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Fractal dimensions

m There are several definitions of fractal dimension.
m e.g., similarity dimension, Hausdorff dimension, box counting

dimension, Minkowski dimension, etc.

Figure: dimy C = dimg C = log3 2

Figure: dimy S =dimg S =log,3 > 1

m Mandelbrot: A set is fractal if its fractal dimension exceeds its

topological dimension.
m None of the above dimensions give a completely satisfactory

definition of a fractal.
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Some more examples

Figure: The Devil's staircase - graph of the Cantor function

All of the known fractal dimensions are equal to 1, i.e., to its
topological dimension.
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Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.
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Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also
their topological dimension.
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The Minkowski content and dimension

0D#£AcCRN
d-neighbourhood of A:

As; = {x e RN : d(x, A) < 6}

m r-dimensional Minkowski content of A:

r . : |A5|
MI(A) = 5|—|>r8+ GN=r

Minkowski dimension of A:
dimg A=inf{reR : M"(A) =0}
=sup{reR : M"(A) =0}
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The geometric zeta function and complex
dimensions

m fractal string: £ = ({;)j>1 ¢ 0

m Api={ak =254l k> 1}

(e.e]
m geometric zeta function: (,(s) := ZEJ-S
j=1

Example (The Middle-Third Cantor String)

The lengths are (1/3)% each with multiplicity 21, i.e.,

00 . 00 ~ 1 s 1
¢e(s) ;:;ﬂ =3 o 1<3k> -



The geometric zeta function and complex
dimensions

m fractal string: £ = ({;)j>1 ¢ 0

m Api={ak =254l k> 1}

m geometric zeta function: (,(s): ZE s

Example (The Middle-Third Cantor String)

The lengths are (1/3)% each with multiplicity 21, i.e.,
= if-s = iz"*l Ly L
= Bk 33-2

277,
The set of complex dimensions: {Iog3 2+ |7r113 }
og
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The Distance Zeta Function - generalization to
higher dimensions

m the distance zeta function of A ¢ RV:
Cals) = [ d(x, AN ax
As

m dependence on ¢ is inessential

21—5 5
Ce(s) + - given a large enough § > 0

u CAg (5) =

S
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Holomorphicity theorem

Theorem

(a) Ca(s) is holomorphic on {Res > dimgA}, and
(b) R > s < dimgA = the integral defining (a(s) diverges

(c) If 3D = dimg A < N and MP(A) > 0, then
¢a(x) = +oo when R 3 x — Dt

Definition (Complex dimensions)

Assume (a can be meromorphically extended to W C C.
The set of complex dimensions of A visible in W:

P(Ca, W) = {w € W : wis a pole of CA}-
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Example (The standard ternary Cantor set)

Let C be the standard ternary Cantor set in [0, 1] and fix 6 > 1/6.

1-s s
Ce(s) = 5(;_2) + %, for all s € C (1)
2
Plcc) = (0} U (logs 2+ it )

Definition (A new proposed definition of fractality)

The set A is fractal if it has at least one nonreal complex
dimension.



Complex dimensions of the Sierpinski gasket
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Complex dimensions of the Sierpinski gasket

6(v/3)! <2~ o0 Lo
2m—

Ca(s;0) = .

P(Ca) = {0,1} U <Iog2 3+ lj;ﬁz)
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Gy

2% 4 2T

“We)= o= Teo1 T s (3)

PG =P ) = 0} (14 oiz) . (@



Complex dimensions of the 1/3-square fractal
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7777777

2T

3ﬁZ> u{i}, (6

P(¢a) :=P(¢a,C) C {0} U <Iog32 +

log



Relative fractal drum (A, Q)

m 0 £AACRN, Qc RN, Lebesgue measurable, i.e., | < 00
m upper r-dimensional Minkowski content of (A, Q):

- . As N Q

M"(A, Q) = limsup | SN=r |

6—07t

upper Minkowski dimension of (A, Q):
dimg(A, Q) =inf{re R : M"(A Q) =0}

m lower Minkowski content and dimension defined via liminf



Minkowski measurability

m dimg(A,Q) = mB(A,Q) = 3Jdimg(A,Q)
m if 3D € R such that
0<MP(A Q)= MP(A Q) < o,

we say (A, Q) is Minkowski measurable; in that case
D = dimg(A, Q)

m if the above inequalities are not satisfied for D, we call (A, Q)
Minkowski degenerated
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The relative distance zeta function

