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@ The slow divergence integral has proved to be an important
tool in the study of slow-fast cycles defined on an

@ The goal of our presentation is to study canard cycle
bifurcations on a

@ We give a simple sufficient condition, expressed in terms of
the slow divergence integral, for the existence of a

@ We prove the of “singular’ 1- and
2—homoclinic loops.

@ Using an we find optimal upper bounds for
the number of limit cycles Hausdorff close to canard cycles.
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@ Let's consider a simple planar slow-fast system X, ;,
(depending possibly on an extra finite dimensional parameter):

X =y
{)7 = —xy+e(b—x+ O(x?)) + O(ey?) (1)

where € > 0 is a singular perturbation parameter and b ~ 0 is
a breaking parameter.
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(depending possibly on an extra finite dimensional parameter):

x =y
{)7 = —xy+e(b—x+ O(x?)) + O(ey?) (1)

where € > 0 is a singular perturbation parameter and b ~ 0 is
a breaking parameter.

@ X, represents a normal form for a
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@ Let's consider a simple planar slow-fast system X, ;,
(depending possibly on an extra finite dimensional parameter):

.7 ) o (1)
y = —xy+e(b—x+ 0(x?)) + O(ey?)
where € > 0 is a singular perturbation parameter and b ~ 0 is
a breaking parameter.
@ X, represents a normal form for a

@ The fast subsystem X, consists of the line of singularities

{y =0} ( ) and ,
given by parabolas y = —%Xz + c.
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@ Let's consider a simple planar slow-fast system X, ;,
(depending possibly on an extra finite dimensional parameter):

X =y
{)7 = —xy+e(b—x+ O(x?)) + O(ey?) (1)

where € > 0 is a singular perturbation parameter and b ~ 0 is
a breaking parameter.

@ X, represents a normal form for a

@ The fast subsystem X, consists of the line of singularities

{y =0} ( ) and ,
given by parabolas y = —%Xz + c.

@ All singularities of the critical curve are normally hyperbolic,
except the origin where we deal with a

Renato Huzak The slow divergence integral on a Mobius band



The slow divergence integral on a Mobius band
4 .

72\
77X\

Renato Huzak The slow divergence integral on a M6bius band



The slow divergence integral on a Mobius band
4 .

72\
77X\

Renato Huzak The slow divergence integral on a Mobius band



The slow divergence integral on a Mobius band

4 —
Motivation

72\
77X\

@ We distinguish between two types of limit periodic sets: the
(x,¥) =(0,0) and
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@ F. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996
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72\
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@ We distinguish between two types of limit periodic sets: the
(x,¥) =(0,0) and

@ F. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996

@ M. Krupa, P. Szmolyan, Relaxation oscillation and canard
explosion, 2001

e F. Dumortier, Slow divergence integral and balanced canard
solutions, 2011
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b

@ Besides the contact point and the canard cycles we also
detect so-called consisting of a fast
orbit, turning around the Mobius band, and the part of the
critical curve between the a-limit set and the w-limit set of
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Definitions on the smooth Mobius band

@ Denote by M a smooth M&bius band (“smooth” means
C>-smooth). Let (¢, 1) ~ (0,0) € R x R/, with ¢ > 0, and
let X, : M — TM be a smooth (e, p1)-family of vector fields
on M.
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@ Denote by M a smooth M&bius band (“smooth” means
C>-smooth). Let (¢, 1) ~ (0,0) € R x R/, with ¢ > 0, and
let X, : M — TM be a smooth (e, p1)-family of vector fields
on M.

@ We suppose X, has a slow-fast structure, with a singular
perturbation parameter € and with a generic turning point (or
equivalently, a slow-fast Hopf point) p € M for (e, 1) = (0, 0).
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Definitions on the smooth Mobius band

@ Denote by M a smooth M&bius band (“smooth” means
C>-smooth). Let (¢, 1) ~ (0,0) € R x R/, with ¢ > 0, and
let X, : M — TM be a smooth (e, p1)-family of vector fields
on M.

@ We suppose X, has a slow-fast structure, with a singular
perturbation parameter € and with a generic turning point (or
equivalently, a slow-fast Hopf point) p € M for (e, 1) = (0, 0).

@ More precisely, we suppose that there exists a local chart on
M around p in which the vector field X, is locally expressed,
up to smooth equivalence, as:

X =Y
{ y = —Xy+€(b(ﬂ)_X+X2g(X76>M))+6y2H(X7y7€(7:u))
2
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Definitions on the smooth Mobius band

@ The generic turning point p € M is represented by
(x,y) = (0,0) in the local coordinates.
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Definitions on the smooth Mobius band

@ The generic turning point p € M is represented by
(x,y) = (0,0) in the local coordinates.

o We further assume that Xy, has a smooth p-family of one
dimensional embedded manifolds m,, containing singularities
of Xp,,, (in the local coordinates, m,, is given by {y = 0}),
and that mo = m~ U {p} U m™, where m~ (resp. m*) is
normally attracting (resp. normally repelling).
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@ The generic turning point p € M is represented by
(x,y) = (0,0) in the local coordinates.

o We further assume that Xy, has a smooth p-family of one
dimensional embedded manifolds m,, containing singularities
of Xp,,, (in the local coordinates, m,, is given by {y = 0}),
and that mo = m~ U {p} U m™, where m~ (resp. m*) is
normally attracting (resp. normally repelling).

