fractal tube formulas for relative fractal drums

• An asymptotic formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

Theorem (Simplified pointwise formula with error term)

• $\alpha < \overline{\dim}_B(A, \Omega) < N$; $\zeta_{A,\Omega}$ satisfies suitable rational decay (*d*-languidity) on the half-plane $\mathbf{W} := \{\operatorname{Re} s > \alpha\}$, then:

$$|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \operatorname{res}\left(\frac{t^{N-s}}{N-s}\zeta_{A,\Omega}(s), \omega\right) + O(t^{N-\alpha}).$$

Fractal tube formulas for relative fractal drums

• An asymptotic formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

Theorem (Simplified pointwise formula with error term)

• $\alpha < \overline{\dim}_B(A, \Omega) < N$; $\zeta_{A,\Omega}$ satisfies suitable rational decay (*d*-languidity) on the half-plane $\mathbf{W} := \{\operatorname{Re} s > \alpha\}$, then:

$$|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \operatorname{res}\left(rac{t^{N-s}}{N-s}\zeta_{A,\Omega}(s), \omega
ight) + O(t^{N-lpha}).$$

 if we allow polynomial growth of ζ_{A,Ω}, in general, we get a tube formula in the sense of Schwartz distributions

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

(a) (A, Ω) is Minkowski measurable.

(b) D is the only pole of $\zeta_{A,\Omega}$ located on the critical line $\{\operatorname{Re} s = D\}$ and it is simple.

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

(a) (A, Ω) is Minkowski measurable.

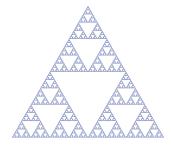
(b) D is the only pole of $\zeta_{A,\Omega}$ located on the critical line $\{\operatorname{Re} s = D\}$ and it is simple.

In that case:

$$\mathcal{M}^D(A,\Omega) = rac{\mathsf{res}(\zeta_{A,\Omega},D)}{N-D}$$

- (a) ⇒ (b) : from the distributional tube formula and the Uniqueness theorem for almost periodic distributions due to Schwartz
- (b) ⇒ (a) : a consequence of a Tauberian theorem due to
 Wiener and Pitt (conditions can be considerably weakened)
- the assumption D < N can be removed by appropriately embedding the RFD in \mathbb{R}^{N+1}

Figure: The Sierpiński gasket



• an example of a **self-similar fractal spray** with a generator *G* being an open equilateral triangle and with **scaling ratios** $r_1 = r_2 = r_3 = 1/2$

$$(A, \Omega) = (\partial G, G) \sqcup \bigsqcup_{j=1}^{3} (r_{j}A, r_{j}\Omega)$$

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi\frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}$$

$$\begin{split} \zeta_{\mathcal{A}}(s;\delta) &= \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi \frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}\\ \mathcal{P}(\zeta_{\mathcal{A}}) &= \{0,1\} \cup \left(\log_2 3 + \frac{2\pi}{\log 2}i\mathbb{Z}\right) \end{split}$$

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^{s}-3)} + 2\pi \frac{\delta^{s}}{s} + 3\frac{\delta^{s-1}}{s-1}$$
$$\mathcal{P}(\zeta_{\mathcal{A}}) = \{0,1\} \cup \left(\log_{2}3 + \frac{2\pi}{\log 2}i\mathbb{Z}\right)$$

By letting $\omega_k := \log_2 3 + \mathbf{p} k \mathbf{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^{s}-3)} + 2\pi\frac{\delta^{s}}{s} + 3\frac{\delta^{s-1}}{s-1}$$
$$\mathcal{P}(\zeta_{\mathcal{A}}) = \{0,1\} \cup \left(\log_{2}3 + \frac{2\pi}{\log 2}i\mathbb{Z}\right)$$

By letting $\omega_k := \log_2 3 + \mathbf{p} k \mathtt{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

$$|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_A(s;\delta),\omega\right)$$

Fractal tube formula for The Sierpiński gasket

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^{s}-3)} + 2\pi\frac{\delta^{s}}{s} + 3\frac{\delta^{s-1}}{s-1}$$
$$\mathcal{P}(\zeta_{\mathcal{A}}) = \{0,1\} \cup \left(\log_{2}3 + \frac{2\pi}{\log 2}i\mathbb{Z}\right)$$

By letting $\omega_k := \log_2 3 + \mathbf{p} k \mathbf{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

$$\begin{aligned} |A_t| &= \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_A(s;\delta),\omega\right) \\ &= t^{2-\log_2 3} \frac{6\sqrt{3}}{\log 2} \sum_{k=-\infty}^{+\infty} \frac{(4\sqrt{3})^{-\omega_k} t^{-\mathbf{p}k\mathbf{i}}}{(2-\omega_k)(\omega_k-1)\omega_k} + \left(\frac{3\sqrt{3}}{2} + \pi\right) t^2, \end{aligned}$$

valid pointwise for all $t \in (0, 1/2\sqrt{3})$.