(A,Q) RFD in RN, s € C and fix § > 0

m the distance zeta function of (A, Q):

Caq(s:d) = /A . d(x, A)* N dx

dependence on § is not essential

the complex dimensions of (A, 2) are defined as the poles
of Can

take Q to be an open neighborhood of A in order to recover
the classical (s



Embeddings in higher dimensions

e (A, Q) such that D := dimg(A,Q) < N and fix a > 0

Then, the following functional equation is valid:

= N—s
CAx{0},Qx[—a,3)(5) = \rf( ,L(li)) Caa(s) +E(s;a). (7)
2

E(s; a) is meromorphic on C with a set of simple poles contained
in {N + 2k : k € Np}.



Embeddings in higher dimensions

Theorem
e (A, Q) such that D := dimg(A,Q) < N and fix a > 0
Then, the following functional equation is valid:

= N—s
CAx{0},Qx[—a,3)(5) = \rf( ,L(li)) Caa(s) +E(s;a). (7)
2

E(s; a) is meromorphic on C with a set of simple poles contained
in {N + 2k : k € Np}.

m complex dimensions of an RFD are independent of the
ambient space

m determine complex dimensions of RFDs by decomposing them
into relative fractal subdrums



Figure: The Cantor dust

Figure: C x C where C is the middle-third Cantor set.
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Complex dimensions of the Cantor dust

Let A:= C(1/3) x C(1/3) pe the Cantor dust and Q := [0, 1]2.
Then,

== 0
trate) = sy 2+ e

s@-a e (%) 6Ss(3s—2)+E(5;6_1))’

where I(s) = 271By 5 (1/2,(1 — 5)/2) is entire.

2T
P(Can) C <|0g3 4+ |0g3nZ> U <|og3 2+

2”3]12) U {0}.

log

m By(a,b) = [; t71(1 — t)>"1dt; the incomplete beta func.
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The connection with the Minkowski content

Theorem

(A, Q) such that 0 < MP(A, Q) < MP(A,Q) < 0o and D < N.
Assume that (4 q(s) can be meromorphically extended to a
neighborhood of s = D.

Then, D is a simple pole of (s, ), and

D _

MP(A, Q) < D) mo, o)
N—-D

If (A, Q) is Minkowski measurable, then

D _res(Can, D)
MP(A, @) = "= AL D).
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The relative tube zeta function

(A, Q) an RFD in RN and fix 6 > 0
m the tube zeta function of (A, Q):
~ 5
Caq(s:0) ::/ 5N A, N Qldt
0

m dependence on J is inessential

m analogous holomorphicity theorem holds for ZAQ(S; J)

m a functional equation connecting the two zeta functions:

Can(si0) = 65 NAs N Q| + (N — s)Caals; d)
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Fractal tube formulas for relative fractal drums

m An asymptotic formula for the tube function
t—|A:NQ[ast— 0" intermsof (aq .

Theorem (Simplified pointwise formula with error term)

e a <dimg(A Q) < N; (agq satisfies suitable rational decay
(d-languidity) on the half-plane W := {Res > a}, then:

N—s
anal= 3 res(ftaalsw) +O()

weP(Ca,0,W)

m if we allow polynomial growth of (4 q, in general, we get a
tube formula in the sense of Schwartz distributions
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The Minkowski measurability criterion

Theorem (Minkowski measurability criterion)

e (A Q) is such that 3D := dimg(A,Q) and D < N
e (aq is d-languid on a suitable domain W > {Res = D}

Then, the following is equivalent:
(a) (A, Q) is Minkowski measurable.

(b) D is the only pole of (4 q located on the critical line
{Res = D} and it is simple.