@ We suppose that the is nonzero on m~ U m™,
pointing towards p on m~ and away from p on m™.
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@ The generic turning point p € M is represented by
(x,y) = (0,0) in the local coordinates.

o We further assume that Xy, has a smooth p-family of one
dimensional embedded manifolds m,, containing singularities
of Xp,,, (in the local coordinates, m,, is given by {y = 0}),
and that mo = m~ U {p} U m™, where m~ (resp. m*) is
normally attracting (resp. normally repelling).

@ We suppose that the is nonzero on m~ U m™,
pointing towards p on m~ and away from p on m™.

@ We assume that the family m,, of slow curves is located in an
open orientable submanifold M of M.
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Definitions on the smooth Mobius band

@ The generic turning point p € M is represented by
(x,y) = (0,0) in the local coordinates.

o We further assume that Xy, has a smooth p-family of one
dimensional embedded manifolds m,, containing singularities
of Xp,,, (in the local coordinates, m,, is given by {y = 0}),
and that mo = m~ U {p} U m™, where m~ (resp. m*) is
normally attracting (resp. normally repelling).

@ We suppose that the is nonzero on m~ U m™,
pointing towards p on m~ and away from p on m™.

@ We assume that the family m,, of slow curves is located in an
open orientable submanifold M of M.

@ Working with such an orientable submanifold, we can choose
a volume form and define the divergence of (the restriction
of ) the vector field X ,.
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Definitions on the smooth Mobius band

@ The is independent of the chosen
volume form and the local chart.
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Definitions on the smooth Mobius band

@ The is independent of the chosen
volume form and the local chart.

@ The of X, along the slow curve m, C I\7I,
away from the turning point, is given by x’ = f(x, ), pu ~ 0,
where f is a smooth function and m,, is parametrized by a
regular parameter x
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Definitions on the smooth Mobius band

@ The is independent of the chosen
volume form and the local chart.

@ The of X, along the slow curve m, C I\7I,
away from the turning point, is given by x’ = f(x, ), pu ~ 0,
where f is a smooth function and m,, is parametrized by a
regular parameter x

@ We have f < 0. Now we can define the
I+ (u, p1) along m*:

0 div Xy ,dx 0 div Xp ,dx
I+ (u, i) ::/ — =<0, 1-(u,p) ::/ — =<0,
" a(u) f(Xnu) w(u) f(Xa :u)

(3)
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Definitions on the smooth Mobius band

Y. T,
m ] m
¥ Y-
(a) (b)

Figure: Canard cycles on the Mobius band M turning around M, at level
(e, 0) = (0,0). (a) 1-canard cycles intersect X only once. (b) 2—canard

A
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Definitions on the smooth Mobius band

Definition (1 and 2—periodic orbits)

Let L,, and L, ., be 1- and 2—canard cycles.

(a) Let V C M be a small tubular neighborhood of L. Let
O C V be a periodic orbit of X, ,,, with € > 0. We call O a
1—periodic orbit if O intersects the section X only once.
Isolated 1—periodic orbits are called 1-limit cycles.

(b) Let V C M be a small tubular neighborhood of L, or Ly, ;.
Let O C V be a periodic orbit of X, ,, with € > 0. We call O
a 2—periodic orbit if O intersects the section > twice.
Isolated 2—periodic orbits are called 2—limit cycles.
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Definitions on the smooth Mobius band

Definition (Cyclicity of L, and Ly, )

Let X, be a smooth (e, u)-family of vector fields on M, defined
above, and let L,, and L, ,, be the limit periodic sets. The
cyclicity of Ly, (resp. Ly, ) in the family X , is bounded from
above by N € N if there exists ¢g > 0, dgp > 0 and a neighborhood
W of 0 in the p-space such that X, with (e, 1) € [0, €] x W,
generates at most N limit cycles, lying each within Hausdorff
distance dg of L, (resp. Ly, 4, ). We call the smallest N with this
property the cyclicity of L, (resp. Ly,,u,) in the family X, ,, and
denote it by Cycl(Xc ., Luy) (resp. Cycl(Xe ) Lug,un))-
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Limit cycle bifurcations Hausdorff-close to L,

e For (u, i) ~ (up,0), the slow divergence integral along the
slow curve from w(u) € m~ to a(u) € m™ is given by:

u, 1) = 1 (u, ) — s (u, ) (4)

Theorem

Suppose that I(u, p1) is nonzero near (u, ) = (up,0). Then

and X.,, has no 2—periodic orbits
Hausdorff-close to L,,. In case I(up,0) < 0 (resp. I(up,0) >0)
any 1-limit cycle bifurcating from L, is hyperbolically attracting
(resp. hyperbolically repelling).
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Limit cycle bifurcations Hausdorff-close to L,

o If the function u — /(u,0) has a simple zero at u = up, then
for A\~ 0, € ~ 0 and € > 0 the b-family X. , = X p »
undergoes, Hausdorff-close to L,,, a period doubling
bifurcation, giving rise to a 2—limit cycle. In this case we do
not need the parameter .