The devil's staircase RFD

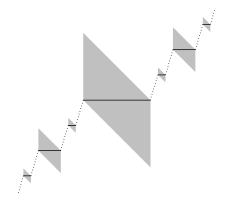


Figure: The third step in the construction of the **Cantor graph relative** fractal drum (A, Ω) . One can see, in particular, the sets B_k , \triangle_k and $\widetilde{\triangle}_k$ for k = 1, 2, 3.

The devil's staircase RFD

Let A be the devil's staircase and Ω .

$$\zeta_{\mathcal{A},\Omega}(s) = rac{2}{s(3^s-2)(s-1)}, \quad ext{for all } s \in \mathbb{C}.$$
 (8)

$$\mathcal{P}(\zeta_{\mathcal{A},\Omega}) := \mathcal{P}(\zeta_{\mathcal{A},\Omega},\mathbb{C}) = \{0,1\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right), \qquad (9)$$

The devil's staircase RFD

Let A be the devil's staircase and Ω .

$$\zeta_{A,\Omega}(s) = rac{2}{s(3^s-2)(s-1)}, \quad ext{for all } s \in \mathbb{C}.$$
 (8)

$$\mathcal{P}(\zeta_{A,\Omega}) := \mathcal{P}(\zeta_{A,\Omega}, \mathbb{C}) = \{0,1\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right), \qquad (9)$$

$$|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega})} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A,\Omega}(s),\omega\right)$$

= $2t^{2-D_{CF}} + t^{2-D_{CS}}G_{CF}\left(\log_3 t^{-1}\right) + t^2,$ (10)

where $\omega_k := \log_3 2 + ik\mathbf{p}$ (for each $k \in \mathbb{Z}$), $D_{CF} = \dim_B(A, \Omega) = 1$, $D_{CS} = \log_3 2$ and $\mathbf{p} := 2\pi/\log 3$. G_{CF} is a nonconstant 1-periodic function on \mathbb{R} , which is bounded away from zero and infinity.

Gauge Minkowski content [HeLap]

If (A, Ω) is Minkowski degenerate, $\exists D := \dim_B(A, \Omega)$ and

$$|A_t \cap \Omega| = t^{N-D}(F(t) + o(1)) \quad ext{as } t o 0^+, \qquad (11)$$

 $\begin{array}{ll} \text{where} & F(t) = h(t) \ \text{ or } \ F(t) = 1/h(t) \ \text{ for } \ h: (0, \varepsilon_0) \to (0, +\infty) \ , \\ \hline h(t) \to +\infty \ \text{as } t \to 0^+ \ \text{ and } \ h \in O(t^\beta) \ \text{for } \forall \beta < 0 \ . \end{array}$

Gauge Minkowski content [HeLap]

If (A, Ω) is Minkowski degenerate, $\exists D := \dim_B(A, \Omega)$ and

$$|A_t\cap \Omega|=t^{N-D}(F(t)+o(1)) \quad ext{as } t o 0^+, \eqno(11)$$

where
$$F(t) = h(t)$$
 or $F(t) = 1/h(t)$ for $h: (0, \varepsilon_0) \to (0, +\infty)$,
 $h(t) \to +\infty$ as $t \to 0^+$ and $h \in O(t^\beta)$ for $\forall \beta < 0$.

h is called a gauge function of slow growth to +∞ at 0⁺
1/*h* is called a gauge function of slow decay to 0 at 0⁺

• typical gauge functions: $\left(\log^{\circ k}t^{-1}\right)^a$ for $a\in\mathbb{R}^*,k\in\mathbb{N}$

Gauge Minkowski content [HeLap]

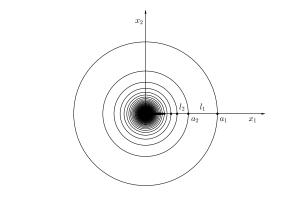
If (A, Ω) is Minkowski degenerate, $\exists D := \dim_B(A, \Omega)$ and

$$|A_t\cap \Omega|=t^{N-D}(F(t)+o(1)) \quad ext{as } t o 0^+, \eqno(11)$$

where
$$F(t) = h(t)$$
 or $F(t) = 1/h(t)$ for $h: (0, \varepsilon_0) \to (0, +\infty)$,
 $h(t) \to +\infty$ as $t \to 0^+$ and $h \in O(t^\beta)$ for $\forall \beta < 0$.

