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The slow divergence integral on a Möbius band

Motivation

The slow divergence integral has proved to be an important
tool in the study of slow-fast cycles defined on an orientable
two-dimensional manifold (e.g. R2).

The goal of our presentation is to study canard cycle
bifurcations on a non-orientable two-dimensional manifold
(e.g. the Möbius band).

We give a simple sufficient condition, expressed in terms of
the slow divergence integral, for the existence of a
period-doubling bifurcation near the 1–canard cycle.

We prove the finite cyclicity property of “singular” 1– and
2–homoclinic loops.

Using an idea of Khovanskii we find optimal upper bounds for
the number of limit cycles Hausdorff close to canard cycles.
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Motivation

The slow divergence integral has proved to be an important
tool in the study of slow-fast cycles defined on an orientable
two-dimensional manifold (e.g. R2).

The goal of our presentation is to study canard cycle
bifurcations on a non-orientable two-dimensional manifold
(e.g. the Möbius band).
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The slow divergence integral on a Möbius band

Motivation

Let’s consider a simple planar slow-fast system Xε,b
(depending possibly on an extra finite dimensional parameter):{

ẋ = y
ẏ = −xy + ε

(
b − x + O(x2)

)
+ O(εy2)

(1)

where ε ≥ 0 is a singular perturbation parameter and b ∼ 0 is
a breaking parameter.

Xε,b represents a normal form for a slow-fast Hopf point

The fast subsystem X0,b consists of the line of singularities
{y = 0} (the critical curve or the slow curve) and fast orbits,
given by parabolas y = −1

2x
2 + c .

All singularities of the critical curve are normally hyperbolic,
except the origin where we deal with a generic nilpotent
contact point.
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ẋ = y
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The slow divergence integral on a Möbius band

Motivation

We distinguish between two types of limit periodic sets: the
contact point (x , y) = (0, 0) and canard cycles

F. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996

M. Krupa, P. Szmolyan, Relaxation oscillation and canard
explosion, 2001

F. Dumortier, Slow divergence integral and balanced canard
solutions, 2011
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4

The slow divergence integral on a Möbius band
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The slow divergence integral on a Möbius band

Motivation

Our model can provide much richer dynamics if we consider it
on the Möbius band

Besides the contact point and the canard cycles we also
detect so-called 1– and 2–canard cycles consisting of a fast
orbit, turning around the Möbius band, and the part of the
critical curve between the α-limit set and the ω-limit set of
the fast orbit.
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orbit, turning around the Möbius band, and the part of the
critical curve between the α-limit set and the ω-limit set of
the fast orbit.

Renato Huzak The slow divergence integral on a Möbius band
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The slow divergence integral on a Möbius band

Motivation

Our model in the Liénard plane:
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The slow divergence integral on a Möbius band

Definitions on the smooth Möbius band

Denote by M a smooth Möbius band (“smooth” means
C∞-smooth). Let (ε, µ) ∼ (0, 0) ∈ R× Rl , with ε ≥ 0, and
let Xε,µ : M → TM be a smooth (ε, µ)-family of vector fields
on M.

We suppose Xε,µ has a slow-fast structure, with a singular
perturbation parameter ε and with a generic turning point (or
equivalently, a slow-fast Hopf point) p ∈ M for (ε, µ) = (0, 0).

More precisely, we suppose that there exists a local chart on
M around p in which the vector field Xε,µ is locally expressed,
up to smooth equivalence, as:{

ẋ = y
ẏ = −xy + ε

(
b(µ)− x + x2g(x , ε, µ)

)
+ εy2H(x , y , ε, µ).

(2)
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Denote by M a smooth Möbius band (“smooth” means
C∞-smooth). Let (ε, µ) ∼ (0, 0) ∈ R× Rl , with ε ≥ 0, and
let Xε,µ : M → TM be a smooth (ε, µ)-family of vector fields
on M.

We suppose Xε,µ has a slow-fast structure, with a singular
perturbation parameter ε and with a generic turning point (or
equivalently, a slow-fast Hopf point) p ∈ M for (ε, µ) = (0, 0).

More precisely, we suppose that there exists a local chart on
M around p in which the vector field Xε,µ is locally expressed,
up to smooth equivalence, as:{
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Denote by M a smooth Möbius band (“smooth” means
C∞-smooth). Let (ε, µ) ∼ (0, 0) ∈ R× Rl , with ε ≥ 0, and
let Xε,µ : M → TM be a smooth (ε, µ)-family of vector fields
on M.