Let us suppose that the function u — I(u,0) has a simple zero at
u=ug (i.e. I(up,0) =0 and %(Uo,O) # 0). Then there are
continuous functions u(e, \) and b(e, \) defined for e >0, € ~ 0
and X\ ~ 0, smooth for e > 0, with u(0,0) = ug and b(0,\) =0,
such that for each € >0, € ~ 0 and A\ ~ 0 the b-family X
undergoes a at (u(e, ), b(e, A)).
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Limit cycle bifurcations Hausdorff-close to L,

@ To prove that, under the same condition on /,
, we use a method of Khovanskii
(Mamouhdi, Roussarie).

Let us suppose that u — I(u,0) has a simple zero at u = uy. Then
Cycl(Xe,us L) = 2.

y
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Limit cycle bifurcations Hausdorff-close to L,

@ To prove that, under the same condition on /,
, we use a method of Khovanskii
(Mamouhdi, Roussarie).

Let us suppose that u — I(u,0) has a simple zero at u = uy. Then
Cycl(Xe,us L) = 2.

y

@ The case of higher multiplicity zeros in the slow divergence
integral is a topic of further study.
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Limit cycle bifurcations Hausdorff-close to L,

@ We call the 1-canard cycle L, a
the slow dynamics has a hyperbolic saddle at precisely one
corner point: “f(w(up),0) =0, %(w(uo),O) # 0" or
“f(a(up),0) =0, %(a(uo),O) # 0". We prove that such a
limit periodic set can produce at most one limit cycle.

Let us suppose that f(w(up),0) =0, %(w(uo), 0) # 0 and

f(x,0) <0 for all x € [a(ug),w(uo)[. Then

and X.,, has no 2—periodic orbits Hausdorff-close to L,,. When a
1-/imit cycle exists, it is hyperbolic and attracting.

A similar result is true in the case f(a(up),0) =0, %(a(uo), 0)#0
and f(x,0) < 0 for all x €]a(up),w(up)]. A 1-limit cycle
bifurcating from L, is hyperbolic and repelling.

V.
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Limit cycle bifurcations Hausdorff-close to L,

@ “Regular” 1-homoclinic loops of finite codimension have been
studied by Guimond, 1999.
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Limit cycle bifurcations Hausdorff-close to Ly,

@ Let ug,u; € X1, with ug < w1, be arbitrary but fixed. For
(u, i, p) ~ (uo, u1,0), we define the so-called total slow
divergence integral of Ly, u,:

T(ua '-77:“) = I—(uuu) - I+(’-7>:u) + I—(’jau) - I+(U>M)' (5)

Theorem

Suppose that T is nonzero near (u, i, 1) = (uo, u1,0). Then
. In case T(ug, u1,0) < O (resp.

T (uo, u1,0)) > 0) any 2-limit cycle bifurcating from Ly, ., is

hyperbolically attracting (resp. hyperbolically repelling).
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Limit cycle bifurcations Hausdorff-close to L,y

Q If I_(u1,0) — I+ (u1,0) # 0, then there exists g > 0, 6o > 0
and a neighborhood W of 0 in the u-space such that system
Xeo With (€, 1) € [0, €] x W, has no limit cycles lying within
Hausdorff distance dg of Lyq, -
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Limit cycle bifurcations Hausdorff-close to L,y

Q If I_(u1,0) — I+ (u1,0) # 0, then there exists ¢g > 0, dp > 0
and a neighborhood W of 0 in the u-space such that system
Xeo With (€, 1) € [0, €] x W, has no limit cycles lying within
Hausdorff distance dg of Lyq, -

Q If I_(u1,0) — I+ (u1,0) =0 and /—(up,0) — I+ (uo, 0) # 0 (this
implies T (up, u1,0) # 0), then we have that

. In case I_(up,0) — I+(up,0) < O (resp.
I—(up,0) — I+ (up,0) > 0) any 2-limit cycle bifurcating from
Lyy,uy is hyperbolic and attracting (resp. repelling). Moreover,
if 2—L) (4;,0) # 0, then
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Limit cycle bifurcations Hausdorff-close to L,y

Q If I_(u1,0) — I+ (u1,0) # 0, then there exists ¢g > 0, dp > 0
and a neighborhood W of 0 in the u-space such that system
Xeo With (€, 1) € [0, €] x W, has no limit cycles lying within
Hausdorff distance dg of Lyq, -

Q If I_(u1,0) — I+ (u1,0) =0 and /—(up,0) — I+ (uo, 0) # 0 (this
implies T (up, u1,0) # 0), then we have that

. In case I_(up,0) — I+(up,0) < O (resp.
I—(up,0) — I+ (up,0) > 0) any 2-limit cycle bifurcating from
Lyy,uy is hyperbolic and attracting (resp. repelling). Moreover,
if W(ul,O) # 0, then :

Q If I_(u;,0) — I+ (u;,0) =0 for i = 0,1 (this implie
T(uo, ur,0) = 0) and 2L (4, 0) £ 0 for / = 0,1, then
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Limit cycle bifurcations Hausdorff-close to L,y

@ We allow the slow dynamics to have a hyperbolic saddle at
precisely one corner point, w(ug) or a(up). In this case we call
Lyg,uy @ .