In that case:

D _ res(Caq; D)
MT(A Q) = “N-D



The Minkowski measurability criterion

m (a) = (b) : from the distributional tube formula and the
Uniqueness theorem for almost periodic distributions due
to Schwartz

m (b) = (a): a consequence of a Tauberian theorem due to
Wiener and Pitt (conditions can be considerably weakened)

m the assumption D < N can be removed by appropriately
embedding the RFD in RN+1



Figure: The Sierpinski gasket

m an example of a self-similar fractal spray with a generator
G being an open equilateral triangle and with scaling ratios
r1:r2:r3:1/2

m (AQ)=(9G,G) Ul (A Q)



Fractal tube formula for The Sierpinski gasket

1—52—5 s s—1
6(v3) + 271'5— +3 0

Calsi0) = s(s —1)(2° —3) s s—1
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Fractal tube formula for The Sierpinski gasket

6(v/3)1—52~ 5o g
2 _
o1 —3) T °"s 3501

Ca(s;0) = S

P(ca) = 0.1} U (logp 3+ iz

By letting wy := log, 3 + pki and p := 27/ log 2 we have that

2—s
|Ae] = Z res (Zt— SCA(S; 5),w>

weP(¢a)

_ t2_|0g23% *i ( (4/3) 0 t—Pi N <3\/§ +7r> .

log2 2 — wi)(wi — Dwg

=—00

valid pointwise for all t € (0,1/2+/3).



The devil’s staircase RFD

Figure: The third step in the construction of the Cantor graph relative
fractal drum (A, Q). One can see, in particular, the sets By, Ax and Ay
for k=1,2,3.
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The devil’s staircase RFD

Let A be the devil's staircase and €.

2
Caqls) = SF ) s_1) for all s € C. (8)

27
P(CA’Q) = P(CAQ,(C) = {0, 1} U <|0g3 2+ |Og3ﬁZ> , (9)

2—s

|A: N Q| = Z res(J_SCAQ(s),w)

weP(Ca)

(10)
= 2t>7Der 4 27 Pes Gep (logg t71) + 2,

where wy 1= logz 2 + 1kp (for each k € Z),

Dcr = dimg(A,Q) =1, D¢s = logz 2 and p := 27/ log 3.

Gcr is a nonconstant 1-periodic function on R, which is bounded
away from zero and infinity.
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Gauge Minkowski content [HelLap]

If (A, Q) is Minkowski degenerate, 3D := dimg(A, Q) and

AN Q| = tN=P(F(t) + o(1)) ast— 0t (11)
where F(t) = h(t) or F(t)=1/h(t) for h:(0,e0) — (0,400),
h(t) — 400 as t — 07 and he O(t?) for V3 < 0.

m h is called a gauge function of slow growth to +oo at 0"

m 1/h is called a gauge function of slow decay to 0 at 0™

m typical gauge functions: (IogOk t_l)a foraec R*, ke N

AN Q
m h-Minkowski content: MP(A,Q, h) = lim A0 9]
t—0+ tN_Dh(t)



The fractal nest generated by the a-string

a>0a =/ :=77-((+1)7 Q:=B,(0)

22—5
Ca(s) = —— ng Haj + 3j41)

j=1




Fractal tube formula for the fractal nest generated
by the a-string

2 1 m
- _ _
P(CAQ,Q)_{1,3+1,3+1}U{ o] mEN}

a;«él,D::ﬁ

(Aa)e N Q| =

22-Dpg
@-D)(D-1)
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aP1?7P 4 27 (2¢(a) — 1)t



Fractal tube formula for the fractal nest generated
by the a-string

2 1 m
- _ _
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a#xl D: —1+a
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2—s
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Fractal tube formula for the fractal nest generated
by the a-string

2 1 m
- _ _
P(CAQ,Q)_{1,3+1,3+1}U{ o] mEN}

a#xl D: —1+a
(Aa): N Q| =

22-Ppr
(2-D)(D-1)
+O( a+1), as t — 0"

2—s
|(A1): N Q| = res <2t_ SCAI,Q(S), 1) + o(t)

= 2rrt(—logt) + const - t + o(t) ast— 0

aP1?7P 4 27 (2¢(a) — 1)t

e a pole w of order m generates terms of type
tN=“(—logt)k~! for k=1,....m in the fractal tube formula



Fractal tube formula for the 1/2-square fractal
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Fractal tube formula for the 1/2-square fractal

2° 4 27
il 12
G-D-2 Ts-1 s (12)

Cals) = ¢

D) =1, P(Ca) = PCarC) = {0} U <1+|f;2m>. (13)

2—s
|Ae] = Z res(;_SCA(s),w>

weP(Ca) (14)
1 1+ 27
= tlogt™! +t G (log,(4t)~ " £2

valid for all t € (0,1/2), where G is a nonconstant 1-periodic
function on R bounded away from zero and oco.
The 1/2-square fractal is critically fractal in dimension 1.