We suppose Xε,µ has a slow-fast structure, with a singular
perturbation parameter ε and with a generic turning point (or
equivalently, a slow-fast Hopf point) p ∈ M for (ε, µ) = (0, 0).

More precisely, we suppose that there exists a local chart on
M around p in which the vector field Xε,µ is locally expressed,
up to smooth equivalence, as:{
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The slow divergence integral on a Möbius band

Definitions on the smooth Möbius band

The generic turning point p ∈ M is represented by
(x , y) = (0, 0) in the local coordinates.

We further assume that X0,µ has a smooth µ-family of one
dimensional embedded manifolds mµ containing singularities
of X0,µ (in the local coordinates, mµ is given by {y = 0}),
and that m0 = m− ∪ {p} ∪m+, where m− (resp. m+) is
normally attracting (resp. normally repelling).

We suppose that the slow dynamics is nonzero on m− ∪m+,
pointing towards p on m− and away from p on m+.

We assume that the family mµ of slow curves is located in an

open orientable submanifold M̃ of M.

Working with such an orientable submanifold, we can choose
a volume form and define the divergence of (the restriction
of) the vector field Xε,µ.
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The generic turning point p ∈ M is represented by
(x , y) = (0, 0) in the local coordinates.

We further assume that X0,µ has a smooth µ-family of one
dimensional embedded manifolds mµ containing singularities
of X0,µ (in the local coordinates, mµ is given by {y = 0}),
and that m0 = m− ∪ {p} ∪m+, where m− (resp. m+) is
normally attracting (resp. normally repelling).

We suppose that the slow dynamics is nonzero on m− ∪m+,
pointing towards p on m− and away from p on m+.

We assume that the family mµ of slow curves is located in an

open orientable submanifold M̃ of M.

Working with such an orientable submanifold, we can choose
a volume form and define the divergence of (the restriction
of) the vector field Xε,µ.

Renato Huzak The slow divergence integral on a Möbius band
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The slow divergence integral on a Möbius band

Definitions on the smooth Möbius band

The slow divergence integral is independent of the chosen
volume form and the local chart.

The slow dynamics of Xε,µ along the slow curve mµ ⊂ M̃,
away from the turning point, is given by x ′ = f (x , µ), µ ∼ 0,
where f is a smooth function and mµ is parametrized by a
regular parameter x

We have f < 0. Now we can define the slow divergence
integral I±(u, µ) along m±:

I+(u, µ) :=

∫ 0

α(u)

divX0,µdx

f (x , µ)
< 0, I−(u, µ) :=

∫ 0

ω(u)

divX0,µdx

f (x , µ)
< 0, u ∈ Σ+.

(3)
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The slow divergence integral on a Möbius band

Definitions on the smooth Möbius band

(b)(a)

Σ+

Σ−

p

u0

v0

m−
m+

Σ+

Σ−

p

u0

v0

u1

v1

m−m+

Figure: Canard cycles on the Möbius band M turning around M, at level
(ε, µ) = (0, 0). (a) 1–canard cycles intersect Σ+ only once. (b) 2–canard
cycles intersect Σ+ twice.
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The slow divergence integral on a Möbius band

Definitions on the smooth Möbius band

Definition (1 and 2–periodic orbits)

Let Lu0 and Lu0,u1 be 1– and 2–canard cycles.

(a) Let V ⊂ M be a small tubular neighborhood of Lu0 . Let
O ⊂ V be a periodic orbit of Xε,µ, with ε > 0. We call O a
1–periodic orbit if O intersects the section Σ+ only once.
Isolated 1–periodic orbits are called 1–limit cycles.

(b) Let V ⊂ M be a small tubular neighborhood of Lu0 or Lu0,u1 .
Let O ⊂ V be a periodic orbit of Xε,µ, with ε > 0. We call O
a 2–periodic orbit if O intersects the section Σ+ twice.
Isolated 2–periodic orbits are called 2–limit cycles.
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The slow divergence integral on a Möbius band

Definitions on the smooth Möbius band

Definition (Cyclicity of Lu0 and Lu0,u1)

Let Xε,µ be a smooth (ε, µ)-family of vector fields on M, defined
above, and let Lu0 and Lu0,u1 be the limit periodic sets. The
cyclicity of Lu0 (resp. Lu0,u1) in the family Xε,µ is bounded from
above by N ∈ N if there exists ε0 > 0, δ0 > 0 and a neighborhood
W of 0 in the µ-space such that Xε,µ, with (ε, µ) ∈ [0, ε0]×W ,
generates at most N limit cycles, lying each within Hausdorff
distance δ0 of Lu0 (resp. Lu0,u1). We call the smallest N with this
property the cyclicity of Lu0 (resp. Lu0,u1) in the family Xε,µ, and
denote it by Cycl(Xε,µ, Lu0) (resp. Cycl(Xε,µ, Lu0,u1)).
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The slow divergence integral on a Möbius band