Theorem

Llet us suppose that f(w(up),0) =0, %(w(uo), 0) # 0 and that
f(x,0) <0 for all x € [a(ug),w(uo)[. Then

Any 2-limit cycle bifurcating from Ly, ,, is hyperbolic and
attracting.

A similar result is true in the case f(a(up),0) =0,

%(a(uo),O) # 0 and f(x,0) < 0 for all x €]a(up),w(ug)]. Any
2-limit cycle bifurcating from L, ., is hyperbolic and repelling.
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@ We define now the following transition maps for
(¢,B,\) ~(0,0,0):
© the forward transition map A_ : X, — X, along the flow of
XEQ,EB,)\;
© the backward transition map A, : X, — ¥, along the flow of
—Xz2,2B,x-

The map A~ includes a passage near m*.

Renato Huzak The slow divergence integral on a Mobius band



The slow divergence integral on a Mobius band
21 —

@ We define now the following transition maps for
(¢,B,\) ~(0,0,0):
© the forward transition map A_ : X, — X, along the flow of
XEQ,EB,)\;
© the backward transition map A, : X, — ¥, along the flow of
—Xz2,2B,x-

The map A~ includes a passage near m*.

@ The system Xz cp ) has a 1-periodic orbit passing through
the point u € X if and only if the following holds:
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@ We define now the following transition maps for
(¢,B,\) ~(0,0,0):
© the forward transition map A_ : X, — X, along the flow of
XEQ,EB,)\;
© the backward transition map A, : X, — ¥, along the flow of
—Xz2.28,x-

The map A~ includes a passage near m*.

@ The system Xz cp ) has a 1-periodic orbit passing through
the point u € X if and only if the following holds:

@ Similarly, the system Xz ;g ) has a 2—periodic orbit passing
through the points u, v’ € X, with u # ¢/, if and only if the
following holds: and
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@ For a regular slow dynamics, the study of the transition maps
relies on [Dumortier, Roussarie,1996]. The following theorem
gives the structure of A.

There exist é-regularly smooth functions I in (u, B, \) and
é-regularly smooth functions fy. in (B, \) such that
I+ (u, B, X\,0) = I£(u,0, ), with |+ defined in (3), and such that

(6)

Furthermore, f(0,\,0) = 0 and 9£(0, ,0) # 0 where
f(B,\, &) :=f_(B,\ &) — fr(B, )\ ©).

v
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@ The following theorem gives the structure of the transition
map A_ ([De Maesschalck,Dumortier, 2008, Huzak, De
Maesschalck, Dumortier,2013]).

For all k > 0 there exists €, > 0 so that A_ is C*° on
U_ N {€ <&/} and has a Ck-extension to the closure of
U- N {e < &}. Furthermore,

, (7)

where (u, B,\,€) € U_ N {e < &}, Z_ is é-regularly Ck in
u,B,\), Z_(u,B,\,€) - —o0 as (u, B,\, &) — (uo,0,0,0) and
7_ >

L (1, B, \, &) > 0.
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@ Using Theorem 9, the equation for 1-limit cycles can be
written as:

I_(u, B, \ € I (u, B\ € _
exp <(€2)> +exp (Jr(52)> = f(B, \€), (8)
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@ Using Theorem 9, the equation for 1-limit cycles can be
written as:

I_(u, B, \ € I (u, B\ € _
exp <(€2)> +exp <+(€2)> = f(B, \€), (8)

@ and the system for 2-limit cycles can be written as:

exp<,(BA) e W):f(&)\,g)
(9)

exp </'_(L/62BAE) texp 7+(U£A€)> = (B, \, ).
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Transition maps

o Instead of working with (9), it is sometimes more convenient
to use the equation for the fixed points
, where Pg ) :(u) = AT o A_(u) is
the 1-return map, or to use the difference equation
where Apg y z(u) = P e(u) — ngl/\’g(u).
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Proof of Theorem 3

o Let / be nonzero near (u, 1) = (uo,0,0) (i.e.
I*(”anao) 7& I+(U0,0,0))-
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Proof of Theorem 3

o Let / be nonzero near (u, ) = (up,0,0) (i.e.
I—(up,0,0) # I+ (uo,0,0)).Let us suppose that for
(B, €) ~(0,0,0), €> 0, X2 zg 5 has a 2—periodic orbit
intersecting ¥ in two points & ~ ug and i ~ ug, with & < i.
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Proof of Theorem 3

