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Structure of the lecture

I Statement of the problem
I Finite normal form
I Preparation of the family
I Construction of a modulus of analytic

classification in codimension 1
I What we learn from the modulus
I Going to higher codimension
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Statement of the problem

We consider germs of generic analytic
k-parameter families fε of diffeomorphisms
unfolding a parabolic point of codimension k

f0(z) = z+ zk+1 + o(zk+1)

When are two such germs conjugate?
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Statement of the problem

More generally, whe are two germs of generic
analytic k-parameter families of dynamical
systems with a “finite”normal form analytically
“equivalent”?

Dynamical systems could be fixed points of
diffeomorphisms, singular points of ordinary differential
equations, singular points of systems of linear differential
equations, etc.

Analytic “equivalence” could be orbital equivalence,
conjugacy, etc.
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Conjugacy of two germs of families

Two germs of analytic families of
diffeomorphisms fε and f̃ε̃ are conjugate it there
exists r,ρ > 0 and analytic functions

h : Dρ→ C, H : Dr×Dρ→ C

such that
I h is a diffeomorphism and, for each fixed ε,

Hε = H(·,ε) is a diffeomorphism;
I for all ε ∈ Dρ and for all z ∈ Dr, then

f̃h(ε) = Hε ◦ fε ◦ (Hε)−1
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Conjugacy of two germs of families

Two germs of families of diffeomorphisms fε and f̃ε̃ are conjugate if
there exists r,ρ > 0 and analytic functions

h : Dρ→ C, H : Dr×Dρ→ C

such that
I h is a diffeomorphism and for each fixed ε, Hε = H(·,ε) is a

diffeomorphism;
I for all ε ∈ Dρ and for all z ∈ Dr, then

f̃h(ε) = Hε ◦ fε ◦ (Hε)−1

The difficulty is the change of parameters. . .
Hence, we prepare the families to a canonical
parameter so that a conjugacy between them
preserves the parameter (i.e. h is the identity.)
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Preparation of the family

We are considering families with a “finite” normal form.

The idea is to change coordinates and parameters so that
the families have the same equilibrium positions and/or
“special objects” (limit cycles, leaves, etc.) as the normal
form.
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Families unfolding a germ of parabolic
diffeomorphism

Let f̃ε̃ be a “generic” k-parameter unfolding of a germ of
diffeormorphism

f0(z̃) = z̃+ z̃k+1 +O(z̃k+2)

The (finite) formal normal form is the time-one map of the
vector field

Pε(z)
1+ a(ε)zk

∂

∂z
,

where

Pε(z) = zk+1 +εk−1zk−1 + · · ·+ε1z+ε0

is the universal unfolding of zk+1
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The parameter is canonical

When k = 1, the formal normal form is the time-one map
of the vector field

z2 −ε

1+ a(ε)z
∂

∂z
.

Hence the multipliers at the fixed points are
λ± = exp(µ±), where µ± =± 2

√
ε

1+a(ε)
√
ε

are the eigenvalues
at the singular points ±

√
ε of the vector field.

1
µ+

−
1
µ−

=
1

2
√
ε

The parameter is an analytic invariant!
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The parameter is almost canonical

Theorem [RT] Let (z,ε) 7→ (ž, ε̌) map a vector

field ż = vε(z) =
Pε(z)

1+a(ε)zk to ˙̌z = v̌ε̌(ž) =
P̌ε̌(ž)

1+ǎ(ε̌)žk .
Then there exists τ= exp(2πim/k) and t(ε) such
that the change has the form{

ž = τΦt(ε)
vε (z),

ε̌j = τ
1−jεj,

where Φt(ε)
vε is the flow of vε for the time t(ε).
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Preparation of the family

Let f̃ε̃ be an unfolding of a germ of diffeormorphism

f0(z̃) = z̃+ z̃k+1 +O(z̃3)

By the Weierstrass preparation theorem

fε̃(z̃)− z̃ = P̃ε̃(z̃)h̃(z̃, ε̃)

with Pε̃(z̃) = z̃k+1 +ηk(ε̃)z̃k + · · ·+η1(ε̃)z̃+η0(ε̃) and
h̃(z̃, ε̃) = 1+O(|z̃, ε̃|)

A translation z̃ 7→ ž = z̃+ 1
k+1ηk(ε̃) allows bringing

P̃ε̃(z̃) = Pε̌(ž) = žk+1 + ε̌k−1(ε̃)žk−1 + · · ·+ ε̌1(ε̃)ž+ ε̌(ε̃)

The family is generic if the change of parameters
ε̃ 7→ (ε̌0, . . . , ε̌k−1) is invertible.