Limit cycle bifurcations Hausdorff-close to Lu0

For (u, µ) ∼ (u0, 0), the slow divergence integral along the
slow curve from ω(u) ∈ m− to α(u) ∈ m+ is given by:

I (u, µ) = I−(u, µ)− I+(u, µ) (4)

Theorem

Suppose that I (u, µ) is nonzero near (u, µ) = (u0, 0). Then
Cycl(Xε,µ, Lu0) = 1 and Xε,µ has no 2–periodic orbits
Hausdorff-close to Lu0 . In case I (u0, 0) < 0 (resp. I (u0, 0) > 0)
any 1–limit cycle bifurcating from Lu0 is hyperbolically attracting
(resp. hyperbolically repelling).
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The slow divergence integral on a Möbius band

Limit cycle bifurcations Hausdorff-close to Lu0

If the function u → I (u, 0) has a simple zero at u = u0, then
for λ ∼ 0, ε ∼ 0 and ε > 0 the b-family Xε,µ = Xε,b,λ
undergoes, Hausdorff-close to Lu0 , a period doubling
bifurcation, giving rise to a 2–limit cycle. In this case we do
not need the parameter λ.

Theorem

Let us suppose that the function u → I (u, 0) has a simple zero at
u = u0 (i.e. I (u0, 0) = 0 and ∂I

∂u (u0, 0) 6= 0). Then there are
continuous functions u(ε, λ) and b(ε, λ) defined for ε ≥ 0, ε ∼ 0
and λ ∼ 0, smooth for ε > 0, with u(0, 0) = u0 and b(0, λ) = 0,
such that for each ε > 0, ε ∼ 0 and λ ∼ 0 the b-family Xε,b,λ
undergoes a period doubling bifurcation at (u(ε, λ), b(ε, λ)).
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The slow divergence integral on a Möbius band

Limit cycle bifurcations Hausdorff-close to Lu0

To prove that, under the same condition on I ,
Cycl(Xε,µ, Lu0) ≤ 2, we use a method of Khovanskii
(Mamouhdi, Roussarie).

Theorem

Let us suppose that u → I (u, 0) has a simple zero at u = u0. Then
Cycl(Xε,µ, Lu0) = 2.

The case of higher multiplicity zeros in the slow divergence
integral is a topic of further study.
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The slow divergence integral on a Möbius band

Limit cycle bifurcations Hausdorff-close to Lu0

We call the 1–canard cycle Lu0 a singular 1–homoclinic loop if
the slow dynamics has a hyperbolic saddle at precisely one
corner point: “f (ω(u0), 0) = 0, ∂f∂x (ω(u0), 0) 6= 0” or

“f (α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0”. We prove that such a
limit periodic set can produce at most one limit cycle.

Theorem

Let us suppose that f (ω(u0), 0) = 0, ∂f∂x (ω(u0), 0) 6= 0 and
f (x , 0) < 0 for all x ∈ [α(u0), ω(u0)[. Then Cycl(Xε,µ, Lu0) = 1
and Xε,µ has no 2–periodic orbits Hausdorff-close to Lu0 . When a
1–limit cycle exists, it is hyperbolic and attracting.
A similar result is true in the case f (α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0
and f (x , 0) < 0 for all x ∈]α(u0), ω(u0)]. A 1–limit cycle
bifurcating from Lu0 is hyperbolic and repelling.
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The slow divergence integral on a Möbius band

Limit cycle bifurcations Hausdorff-close to Lu0

“Regular” 1–homoclinic loops of finite codimension have been
studied by Guimond, 1999.
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Limit cycle bifurcations Hausdorff-close to Lu0,u1

Let u0, u1 ∈ Σ+, with u0 < u1, be arbitrary but fixed. For
(u, ũ, µ) ∼ (u0, u1, 0), we define the so-called total slow
divergence integral of Lu0,u1 :

T (u, ũ, µ) = I−(u, µ)− I+(ũ, µ) + I−(ũ, µ)− I+(u, µ). (5)

Theorem

Suppose that T is nonzero near (u, ũ, µ) = (u0, u1, 0). Then
Cycl(Xε,µ, Lu0,u1) ≤ 1. In case T (u0, u1, 0) < 0 (resp.
T (u0, u1, 0)) > 0) any 2–limit cycle bifurcating from Lu0,u1 is
hyperbolically attracting (resp. hyperbolically repelling).
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Limit cycle bifurcations Hausdorff-close to Lu0,u1

1 If I−(u1, 0)− I+(u1, 0) 6= 0, then there exists ε0 > 0, δ0 > 0
and a neighborhood W of 0 in the µ-space such that system
Xε,µ, with (ε, µ) ∈ [0, ε0]×W , has no limit cycles lying within
Hausdorff distance δ0 of Lu0,u1 .