- *h* is called a gauge function of slow growth to +∞ at 0⁺
 1/*h* is called a gauge function of slow decay to 0 at 0⁺
- typical gauge functions: $\left(\log^{\circ k}t^{-1}\right)^a$ for $a\in\mathbb{R}^*,k\in\mathbb{N}$
- *h*-Minkowski content: $\mathcal{M}^D(A, \Omega, h) = \lim_{t \to 0^+} \frac{|A_t \cap \Omega|}{t^{N-D}h(t)}$.

The fractal nest generated by the a-string



 $a > 0, a_j := j^{-a}, \ell_j := j^{-a} - (j+1)^{-a}, \Omega := B_{a_1}(0)$

$$\zeta_{A_a,\Omega}(s) = rac{2^{2-s}\pi}{s-1} \sum_{j=1}^{\infty} \ell_j^{s-1} (a_j + a_{j+1})$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{a},\Omega})\subseteq\left\{1,rac{2}{a+1},rac{1}{a+1}
ight\}\cup\left\{-rac{m}{a+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \ \text{as} \ t \to 0^+ \end{aligned}$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{a},\Omega})\subseteq\left\{1,rac{2}{a+1},rac{1}{a+1}
ight\}\cup\left\{-rac{m}{a+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \ \text{as} \ t \to 0^+ \\ |(A_1)_t \cap \Omega| &= \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A_1,\Omega}(s), 1\right) + o(t) \\ &= 2\pi t (-\log t) + \operatorname{const} \cdot t + o(t) \quad \text{as} \ t \to 0^+ \end{aligned}$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{a},\Omega})\subseteq\left\{1,rac{2}{a+1},rac{1}{a+1}
ight\}\cup\left\{-rac{m}{a+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \ \text{as} \ t \to 0^+ \\ |(A_1)_t \cap \Omega| &= \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A_1,\Omega}(s), 1\right) + o(t) \\ &= 2\pi t(-\log t) + \operatorname{const} \cdot t + o(t) \quad \text{as} \ t \to 0^+ \end{aligned}$$

• a pole ω of order m generates terms of type $t^{N-\omega}(-\log t)^{k-1}$ for $k = 1, \dots, m$ in the fractal tube formula

Fractal tube formula for the 1/2-square fractal

$$\zeta_{A}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s}, \quad (12)$$
$$D(\zeta_{A}) = 1, \quad \mathcal{P}(\zeta_{A}) := \mathcal{P}(\zeta_{A}, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right). \quad (13)$$

Fractal tube formula for the 1/2-square fractal

$$\zeta_{A}(s) = \frac{2^{-s}}{s(s-1)(2^{s}-2)} + \frac{4}{s-1} + \frac{2\pi}{s}, \quad (12)$$
$$D(\zeta_{A}) = 1, \quad \mathcal{P}(\zeta_{A}) := \mathcal{P}(\zeta_{A}, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right). \quad (13)$$

$$|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_A(s),\omega\right) = \frac{1}{4\log 2} t\log t^{-1} + t G\left(\log_2(4t)^{-1}\right) + \frac{1+2\pi}{2}t^2,$$
(14)

valid for all $t \in (0, 1/2)$, where G is a nonconstant 1-periodic function on \mathbb{R} bounded away from zero and ∞ . The 1/2-square fractal is **critically fractal** in dimension 1.

The 1/3-square fractal

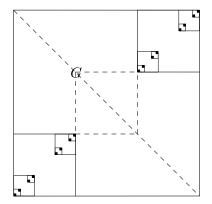


Figure: Here, G is the single generator of the corresponding self-similar spray or RFD (A, Ω) , where $\Omega := (0, 1)^2$.