15 Statement of the problem Zagreb 2, November 2018



Preparation of the family

Let f̃ε̃ be an unfolding of a germ of diffeormorphism

f0(z̃) = z̃+ z̃k+1 +O(z̃3)

By the Weierstrass preparation theorem

fε̃(z̃)− z̃ = P̃ε̃(z̃)h̃(z̃, ε̃)

with Pε̃(z̃) = z̃k+1 +ηk(ε̃)z̃k + · · ·+η1(ε̃)z̃+η0(ε̃) and
h̃(z̃, ε̃) = 1+O(|z̃, ε̃|)

A translation z̃ 7→ ž = z̃+ 1
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Preparation of the family

In these new (ž, ε̌), the family becomes

fε̌(ž) = ž+Pε̌(ž)h(ž, ε̌)

We write

h(ž, ε̌) = c0(ε̌)+c1(ε̌)ž+ · · ·+ck(ε̌)ž
k+Pε̌(ž)g(ž, ε̌)

with c0(ε̌) = 1+O(ε̌). Then the multipliers at
the fixed points are independent of g:

λj = 1+P ′ε̌(žj)
(

c0(ε̌)+ c1(ε̌)žj + · · ·+ ck(ε̌)ž
k
j

)
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Preparation of the family

There exists a polynomial Sε̌(ž) of degree k with
Sε̌(0) = 1+O(ε̌) such that

logλj = µj = P ′ε̌(žj)Sε̌(žj)

Kostov’s Theorem gives a change (ž, ε̌) 7→ (z,ε)
transforming Pε̌(ž)Sε̌(ž) ∂∂ž into Pε(z)

1+a(ε)zk
∂
∂z

We apply the change (ž, ε̌) 7→ (z,ε) to the diffeomorphism.
This finishes the preparation. �

20 The preparation of the family Zagreb 2, November 2018



Preparation of the family

There exists a polynomial Sε̌(ž) of degree k with
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The equivalence problem when k = 1

A family under the form

fε(z) = z+(z2 −ε)h(z,ε)

with canonical parameter is called prepared.

When considering whether two families are
conjugate, we can always limit ourselves to
prepared families.

We have also identified a normal form, namely
the time one map of the vector field ż = z2−ε

1+a(ε)z
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The conjugacy problem for prepared families

The normal form is
unique. Hence if
two prepared fami-
lies have the same
normal form, then
they would be con-
jugate if the change
of coordinates to the
normal form were
convergent.

But it is not. How-
ever, topologically
the family fε be-
haves as the time
one map of the vec-
tor field ż = z2−ε

1+a(ε)z
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The classifying object will be the “space of orbits”

Let us consider the case ε= 0

s�

s �

� �

� �

Two fundamental domains are necessary to cover all
orbits.

If we identify the two sides of the crescent, the
corresponding Riemann surface is conformally equivalent
to a sphere minus two points.
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The classifying object is called the Ecalle-Voronin
modulus

s�

s �

� �

� �

Each sphere (CP1) has an almost unique coordinate (up to
linear map). The Ecalle-Voronin modulus is given by the
identifying maps (ψ0,ψ∞) in the neighborhoods of 0 and∞.

The maps ψ0 and ψ∞ are germs of analytic
diffeomorphisms.
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The Ecalle-Voronin modulus

s�

s �

� �

� �

I Two germs of parabolic diffeomorphisms f and f̃ with same
formal normal form are conjugate if and only if they have the
same Ecalle-Voronin modulus up to linear maps{

ψ0 = LC ◦ ψ̃0 ◦LC ′

ψ∞ = LC ◦ ψ̃∞ ◦LC ′

I A germ of parabolic diffeomorphism f is conjugate to its normal
form iff ψ0 and ψ∞ are both linear.

I Any pair of germs (ψ0,ψ∞) in the neighborhoods of 0 and∞ is
realizable as the modulus of a germ of parabolic diffeomorphism.
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The Ecalle-Voronin modulus

s�

s �

� �

� �

I Any pair of germs (ψ0,ψ∞) in the neighborhoods of 0
and∞ is realizable as the modulus of a germ of
parabolic diffeomorphism.