o Let / be nonzero near (u, ) = (up,0,0) (i.e.
I—(up,0,0) # I+ (uo,0,0)).Let us suppose that for
(B, €) ~(0,0,0), €> 0, X2 zg 5 has a 2—periodic orbit
intersecting ¥ in two points & ~ ug and i ~ ug, with & < i.
@ Then . Peae(0) = 4,
PB)\,g(LNI) = i and PB)\’E([L_I, ﬁ]) = [ﬁ, ﬁ]
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Proof of Theorem 3

o Let / be nonzero near (u, ) = (up,0,0) (i.e.
I—(up,0,0) # I+ (uo,0,0)).Let us suppose that for
(B, €) ~(0,0,0), €> 0, X2 zg 5 has a 2—periodic orbit
intersecting ¥ in two points & ~ ug and i ~ ug, with & < i.
@ Then . Peae(0) = 4,
PB)\,g(LNI) = i and P37A7g([ﬂ, ﬁ]) = [ﬁ, ﬁ]

@ The derivative of Ag ) z can be written as:

Baz(u) = —exp (I‘(“) - /+(Pl§,2x,€(u)) + o(1)>
I (u) —I_ Pfl (u 1
+exp<+( j— il tz,;,e( ) + of )),ue[a,ﬁ]
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Proof of Theorem 3

o This implies that the equation {A} , - = 0} is equivalent, for
€ >0 and u € [, d], to the following equation:

I-(u) = (P e(u)) +1-(Pg 3 £(1) = L4 (u) +0(1) = 0, (10)

for a new o(1)-term.
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Proof of Theorem 3

o This implies that the equation {A} , - = 0} is equivalent, for
€ >0 and u € [, d], to the following equation:

I-(u) = (P e(u)) +1-(Pg 3 £(1) = L4 (u) +0(1) = 0, (10)

for a new o(1)-term.

@ Since I+ are smooth and u, Pg ) ¢(u), Pgl)\ (u) = up for all
u € [a, d], we have:

I-(u) = I+ (Pepe(u) + 1= (P53 (1) = 1+ (u)
I—(uo) — I+ (uo) + I—(uo) — I+(wo)
2(I1—(uo) — I+(uo)) # O,

22

=2

for u € [a, .
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Proof of Theorem 4

o Let /(up,0,0) =0 and 9’(up,0,0) # 0. The 1-return map
Pg.»z fulfils the conditions of the following theorem:

Theorem (period doubling bifurcation)

Let pg : R — R be a smooth one-parameter family of mappings
such that pg, has a fixed point xo with eigenvalue —1. Assume

(PD1) —ga—p + 2ax83 # 0 at (x, B) = (x0, Bo);

(PD2) a:= 3(22)* + 122 £ 0 at (x, B) = (x0, Bo)-
Then there is a smooth curve of fixed points of pg passing through
(x0, Bo), the stability of which changes at (xo, By). There is also a
smooth curve 7y passing through (xp, Bp) so that v\ {(xo0, Bo)} is a

union of hyperbolic period 2 orbits. The curve ~y has a quadratic
tangency with the line B = Bo at (xo, Bo) Ifais positive (resp.
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Proof of Theorem 4

@ The derivative of Pg )z w.r.t. uis given by

OPoac _ _ pr(1B )9
Ou aﬁf( B,)\,E(u)an)\ag)’

(11)

with
0N
ou

fo(u,B, )\, E
(u,B,\,€) = +exp (i(U,,)\,E))

€2

where functions Iy are &regularly smooth in (u, B, A\) and
Iy (u, B, X\, 0) = I+(u,0,N).
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Proof of Theorem 4

@ The derivative of Pg )z w.r.t. uis given by

OPoac _ _ pr(1B )9
Ou aﬁf( B,)\,E(u)an)\ag)’

(11)

with

A e
aaui CRED N P (i(uez“)>

where functions Iy are &regularly smooth in (u, B, A\) and
Li(u, B, X, 0) = I+(u,0,)).

@ Since the function u — /_(u,0,0) — /+(u,0,0) has a simple
zero at u = up, 1(0,0,0) =0 and S—E(0,0,0) # 0, we can
apply the Implicit Function Theorem to the following
é-regularly smooth in (u, B, \) system:
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o
A_(u, B\ &) — A (u,B,\,&) =0
I_(u,B,\ &) — I (u,B,\ &) =0,

and find a solution (A, &) — (u(\, €), B(\, €)), éregularly
smooth in A, with u(0,0) = up and B(0,0) = 0.
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Proof of Theorem 4

°
A_(u,B,\E) — A (u,B,)\,&) =0
I_(u,B,\ &) — I (u,B,\ &) =0,
and find a solution (A, &) — (u(\, €), B(\, €)), éregularly
smooth in A, with u(0,0) = up and B(0,0) = 0.
e From this and (11) follows

_ _ OPp(re) _
Peane(u(),8) = u(A&) and =2 D25 (u(),8)) = -1,

for all (A\,€) ~ (0,0) and € > 0.
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Proof of Theorem 4