2 If I−(u1, 0)− I+(u1, 0) = 0 and I−(u0, 0)− I+(u0, 0) 6= 0 (this
implies T (u0, u1, 0) 6= 0), then we have that
Cycl(Xε,µ, Lu0,u1) ≤ 1. In case I−(u0, 0)− I+(u0, 0) < 0 (resp.
I−(u0, 0)− I+(u0, 0) > 0) any 2–limit cycle bifurcating from
Lu0,u1 is hyperbolic and attracting (resp. repelling). Moreover,

if ∂(I−−I+)
∂u (u1, 0) 6= 0, then Cycl(Xε,µ, Lu0,u1) = 1.

3 If I−(ui , 0)− I+(ui , 0) = 0 for i = 0, 1 (this implies

T (u0, u1, 0) = 0) and ∂(I−−I+)
∂u (ui , 0) 6= 0 for i = 0, 1, then

Cycl(Xε,µ, Lu0,u1) ≤ 2.
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Limit cycle bifurcations Hausdorff-close to Lu0,u1

We allow the slow dynamics to have a hyperbolic saddle at
precisely one corner point, ω(u0) or α(u0). In this case we call
Lu0,u1 a singular 2–homoclinic loop.

Theorem

Llet us suppose that f (ω(u0), 0) = 0, ∂f
∂x (ω(u0), 0) 6= 0 and that

f (x , 0) < 0 for all x ∈ [α(u0), ω(u0)[. Then Cycl(Xε,µ, Lu0,u1) ≤ 1.
Any 2–limit cycle bifurcating from Lu0,u1 is hyperbolic and
attracting.
A similar result is true in the case f (α(u0), 0) = 0,
∂f
∂x (α(u0), 0) 6= 0 and f (x , 0) < 0 for all x ∈]α(u0), ω(u0)]. Any
2–limit cycle bifurcating from Lu0,u1 is hyperbolic and repelling.
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21

The slow divergence integral on a Möbius band

Transition maps

We define now the following transition maps for
(ε̄,B, λ) ∼ (0, 0, 0):

1 the forward transition map ∆− : Σ+ → Σp along the flow of
Xε̄2,ε̄B,λ;

2 the backward transition map ∆+ : Σ+ → Σp along the flow of
−Xε̄2,ε̄B,λ.

The map ∆± includes a passage near m±.

The system Xε̄2,ε̄B,λ has a 1–periodic orbit passing through
the point u ∈ Σ+ if and only if the following holds:
∆−(u,B, λ, ε̄) = ∆+(u,B, λ, ε̄).

Similarly, the system Xε̄2,ε̄B,λ has a 2–periodic orbit passing
through the points u, u′ ∈ Σ+, with u 6= u′, if and only if the
following holds: ∆−(u,B, λ, ε̄) = ∆+(u′,B, λ, ε̄) and
∆−(u′,B, λ, ε̄) = ∆+(u,B, λ, ε̄).
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22

The slow divergence integral on a Möbius band

Transition maps

For a regular slow dynamics, the study of the transition maps
relies on [Dumortier, Roussarie,1996]. The following theorem
gives the structure of ∆±.

Theorem

There exist ε̄-regularly smooth functions Ī± in (u,B, λ) and
ε̄-regularly smooth functions f± in (B, λ) such that
Ī±(u,B, λ, 0) = I±(u, 0, λ), with I± defined in (3), and such that

∆±(u,B, λ, ε̄) = f±(B, λ, ε̄)± exp

(
Ī±(u,B, λ, ε̄)

ε̄2

)
. (6)

Furthermore, f (0, λ, 0) = 0 and ∂f
∂B (0, λ, 0) 6= 0 where

f (B, λ, ε̄) := f−(B, λ, ε̄)− f+(B, λ, ε̄).
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Transition maps

The following theorem gives the structure of the transition
map ∆− ([De Maesschalck,Dumortier, 2008, Huzak, De
Maesschalck,Dumortier,2013]).