This means that the modulus space is
enormous: it is infinite-dimensional. What does
this modulus mean?
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To understand we unfold the modulus

For ε 6= 0, there are too natural ways to unfold the crescents:
I as crescents which, once the sides are identified, will have the

conformal structure of a sphere;
I as annuli which, once the sides are identified, will have the

conformal structure of a torus.
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This could suggest two charts in parameter space.
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The first chart

¡���� ¡�&��

For ε 6= 0 the diffeomorphism can be conjugated to the
model in the neighborhood of each singular point. But
generically the two conjucacies are not analytic
continuation one of another. If this obstruction persists till
the limit ε= 0, then the transformation to normal form
may be divergent at the limit.

Conversely, if the transformation to normal form is
divergent at the limit, then necessarily the two
conjucacies are not analytic continuation one of another
for small ε 6= 0.
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The first chart (studied by Glutsyuk)

¡���� ¡�&��

Unfolding has allowed us to understand why we have
divergence at the limit.

But this point of view does not apply to all values of
ε 6= 0. Indeed, when |f ′ε(±

√
ε)|= 1, then the fixed points

may not be linearizable. . . Also, the domains where we
can bring to the model may not intersect. Hence the need
for a second point of view.
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The second chart can be pushed to cover all values of
ε, but in a ramified way

The idea of unfolding the crescents as crescents goes back
to Douady and Lavaurs.
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The classifying object for the family of
diffeomorphisms

All crescents with sides identified have
the conformal structure of spheres. The
identifying maps in the neighborhoods
of 0 and ∞ form a continuous family
(ψ0
ε̂,ψ

∞̂
ε )ε̂∈V.

Two families with same formal normal
forms are conjugate if and only they
have equivalent modulus (ψ0

ε̂,ψ
∞̂
ε )ε̂∈V

(equivalence under linear changes of
coordinates).
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The lessons

I The dynamics is closely related to that of the vector
field z2−ε

1+a(ε)z
∂
∂z .

I For each ε 6= 0, one crescent is enough to describe the
dynamics.

I The parametric resurgence phenomenon also occurs.
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One crescent is enough to describe the dynamics

This is because a global
diffeomorphism exists be-
tween the two crescents, the
Lavaurs map. s�

s �

� �

� �

L
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The renormalized return maps

s�

s �

� �

� �

L

In the spherical coordinates the Lavaurs map is linear. It
is possible to study the dynamics of the fixed points by
the renormalized return maps{

Lε̂ ◦ψ∞̂
ε , near

√
ε̂,

Lε̂ ◦ψ0
ε̂, near −

√
ε̂.

Another lesson
I ψ∞̂

ε controls the dynamics near +
√
ε̂ and ψ0

ε̂ controls
the dynamics near −

√
ε̂.
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The decomposition of the dynamics

s�

s �

� �

� �

L

We have decomposed the dynamics into
I a wild linear part, which depends only on ε̂ and a(ε)

(i.e. the formal part!) and has no limit when ε→ 0;
I and a nonlinear part which has a limit when ε→ 0.

The Lavaurs map has the form

Lε̂(w) = exp
(
−

2πi√
ε̂

)
c(ε̂)w
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The parametric resurgence phenomenon

s�

s �

� �

� �

L

It can occur at any fixed point. Let us consider −
√
ε̂with

renormalized return map

κε̂ = Lε̂ ◦ψ0
ε̂

We can choose coordinates on the spheres to that
ψ ′ε̂(0) = 1. We consider sequences εn such that
κ ′ε̂(0) = exp(2πip/q).

If exp(2πip/q)ψ0
0 is nonlinearizable

(has a nonzero resonant term), then so does κεn for n
sufficiently large. For ε close to εn orbit(s) of period q
appear(s) for κε̂, corresponding to orbits of large period
for fε.
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The parametric resurgence phenomenon

s�

s �

� �

� �

L

On sequences of parameter values, the
mismatch is carried by the fixed points
themselves, which are forced to be
nonlinearizable.
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What about a fixed point when the multiplier is an
irrational rotation?

s�

s �

� �

� �

L

Suppose that κ ′ε(0) = exp(2πiα) with α irrational. Then ε
is very close to values ε ′ for which κ ′ε ′(0) = exp(2πip/q).
When perturbing close to ε ′, generically an orbit of large
period appears.