°
A_(u,B,\E) — A (u,B,)\,&) =0
I_(u,B,\ &) — I (u,B,\ &) =0,
and find a solution (A, &) — (u(\, €), B(\, €)), éregularly
smooth in A, with u(0,0) = up and B(0,0) = 0.
e From this and (11) follows

_ _ OPp(re) _
Peane(u(),8) = u(A&) and =2 D25 (u(),8)) = -1,

for all (A\,€) ~ (0,0) and € > 0.
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Proof of Theorem 4

@ The quantity (PD1) becomes:

Aozt (u) (G5 () — G (w)) + (1)
292 (u) ’

(12)

where (u, B) = (u(\, €), B(), €)).
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Proof of Theorem 4

@ The quantity (PD1) becomes:

HEZ8) (1) (% (u) = GE(v) + (1)

ON _ )
2 5o (u)

(12)

where (u, B) = (u(\, €), B(), €)).
@ The quantity (PD2) becomes
(% ()"~ (% W) + o)

= ot , (u, B) = (u(X, €), B(\, 8)).

Renato Huzak The slow divergence integral on a Mobius band



The slow divergence integral on a Mobius band
32
Proof of Theorem 4

Lemma

Let m e N, m > 1. Then we have:
o O™ LA L oly  \m I+ (u, B, A, &)
S (u) = ((E(u)> —|—o(1)) exp <6—2>

where I (u, B, \, €) are defined after (11), I(u) = I+(u,0,\) and
the o(1)-term is é-regularly smooth in (u, B, \).

\
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Proof of Theorem 4

Lemma

Let m e N, m > 1. Then we have:
o OMTIA L oly  \m I+ (u, B, A, &)
S (u) = ((&J(u)) —|—o(1)> exp <62>

where It (u, B, \, ) are defined after (11), I+(u) = I+(u,0, ) and
the o(1)-term is é-regularly smooth in (u, B, \).

\
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Proof of Theorem 5

@ We consider

oo (,_(5” e W) _ £(B,)\,9)

exp (/'_(ungAE) Texp 7+(u€25/\6)> = f(B, \,é).
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Proof of Theorem 5

@ We consider

@ The main difficulty lies in the fact that the limit € = 0 of this
system is . Our goal is, therefore, to replace the

system with a new system, for € =0, using
[Mamouhdi, Roussarie,2012].
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Proof of Theorem 5

@ Let us suppose that W(u, v’) and ®(u, u') are two smooth

functions defined on a rectangle R = [Ul, U1] x [0, U] and

let us suppose that ‘g‘g, gﬂ, ?}i and , are nonzero for all

(u,u') € R.
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34
Proof of Theorem 5

o Let us suppose that W(u, u') and &(u, u’) are two smooth
functions defined on a rectangle R = [U1, Ui] x [U, Us] and

let us suppose that ‘3‘5, gﬂ, g‘j}’ and , are nonzero for all

(u,u') € R.
@ We further assume that the equation {det(V, ®)(u, v’) = 0}
for contact points is equivalent on R to an equation
{E(u,u") = 0}, where E is a smooth function on R, and
where gE and aE are nonzero for all (u, ') € R. (Equivalent
means det(V, CD) F.E, where the factor F is a smooth
nowhere zero function on R.)
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Proof of Theorem 5

@ Let us suppose that W(u, v’) and ®(u, u') are two smooth
functions defined on a rectangle R = [U1, Ui] x [U, Us] and
let us suppose that ‘3‘5, gﬂ, g‘j}’ and , are nonzero for all
(u,u') € R.

@ We further assume that the equation {det(V, ®)(u, v’) = 0}
for contact points is equivalent on R to an equation
{E(u,u") = 0}, where E is a smooth function on R, and
where gE and aE are nonzero for all (u, ') € R. (Equivalent
means det(V, CD) F.E, where the factor F is a smooth

nowhere zero function on R.)

@ Now we can define a regular pair of foliations (\TJ, 6) on R as
follows: the curves {W(u, u') = a} (resp. {®(u,uv’) = B}) are
the leaves of foliation W (resp. ®).
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Proof of Theorem 5

@ Let us suppose that W(u, v’) and ®(u, u') are two smooth
functions defined on a rectangle R = [U1, Ui] x [Uz, Us] and
let us suppose that ‘3‘5, gﬂ, g‘j}’ and , are nonzero for all
(u,u') € R.

@ We further assume that the equation {det(V, ®)(u, v’) = 0}
for contact points is equivalent on R to an equation
{E(u,u") = 0}, where E is a smooth function on R, and
where gE and aE are nonzero for all (u, ') € R. (Equivalent
means det(V, CD) F.E, where the factor F is a smooth

nowhere zero function on R.)