Theorem

For all k > 0 there exists ε̄k > 0 so that ∆− is C∞ on
U− ∩ {ε̄ ≤ ε̄k} and has a C k -extension to the closure of
U− ∩ {ε̄ ≤ ε̄k}. Furthermore,

∂∆−
∂u

(u,B, λ, ε̄) = − exp

(
I−(u,B, λ, ε̄)

ε̄2

)
, (7)

where (u,B, λ, ε̄) ∈ U− ∩ {ε̄ ≤ ε̄k}, I− is ε̄-regularly C k in
(u,B, λ), I−(u,B, λ, ε̄)→ −∞ as (u,B, λ, ε̄)→ (u0, 0, 0, 0) and
∂I−
∂u (u,B, λ, ε̄) > 0.
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24

The slow divergence integral on a Möbius band

Transition maps

Using Theorem 9, the equation for 1-limit cycles can be
written as:

exp

(
Ī−(u,B, λ, ε̄)

ε̄2

)
+exp

(
Ī+(u,B, λ, ε̄)

ε̄2

)
= f (B, λ, ε̄), (8)

and the system for 2-limit cycles can be written as:
exp

(
Ī−(u,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,B,λ,ε̄)

ε̄2

)
= f (B, λ, ε̄)

exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= f (B, λ, ε̄).

(9)
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Transition maps

Instead of working with (9), it is sometimes more convenient
to use the equation for the fixed points
{PB,λ,ε̄ ◦ PB,λ,ε̄(u) = u}, where PB,λ,ε̄(u) = ∆−1

+ ◦∆−(u) is
the 1–return map, or to use the difference equation
{∆B,λ,ε̄(u) = 0} where ∆B,λ,ε̄(u) = PB,λ,ε̄(u)− P−1

B,λ,ε̄(u).
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Proof of Theorem 3

Let I be nonzero near (u, µ) = (u0, 0, 0) (i.e.
I−(u0, 0, 0) 6= I+(u0, 0, 0)).

Let us suppose that for
(B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0, Xε̄2,ε̄B,λ has a 2–periodic orbit
intersecting Σ+ in two points ū ∼ u0 and ũ ∼ u0, with ū < ũ.

Then ∆B,λ,ε̄(ū) = ∆B,λ,ε̄(ũ) = 0, PB,λ,ε̄(ū) = ũ,
PB,λ,ε̄(ũ) = ū and PB,λ,ε̄([ū, ũ]) = [ū, ũ].

The derivative of ∆B,λ,ε̄ can be written as:

∆′B,λ,ε̄(u) = − exp

(
I−(u)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u)) + o(1)

ε̄2

)
, u ∈ [ū, ũ].
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Proof of Theorem 3

This implies that the equation {∆′B,λ,ε̄ = 0} is equivalent, for
ε̄ > 0 and u ∈ [ū, ũ], to the following equation:

I−(u)− I+(PB,λ,ε̄(u))+ I−(P−1
B,λ,ε̄(u))− I+(u)+o(1) = 0, (10)

for a new o(1)-term.

Since I± are smooth and u,PB,λ,ε̄(u),P−1
B,λ,ε̄(u) ≈ u0 for all

u ∈ [ū, ũ], we have:

I−(u)− I+(PB,λ,ε̄(u)) + I−(P−1
B,λ,ε̄(u))− I+(u)

≈ I−(u0)− I+(u0) + I−(u0)− I+(u0)

= 2(I−(u0)− I+(u0)) 6= 0,

for u ∈ [ū, ũ].
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Proof of Theorem 4

Let I (u0, 0, 0) = 0 and ∂I
∂u (u0, 0, 0) 6= 0. The 1–return map

PB,λ,ε̄ fulfils the conditions of the following theorem:

Theorem (period doubling bifurcation)

Let pB : R→ R be a smooth one-parameter family of mappings
such that pB0 has a fixed point x0 with eigenvalue −1. Assume

(PD1) ∂p
∂B

∂2p
∂x2 + 2 ∂2p

∂x∂B 6= 0 at (x ,B) = (x0,B0);

(PD2) a := 1
2

(
∂2p
∂x2

)2
+ 1

3
∂3p
∂x3 6= 0 at (x ,B) = (x0,B0).