If α is Liouvillian (well approximated by
the rationals) this accumulation of periodic points may
lead to the nonlinearizability of the fixed point at ε.
(This obstruction to linearizability for multipliers of the form
exp(2πiα) was studied by Ilyashenko-Pjartli and Yoccoz.)
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Moving to codimension k > 1
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The modulus space for ε= 0

ψ∞
1ψ∞

2

ψ∞
3

ψ0
2

ψ0
3

ψ0
1

S
1,0
+

S
1,0
-

S
2,0

+

+S
3,0

S
2,0
-

S
3,0

-

The diffeomorphism now has 2k petals near the parabolic
point. Hence we need 2k fundamental domains and the
modulus space has 2k components (ψ0

1,ψ
∞
1 , . . . ,ψ

0
k ,ψ

∞
k )
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We need to unfold that

The behavior stays the same near the boundary.

How do we take the fundamental domains inside?
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Some lessons for codimension 1

I The geometry of the vector field z2−ε
1+a(ε)z

∂
∂z , itself very close to the

geometry of the vector field of (z2 −ε) ∂∂z
I We cannot unfold the Ecalle-Voronin modulus in a uniform way

on the parameter space
I We identified crescents on which the space of orbits had the

conformal structure of CP1 \ {0,∞}
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The geometry of the vector field Pε(z)
1+a(ε)zk

∂
∂z

I It is very close to that of the
polynomial vector field Pε(z) ∂∂z ,
which has been studied by
Douady and Sentenac

I The organizing center is a pole at
infinity with 2k separatrices.
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The geometry of the vector field Pε(z) ∂∂z

I Generically, on C(k) = (2k
k )

k+1 open
sets (DS-domain) in parameter
space, the separatrices land at the
singular points which are simple.

I In that case the singular points
are all linked by trajectories.
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Building the orbit space

ψ∞
1,ε,−

ψ∞
2,ε,−

ψ∞
3,ε,−

ψ0
1,ε,−

ψ0
2,ε,−

ψ0
3,ε,−

S
1,ε

S
1,ε

S
2,ε

S
2,ε

S
3,ε

+

+

+ S
3,ε

-

-

-

I The crescents are bounded by
trajectories of the rotated vector
field eiθPε(z) ∂∂z for some θ such
that |θ|< π

2 −δ for some positive δ
I The crescents could be spiraling

when approaching the singular
points.

I We can enlarge the DS domains
so as to cover all parameter
values outside the discriminantal
set ∆= 0
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The modulus of analytic classification on a DS-domain
in parameter space

ψ∞
1,ε,−

ψ∞
2,ε,−

ψ∞
3,ε,−

ψ0
1,ε,−

ψ0
2,ε,−

ψ0
3,ε,−

S
1,ε

S
1,ε

S
2,ε

S
2,ε

S
3,ε

+

+

+ S
3,ε

-

-

-

It is given by an unfolding

(ψ0
1,ε,ψ

∞
1,ε, . . . ,ψ

0
k,ε,ψ

∞
k,ε)
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The classification theorem

Two prepared germs of families of diffeomorphisms
unfolding a parabolic point of codimension k are
conjugate if and only if
I They have the same formal normal form
I On each DS domain they have equivalent

(ψ0
1,ε,ψ

∞
1,ε, . . . ,ψ

0
k,ε,ψ

∞
k,ε)ε∈Ss

up to bounded and bounded away from zero linear
changes of coordinates on the spheres.
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The realization

Any
(ψ0

1,ε,s,ψ
∞
1,ε,s, . . . ,ψ

0
k,ε,s,ψ

∞
k,ε,s)ε∈Ss

on a DS domain Ss, depending analytically on εwith
continuous limit at the boundary can be realized as a
germ of family of diffeomorphisms unfolding a parabolic
point of codimension k on Ss.

An additional condition is necessary to glue together the
realizations over the different Ss in a uniform family.

This has been done with Christopher when k = 1. It is still
open when k > 1.
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The additional necessary condition

The condition expresses that the two realizations over the
self-intersection in parameter space are conjugate. .
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Thank you!
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