Fractal tube formula for the 1/3-square fractal

$$\zeta_{A}(s) = \frac{2}{s(3^{s}-2)} \left(\frac{6}{s-1} + Z(s)\right) + \frac{4}{s-1} + \frac{2\pi}{s}, \quad (15)$$

$$\mathcal{P}(\zeta_{A}) := \mathcal{P}(\zeta_{A}, \mathbb{C}) \subseteq \{0\} \cup \left(\log_{3} 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right) \cup \{1\}, \quad (16)$$

$$|A_{t}| = \sum_{\omega \in \mathcal{P}(\zeta_{A})} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A}, \omega\right)$$

$$= 16t + t^{2-\log_{3} 2}G\left(\log_{3}(3t)^{-1}\right) + \frac{12+\pi}{2}t^{2}.$$

$$(17)$$

valid for all $t \in (0, 1/\sqrt{2})$, where G is a nonconstant 1-periodic function on \mathbb{R} bounded away from zero and infinity. The 1/3-square fractal is **subcritically fractal** in dimension $\omega = \log_3 2 < \dim_B A = 1$.

The Cantor set of second order

		 		
10 10 10 10	 	 		

Example

C the standard middle-third Cantor set in [0, 1], $\Omega := (0, 1)$. $G := \Omega \setminus C$; scaling ratios $r_1 = r_2 = 1/3$.

$$egin{aligned} \zeta_{\mathcal{C}_2,\Omega_2}(s) &= rac{3^s}{3^s-2}\,\zeta_{\mathcal{C},\Omega}(s) &= rac{3^s}{2^{s-1}s(3^s-2)^2}\ \mathcal{P}(\zeta_{\mathcal{C}_2,\Omega_2}) &= \{0\} \cup \left(\log_3 2 + rac{2\pi}{\log 3} \mathrm{i}\mathbb{Z}
ight) \end{aligned}$$

The Cantor set of second order

		 		
10 10 10 10	 	 		

Example

C the standard middle-third Cantor set in [0, 1], $\Omega := (0, 1)$. $G := \Omega \setminus C$; scaling ratios $r_1 = r_2 = 1/3$.

$$\begin{split} \zeta_{C_2,\Omega_2}(s) &= \frac{3^s}{3^s - 2} \, \zeta_{C,\Omega}(s) = \frac{3^s}{2^{s-1} s (3^s - 2)^2} \\ \mathcal{P}(\zeta_{C_2,\Omega_2}) &= \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3} i\mathbb{Z}\right) \\ |(C_2)_t \cap \Omega_2| &= t^{1 - \log_3 2} \left(\log t^{-1} G(\log t^{-1}) + H(\log t^{-1})\right) + 2t \\ G, H \colon \mathbb{R} \to \mathbb{R} \text{ nonconstant, periodic with } T = \log 3. \end{split}$$

The Cantor set of second order

Example

C the standard middle-third Cantor set in [0, 1], $\Omega := (0, 1)$. $G := \Omega \setminus C$; scaling ratios $r_1 = r_2 = 1/3$.

$$\begin{aligned} \zeta_{C_2,\Omega_2}(s) &= \frac{3^s}{3^s - 2} \, \zeta_{C,\Omega}(s) = \frac{3^s}{2^{s-1} s (3^s - 2)^2} \\ \mathcal{P}(\zeta_{C_2,\Omega_2}) &= \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3} i\mathbb{Z}\right) \\ |(C_2)_t \cap \Omega_2| &= t^{1 - \log_3 2} \left(\log t^{-1} G(\log t^{-1}) + H(\log t^{-1})\right) + 2t \\ G, H \colon \mathbb{R} \to \mathbb{R} \text{ nonconstant, periodic with } T = \log 3. \end{aligned}$$

■ a pole ω of order m generates factors of type $t^{N-\omega}(\log t^{-1})^{k-1}$ for k = 1, ..., m

Example (The Cantor set of *n*-th order)

Define (C_n, Ω_n) as a fractal spray generated by (C_{n-1}, Ω_{n-1}) and scaling ratios $r_1 = r_2 = 1/3$ for $n \ge 2$.