Then there is a smooth curve of fixed points of pB passing through
(x0,B0), the stability of which changes at (x0,B0). There is also a
smooth curve γ passing through (x0,B0) so that γ \ {(x0,B0)} is a
union of hyperbolic period 2 orbits. The curve γ has a quadratic
tangency with the line B = B0 at (x0,B0). If a is positive (resp.
negative), the period 2 orbits are attracting (resp. repelling).
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Proof of Theorem 4

The derivative of PB,λ,ε̄ w.r.t. u is given by

∂PB,λ,ε̄

∂u
(u) =

∂∆−
∂u (u,B, λ, ε̄)

∂∆+

∂u (PB,λ,ε̄(u),B, λ, ε̄)
, (11)

with
∂∆±
∂u

(u,B, λ, ε̄) = ± exp

(
Î±(u,B, λ, ε̄)

ε̄2

)
where functions Î± are ε̄-regularly smooth in (u,B, λ) and
Î±(u,B, λ, 0) = I±(u, 0, λ).

Since the function u → I−(u, 0, 0)− I+(u, 0, 0) has a simple
zero at u = u0, f (0, 0, 0) = 0 and ∂f

∂B (0, 0, 0) 6= 0, we can
apply the Implicit Function Theorem to the following
ε̄-regularly smooth in (u,B, λ) system:
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Proof of Theorem 4{
∆−(u,B, λ, ε̄)−∆+(u,B, λ, ε̄) = 0

Î−(u,B, λ, ε̄)− Î+(u,B, λ, ε̄) = 0,

and find a solution (λ, ε̄)→ (u(λ, ε̄),B(λ, ε̄)), ε̄-regularly
smooth in λ, with u(0, 0) = u0 and B(0, 0) = 0.

From this and (11) follows

PB(λ,ε̄),λ,ε̄(u(λ, ε̄)) = u(λ, ε̄) and
∂PB(λ,ε̄),λ,ε̄

∂u
(u(λ, ε̄)) = −1,

for all (λ, ε̄) ∼ (0, 0) and ε̄ > 0.

Thus, for each (λ, ε̄) ∼ (0, 0) and ε̄ > 0, PB(λ,ε̄),λ,ε̄ has a fixed
point u(λ, ε̄) with eigenvalue −1.
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Î−(u,B, λ, ε̄)− Î+(u,B, λ, ε̄) = 0,

and find a solution (λ, ε̄)→ (u(λ, ε̄),B(λ, ε̄)), ε̄-regularly
smooth in λ, with u(0, 0) = u0 and B(0, 0) = 0.

From this and (11) follows

PB(λ,ε̄),λ,ε̄(u(λ, ε̄)) = u(λ, ε̄) and
∂PB(λ,ε̄),λ,ε̄

∂u
(u(λ, ε̄)) = −1,

for all (λ, ε̄) ∼ (0, 0) and ε̄ > 0.
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Proof of Theorem 4

The quantity (PD1) becomes:

∂(∆−−∆+)
∂B (u)

(
∂I−
∂u (u)− ∂I+

∂u (u)
)

+ o(1)

ε̄2 ∂∆−
∂u (u)

, (12)

where (u,B) = (u(λ, ε̄),B(λ, ε̄)).

The quantity (PD2) becomes

a =

(
∂I−
∂u (u)

)2
−
(
∂I+
∂u (u)

)2
+ o(1)

6ε̄4
, (u,B) = (u(λ, ε̄),B(λ, ε̄)).
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Proof of Theorem 4

Lemma

Let m ∈ N, m ≥ 1. Then we have:

ε̄2m ∂
m+1∆±
∂um+1

(u) = ±
((∂I±

∂u
(u)
)m

+ o(1)

)
exp

(
Î±(u,B, λ, ε̄)

ε̄2

)
,

where Î±(u,B, λ, ε̄) are defined after (11), I±(u) = I±(u, 0, λ) and
the o(1)-term is ε̄-regularly smooth in (u,B, λ).

Thus, putting all the informations together, we have proved
that for each fixed (λ, ε̄) ∼ (0, 0), ε̄ > 0, the B-family Xε̄2,ε̄B,λ

undergoes a period doubling bifurcation at
(u,B) = (u(λ, ε̄),B(λ, ε̄)).
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Proof of Theorem 5

We consider


exp

(
Ī−(u,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,B,λ,ε̄)

ε̄2

)
= f (B, λ, ε̄)

exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= f (B, λ, ε̄).

The main difficulty lies in the fact that the limit ε̄ = 0 of this
system is degenerate. Our goal is, therefore, to replace the
system with a new system, non-singular for ε̄ = 0, using
[Mamouhdi, Roussarie,2012].
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Proof of Theorem 5

Let us suppose that Ψ(u, u′) and Φ(u, u′) are two smooth
functions defined on a rectangle R = [Ū1, Ũ1]× [Ū2, Ũ2] and
let us suppose that ∂Ψ

∂u , ∂Ψ
∂u′ ,

∂Φ
∂u and ∂Φ

∂u′ are nonzero for all
(u, u′) ∈ R.