@ Now we can define a regular pair of foliations (\TJ, 6) on R as
follows: the curves {W(u, u') = a} (resp. {®(u,uv’) = B}) are
the leaves of foliation W (resp. ®).

e Each leaf and the curve {E(u, u") = 0} are simple connected
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Proof of Theorem 5

@ We relate the number of intersection points of two leaves
{W(u,d") = a} and {®(u, ') = B} in R with the number of
intersection points of the curve {E(u, u’) = 0} and one of
these two leaves in R.

Lemma

Let (W, ®) be a regular pair of foliations on R as defined above
and let o, B € R be arbitrary but fixed. Let N'(«, 3) be the
number of intersection points of {W(u, u') = a} with

{®(u,u") = B} in R, counting multiplicity, and let N'(3) be the
number of intersection points of {E(u, u") = 0} with

{®(u, ) = B} in R, counting multiplicity. If N'(B) is finite, then

N(a, B) < N(B) + 1. (13)

<
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Proof of Theorem 5

e To find at most 3 solutions of the system in [&, d] x [&, d], for
each (B, \, &) ~ (0,0,0), with € > 0, we use the lemma twice.
The system (9) is a special case of the more general system

I_(u,B\E (v ,B\E

o _ ) (14)
eXp I(”éf)‘ﬁ)) + eXp (I+(u7£7>\76) = ﬁ

where a, 8 € R, and it suffices to prove that (14) has at most
3 solutions in [&, d] x [a, ], for each fixed (B, A, €) ~ (0,0, 0),
with € > 0, and «, 8 € R.
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Proof of Theorem 5

o We denote by Vg ) z(u, u'), ®p » z(u, ") the functions on the
left-hand side of (14). We have

det(Wprz, Oprz) =exp (/_(u) + 1 g(QU/) + o(1)>
~—exp </+(U) - /+€(2u’) i o(l)>‘
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Proof of Theorem 5

o We denote by Vg ) z(u, u'), ®p » z(u, ") the functions on the
left-hand side of (14). We have

det(Wprz, Oprz) =exp (/_(u) + 1 g(QU/) + o(1)>
~—exp </+(U) - /+€(2u’) i o(l)>‘

@ This implies that the the set {det(Wp »z ®p 1 e)(u, u') = 0}

of the contact points between the two foliations Vg ) z and
®p )z is equivalent for € > 0 to {Eg » (v, u’) = 0} with

Epnelu, o) = 1_(u) — L () + (/) — Ly (u) + o(1).
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Proof of Theorem 5

@ We define the following system:

Ege(u,u') = I-(u) = Iy (u) + - (v') = I+ (u) + o(1) = O
(v ,B,)\ €) (uB)\e)) B.

(15)

S re(u, ') =exp > + exp (
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Proof of Theorem 5

@ We define the following system:

Ege(u,u') = I-(u) = Iy (u) + - (v') = I+ (u) + o(1) = O
(v ,B,)\ €) (uB)\e)) B.

(15)

S re(u, ') =exp > + exp (

e Following Lemma 13, if we denote by Ng  z(«, 3) (resp.
Ng.xz(8)) the number of solutions of (14) (resp. (15)),
counting multiplicity, in [&, d] x [&, d], then

Neaela, B) <1+ NpaeB).
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Proof of Theorem 5

@ We have

det(Egpre P ae) =
(5 0= G+ o)) exp (=120)
_ (%'u(u’) — %ﬁ(u’) + o(1)> exp <I+(u)g2+o(1))
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Proof of Theorem 5

@ We have

det(Egpre P ae) =
(5 0= G+ o)) exp (=120)
_ (%'u(u’) — %ﬁ(u’) + o(1)> exp <I+(u)g2+o(1))

Clearly, the equation {det(Eg )z, P z)(u,u’) =0} is

equivalent for € > 0 to {Ep ) z(u, u') = 0} where

Egyz(u,u') = I1_(v) — I+ (u) + o(1).
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Proof of Theorem 5

@ Lemma 13 implies that
Nere(B) <14+ Ng g,

where N » ¢ is the number of solutions (counting multiplicity)
of the system {/_(u) — I (v") + I-(v') — I+ (u) + o(1) =
0,/_(v") — I+ (u) + o(1) = 0}, or equivalently the system

I (u) — I (d") +o(1) =0
{ I-(u") - li(u) +o(1)=0. (16)

Thus, we have proved that

Nepe(o, B) <2+ Npag,

for each (B, \,€) ~ (0,0,0), with € > 0, and o, 8 € R.
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Proof of Theorem 6

@ Assume that f(w(up),0) =0, X(( up),0) # 0 and
f(x,0) < 0 for all x € [a(up),w(up)l-
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Proof of Theorem 6

@ Assume that f(w(up),0) =0, %(w(uo),O) # 0 and
f(x,0) < 0 for all x € [a(up),w(up)l-

o First, let us prove that Cycl(Xc ,, Ly,) <1, i.e. there are no
2-periodic orbits Hausdorff close to L.
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Proof of Theorem 6

@ Assume that f(w(up),0) =0, %(w(uo),O) # 0 and
f(x,0) < 0 for all x € [a(up),w(up)l-

o First, let us prove that Cycl(Xc ,, Ly,) <1, i.e. there are no
2-periodic orbits Hausdorff close to L.