Example (The Cantor set of *n*-th order)

Define (C_n, Ω_n) as a fractal spray generated by (C_{n-1}, Ω_{n-1}) and scaling ratios $r_1 = r_2 = 1/3$ for $n \ge 2$.

$$\zeta_{C_n,\Omega_n}(s) = \frac{2^{1-s} \cdot 3^{(n-1)s}}{s(3^s-2)^n}$$

Example (The Cantor set of *n*-th order)

Define (C_n, Ω_n) as a fractal spray generated by (C_{n-1}, Ω_{n-1}) and scaling ratios $r_1 = r_2 = 1/3$ for $n \ge 2$.

$$egin{aligned} \zeta_{\mathcal{C}_n,\Omega_n}(s) &= rac{2^{1-s}\cdot 3^{(n-1)s}}{s(3^s-2)^n}. \ \mathcal{P}(\zeta_{\mathcal{C}_n,\Omega_n}) &= \{0\} \cup \left(\log_3 2 + rac{2\pi}{\log 3} \mathrm{i}\mathbb{Z}
ight) \end{aligned}$$

Example (The Cantor set of *n*-th order)

Define (C_n, Ω_n) as a fractal spray generated by (C_{n-1}, Ω_{n-1}) and scaling ratios $r_1 = r_2 = 1/3$ for $n \ge 2$.

$$\zeta_{C_n,\Omega_n}(s) = \frac{2^{1-s} \cdot 3^{(n-1)s}}{s(3^s-2)^n}.$$

$$\mathcal{P}(\zeta_{C_n,\Omega_n}) = \{0\} \cup \left(\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}\right)$$

 $|(C_n)_t \cap \Omega_n| = t^{1-\log_3 2} \sum_{k=0}^{n-1} (\log t^{-1})^k G_k(\log t^{-1}) + 2 \cdot (-1)^n t$

 $G_k \colon \mathbb{R} \to \mathbb{R}$ nonconstant, periodic with $T = \log 3$.

The Cantor set of infinite order

Example

Let $(C_1, \Omega_1) := (C, \Omega)$ and

$$(C_{\infty},\Omega_{\infty}):=\bigsqcup_{n=1}^{\infty}\frac{1}{3^{n}n!}(C_{n},\Omega_{n}).$$

The Cantor set of infinite order

Example

Let $(C_1, \Omega_1) := (C, \Omega)$ and

$$(C_{\infty}, \Omega_{\infty}) := \bigsqcup_{n=1}^{\infty} \frac{1}{3^n n!} (C_n, \Omega_n).$$
$$\zeta_{C_{\infty}, \Omega_{\infty}}(s) = \frac{2}{6^s s} \sum_{n=1}^{\infty} \frac{1}{(n!)^s (3^s - 2)^n}$$

Holomorphic on $\{\operatorname{Re} s > 0\} \setminus \left(\log_3 2 + \frac{2\pi i}{\log 3}\mathbb{Z}\right)$.

The Cantor set of infinite order

Example

Let $(C_1, \Omega_1) := (C, \Omega)$ and $(C_{\infty},\Omega_{\infty}):=\bigsqcup_{n=1}^{\infty}\frac{1}{3^{n}n!}(C_{n},\Omega_{n}).$ $\zeta_{C_{\infty},\Omega_{\infty}}(s) = \frac{2}{6^{s}s} \sum_{n=1}^{\infty} \frac{1}{(n!)^{s}(3^{s}-2)^{n}}$ $\mathsf{Holomorphic} \, \text{ on } \, \{\mathsf{Re}\, s > 0\} \setminus \Big(\mathsf{log}_3 \, 2 + \tfrac{2\pi \mathrm{i}}{\mathsf{log}\, 3} \mathbb{Z} \Big).$ $|(C_{\infty})_t \cap \Omega_{\infty}| = t^{1-\log_3 2} \sum \sum (\log t^{-1})^k G_{k,n}(\log t^{-1}) + O(t)$ $n=1 \ k=0$

 $G_{k,n} \colon \mathbb{R} \to \mathbb{R}$ nonconstant, periodic with $T = \log 3$.

Further research directions

- Riemann surfaces generated by relative fractal drums
- Extending the notion of complex dimensions to include complicated "mixed" singularities/branching points and connecting them with various gauge functions
- Obtaining corresponding tube formulas and gauge-Minkowski measurability criteria
- Applying the theory to problems from dynamical systems

- C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, *Mem. Amer. Math. Soc.* No. 608, **127** (1997), 1–97.
- M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.
- M. L. Lapidus, G. Radunović and D. Žubrinić, *Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions*, Springer Monographs in Mathematics, New York, 2017.
 - G. Radunović, *Fractal Analysis of Unbounded Sets in Euclidean Spaces and Lapidus Zeta Functions*, Ph. D. Thesis, University of Zagreb, Croatia, 2015.