We further assume that the equation {det(Ψ,Φ)(u, u′) = 0}
for contact points is equivalent on R to an equation
{E (u, u′) = 0}, where E is a smooth function on R, and
where ∂E

∂u and ∂E
∂u′ are nonzero for all (u, u′) ∈ R. (Equivalent

means det(Ψ,Φ) = F .E , where the factor F is a smooth
nowhere zero function on R.)

Now we can define a regular pair of foliations (Ψ̃, Φ̃) on R as
follows: the curves {Ψ(u, u′) = α} (resp. {Φ(u, u′) = β}) are
the leaves of foliation Ψ̃ (resp. Φ̃).

Each leaf and the curve {E (u, u′) = 0} are simple connected
curves.
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let us suppose that ∂Ψ

∂u , ∂Ψ
∂u′ ,

∂Φ
∂u and ∂Φ

∂u′ are nonzero for all
(u, u′) ∈ R.

We further assume that the equation {det(Ψ,Φ)(u, u′) = 0}
for contact points is equivalent on R to an equation
{E (u, u′) = 0}, where E is a smooth function on R, and
where ∂E

∂u and ∂E
∂u′ are nonzero for all (u, u′) ∈ R. (Equivalent

means det(Ψ,Φ) = F .E , where the factor F is a smooth
nowhere zero function on R.)

Now we can define a regular pair of foliations (Ψ̃, Φ̃) on R as
follows: the curves {Ψ(u, u′) = α} (resp. {Φ(u, u′) = β}) are
the leaves of foliation Ψ̃ (resp. Φ̃).

Each leaf and the curve {E (u, u′) = 0} are simple connected
curves.

Renato Huzak The slow divergence integral on a Möbius band
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Proof of Theorem 5

We relate the number of intersection points of two leaves
{Ψ(u, u′) = α} and {Φ(u, u′) = β} in R with the number of
intersection points of the curve {E (u, u′) = 0} and one of
these two leaves in R.

Lemma

Let (Ψ̃, Φ̃) be a regular pair of foliations on R as defined above
and let α, β ∈ R be arbitrary but fixed. Let N (α, β) be the
number of intersection points of {Ψ(u, u′) = α} with
{Φ(u, u′) = β} in R, counting multiplicity, and let N (β) be the
number of intersection points of {E (u, u′) = 0} with
{Φ(u, u′) = β} in R, counting multiplicity. If N (β) is finite, then

N (α, β) ≤ N (β) + 1. (13)
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Proof of Theorem 5

To find at most 3 solutions of the system in [ū, ũ]× [ū, ũ], for
each (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, we use the lemma twice.
The system (9) is a special case of the more general system

exp

(
Ī−(u,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,B,λ,ε̄)

ε̄2

)
= α

exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= β

(14)

where α, β ∈ R, and it suffices to prove that (14) has at most
3 solutions in [ū, ũ]× [ū, ũ], for each fixed (B, λ, ε̄) ∼ (0, 0, 0),
with ε̄ > 0, and α, β ∈ R.
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Proof of Theorem 5

We denote by ΨB,λ,ε̄(u, u
′),ΦB,λ,ε̄(u, u

′) the functions on the
left-hand side of (14). We have

det(ΨB,λ,ε̄,ΦB,λ,ε̄) = exp

(
I−(u) + I−(u′) + o(1)

ε̄2

)
− exp

(
I+(u) + I+(u′) + o(1)

ε̄2

)
.

This implies that the the set {det(ΨB,λ,ε̄,ΦB,λ,ε̄)(u, u′) = 0}
of the contact points between the two foliations Ψ̃B,λ,ε̄ and

Φ̃B,λ,ε̄ is equivalent for ε̄ > 0 to {EB,λ,ε̄(u, u
′) = 0} with

EB,λ,ε̄(u, u
′) = I−(u)− I+(u′) + I−(u′)− I+(u) + o(1).
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Proof of Theorem 5

We define the following system: EB,λ,ε̄(u, u
′) = I−(u)− I+(u′) + I−(u′)− I+(u) + o(1) = 0

ΦB,λ,ε̄(u, u
′) = exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= β.