The 1/3-square fractal

N
N
[ N

Figure: Here, G is the single generator of the corresponding self-similar
spray or RFD (A, Q), where Q := (0,1)2.




Fractal tube formula for the 1/3-square fractal

Cals) = 5(352_ 5 (Sfl + Z(s)) T 2?” (15)

P(Ca) i= P(Car C) € {0} U (log3 24 If;ﬁz) o{). (1)

t2—5
Al = D res (2_5<A,w>

weP(Ca) (17)
12
= 16t + t*7'°832G (logs(3t) ) + ;W 2

[

valid for all t € (0,1/+/2), where G is a nonconstant 1-periodic
function on R bounded away from zero and infinity.

The 1/3-square fractal is subcritically fractal in dimension
w=logz2 <dimg A= 1.



The Cantor set of second order

C the standard middle-third Cantor set in [0, 1],  := (0, 1).
G :=Q\ C; scaling ratios p =, = 1/3.
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The Cantor set of second order

C the standard middle-third Cantor set in [0, 1],  := (0, 1).
G :=Q\ C; scaling ratios p =, = 1/3.

CCz,fb (5) =

g 3
3 =2 %cals) = iz oy

2
P(Cea,) = {0} U (Iog3 24 b;ﬁz)

1(Co)e N Q| = t1loes2 (Iog t1G(logt™1) + H(log t*1)> +2t
G, H: R — R nonconstant, periodic with T = log 3.

m a pole w of order m generates factors of type
tN=“(logt=1)*t for k=1,....m



Higher order Cantor sets

Example (The Cantor set of n-th order)

Define (C,,Q,) as a fractal spray generated by (Cp—1,Q,-1) and
scaling ratios 1 = rn =1/3 for n > 2.




Higher order Cantor sets

Example (The Cantor set of n-th order)

Define (C,,Q,) as a fractal spray generated by (Cp—1,Q,-1) and
scaling ratios 1 = rn =1/3 for n > 2.

2l—s . 3(n—1)s

Cc0a(s) = W



Higher order Cantor sets

Example (The Cantor set of n-th order)
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Higher order Cantor sets

Example (The Cantor set of n-th order)

Define (C,,Q,) as a fractal spray generated by (Cp—1,Q,-1) and
scaling ratios 1 = rn =1/3 for n > 2.

2l—s . 3(n—1)s

Ccra,(s) = W

P(Cens) = {0} U (log3 o Ij;ﬁz)

(Ca)e N Q| = 17 '°g32z log t 1) Gr(log t 1) +2- (—1)"t

Gk : R — R nonconstant, per|0d|c with T = log 3.



The Cantor set of infinite order

Let (C1,9;1) :=(C,Q) and

(9

ns

n:l



The Cantor set of infinite order

Let (Ci,) :==(C,Q) and

C007§2 3nn| Cn,Q
n=1
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The Cantor set of infinite order

Let (C1,9;1) :=(C,Q) and

C007§2 3nn| Cn,Q
n=1
2 (0.0}
(Coo 0200 ( 652 nl)s _2)n
Holomorphic on {Res > 0} \ <|0g3 2+ |§2%Z)
oo n—1
](Coo)tﬂQoo| 1= IO€32ZZ |Ogt Gkn |ogt 1)—1—0( )
n=1 k=0

Gk,n: R — R nonconstant, periodic with T = log 3.



Further research directions

m Riemann surfaces generated by relative fractal drums

m Extending the notion of complex dimensions to include
complicated “mixed” singularities/branching points and
connecting them with various gauge functions

m Obtaining corresponding tube formulas and gauge-Minkowski
measurability criteria

m Applying the theory to problems from dynamical systems
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