(15)

Following Lemma 13, if we denote by NB,λ,ε̄(α, β) (resp.
NB,λ,ε̄(β)) the number of solutions of (14) (resp. (15)),
counting multiplicity, in [ū, ũ]× [ū, ũ], then

NB,λ,ε̄(α, β) ≤ 1 +NB,λ,ε̄(β).
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Proof of Theorem 5

We have

det(EB,λ,ε̄,ΦB,λ,ε̄) =(
∂I−
∂u

(u)− ∂I+
∂u

(u) + o(1)

)
exp

(
I−(u′) + o(1)

ε̄2

)
−
(
∂I−
∂u

(u′)− ∂I+
∂u

(u′) + o(1)

)
exp

(
I+(u) + o(1)

ε̄2

)
.

Clearly, the equation {det(EB,λ,ε̄,ΦB,λ,ε̄)(u, u′) = 0} is
equivalent for ε̄ > 0 to {ĒB,λ,ε̄(u, u

′) = 0} where

ĒB,λ,ε̄(u, u
′) = I−(u′)− I+(u) + o(1).
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Proof of Theorem 5

Lemma 13 implies that

NB,λ,ε̄(β) ≤ 1 +NB,λ,ε̄,

where NB,λ,ε̄ is the number of solutions (counting multiplicity)
of the system {I−(u)− I+(u′) + I−(u′)− I+(u) + o(1) =
0, I−(u′)− I+(u) + o(1) = 0}, or equivalently the system{

I−(u)− I+(u′) + o(1) = 0
I−(u′)− I+(u) + o(1) = 0.

(16)

Thus, we have proved that

NB,λ,ε̄(α, β) ≤ 2 +NB,λ,ε̄,

for each (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, and α, β ∈ R.
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Proof of Theorem 6

Assume that f (ω(u0), 0) = 0, ∂f∂x (ω(u0), 0) 6= 0 and
f (x , 0) < 0 for all x ∈ [α(u0), ω(u0)[.

First, let us prove that Cycl(Xε,µ, Lu0) ≤ 1, i.e. there are no
2-periodic orbits Hausdorff close to Lu0 .

Suppose, on the contrary, that for (B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0,
Xε̄2,ε̄B,λ has a 2–periodic orbit intersecting Σ+ in two points
ū ∼ u0 and ũ ∼ u0, with u(B, λ, ε̄) < ū < ũ.

We have for u ∈ [ū, ũ]:

∆′B,λ,ε̄(u) =− exp

(
I−(u,B, λ, ε̄)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u),B, λ, ε̄) + o(1)

ε̄2

)
.
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Proof of Theorem 7

Let u0, u1 ∈ Σ+, with u0 < u1, be arbitrary but fixed, and let
us suppose that T (u0, u1, 0) 6= 0, where T is the total slow
divergence integral.

Suppose, on the contrary, that for (B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0,
Xε̄2,ε̄B,λ has two 2–periodic orbits, one intersecting Σ+ in two
points ū ∼ u0 and ũ ∼ u1, and the other in ¯̄u ∼ u0 and
˜̃u ∼ u1.

Then we have ū < ¯̄u < ˜̃u < ũ or ¯̄u < ū < ũ < ˜̃u.
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points ū ∼ u0 and ũ ∼ u1, and the other in ¯̄u ∼ u0 and
˜̃u ∼ u1.
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42

The slow divergence integral on a Möbius band
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Proof of Theorem 7

We get

∆′B,λ,ε̄(u) =− exp

(
I−(u)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u)) + o(1)

ε̄2

)
,

where u ∈ [ū, ¯̄u].

The equation {∆′B,λ,ε̄(u) = 0} is equivalent for ε̄ > 0 and
u ∈ [ū, ¯̄u] to an equation given in (10). Since
T (u0, u1, 0) 6= 0, u ∼ u0, PB,λ,ε̄(u),P−1

B,λ,ε̄(u) ∼ u1 for all
u ∈ [ū, ¯̄u], (10) has no solutions w.r.t. u ∈ [ū, ¯̄u].

This is a contradiction with ∆′B,λ,ε̄(u
′) = 0. Thus,

Cycl(Xε,µ, Lu0,u1) ≤ 1.

Renato Huzak The slow divergence integral on a Möbius band
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43

The slow divergence integral on a Möbius band
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Future research

The cyclicity of 1– and 2-canard cycles in the case of higher
multiplicity zero in the slow divergence integral

The cyclicity of 1– and 2-canard cycles if the slow dynamics
has a hyperbolic saddle or any singularity at both corner points

The cyclicity of 1– and 2-canard cycles if the slow dynamics
has singularities between the corner points, located away from
the contact point (a generic contact point), [De Maesschalck,
Dumortier, 2008]

The cyclicity of 1– and 2-canard cycles if the slow dynamics
has singularities including at the contact point (non-generic
contact point)
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