@ Suppose, on the contrary, that for (B, A,€) ~ (0,0,0), € > 0,
Xz zg.» has a 2—periodic orbit intersecting ¥ in two points
i~ up and i~ ug, with u(B,\, &) < o < i.
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Proof of Theorem 6

@ Assume that f(w(up),0) =0, gi( (10),0) # 0 and
f(x,0) < 0 for all x € [a(up),w(up)l-
o First, let us prove that Cycl(Xc ,, Ly,) <1, i.e. there are no
2-periodic orbits Hausdorff close to L.
@ Suppose, on the contrary, that for (B, A,€) ~ (0,0,0), € > 0,
Xz zg.» has a 2—periodic orbit intersecting ¥ in two points
i~ up and i~ ug, with u(B,\, &) < o < i.

e We have for u € [a, d]:

?B,/\,g(u) = —exp (I_(u’ B,\€) — IEQ(PB,/\,E(U)) + o(l))
[ (u) — u),B,\, € 1
+exp<+() ( BAEE(2) €) + o( )>
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Proof of Theorem 7

@ Let ug,u; € X4, with ug < w1, be arbitrary but fixed, and let
us suppose that , Where T is the
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Proof of Theorem 7

@ Let ug,u; € X4, with ug < w1, be arbitrary but fixed, and let
us suppose that , Where T is the

@ Suppose, on the contrary, that for (B, \,€) ~ (0,0,0), € > 0,

Xz eg,) has , one intersecting > in two
points il ~ ug and i ~ uy, and the other in &1 ~ ug and
U~ uy.
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Proof of Theorem 7

@ Let ug,u; € X4, with ug < w1, be arbitrary but fixed, and let
us suppose that , Where T is the

@ Suppose, on the contrary, that for (B, \,€) ~ (0,0,0), € > 0,
Xz eg,) has , one intersecting > in two

points il ~ ug and i ~ uy, and the other in &1 ~ ug and
U~ uy.

@ Thenwe have i< T < i1 < i

<

or

(1]

<u<io<
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42

Proof of Theorem 7

@ Let ug,u; € X4, with ug < w1, be arbitrary but fixed, and let
us suppose that , Where T is the

@ Suppose, on the contrary, that for (B, \,€) ~ (0,0,0), € > 0,

Xz eg,) has , one intersecting > in two
points il ~ ug and i ~ uy, and the other in &1 ~ ug and
U~ uy.

o Thenwehavei<O<i<ioru<i<ii<
]

i,
@ Suppose without loss of generality that & < I < & < .
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Proof of Theorem 7

@ Let ug,u; € X4, with ug < w1, be arbitrary but fixed, and let
us suppose that , Where T is the

@ Suppose, on the contrary, that for (B, \,€) ~ (0,0,0), € > 0,
Xz eg,) has , one intersecting > in two
points il ~ ug and i ~ uy, and the other in &1 ~ ug and
U~ uj.

@ Thenwehavei<b<i<iori<i<i<hi.
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Proof of Theorem 7

o We get
Baz(u) = —exp <l(u) — I+('D’?2’\75(“)) + 0(1)>
_ -1 ¢,
e <I+(U) I_(P?;’g( ) + o(1)>’

where u € [, 0].
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Proof of Theorem 7
o We get
I-(u) — L+ (PBe(u)) + o1
/B,)\,E(U):—exp< (u) = I+ ( EQ( )) ( )>

+ exp

& ’

<l+(u) — I-(Pg)+(u) + o(1)>

where u € [, 0].

o The equation {A% , -(u) = 0} is equivalent for &> 0 and
u € [d, O] to an equation given in (10). Since
T(ug, u1,0) #0, u~ ug, Pgye(u), P‘,gl/\ (u) ~ uy for all
u € [a, 1], (10) has no solutions w.r.t. u € [&, O].
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Proof of Theorem 7

o We get
Baz(u) = —exp <l(u) — I+('D’?2’\75(“)) + 0(1)>
_ -1 ¢,
e <I+(U) I_(P?;’g( ) + o(1)>’

where u € [, 0].

o The equation {A% , -(u) = 0} is equivalent for &> 0 and
u € [d, O] to an equation given in (10). Since
T(ug, u1,0) # 0, u~ o, Pgrz(u), Pg} (u) ~ uy for all
u € [a, 1], (10) has no solutions w.r.t. u € [&, O].

o This is a contradiction with Ay (u') = 0. Thus,
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Future research

@ The cyclicity of 1- and 2-canard cycles in the case of
in the slow divergence integral
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in the slow divergence integral

@ The cyclicity of 1- and 2-canard cycles if the slow dynamics
has a
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@ The cyclicity of 1- and 2-canard cycles in the case of
in the slow divergence integral
@ The cyclicity of 1- and 2-canard cycles if the slow dynamics
has a
@ The cyclicity of 1- and 2-canard cycles if the slow dynamics

has , located away from
the contact point (a generic contact point), [De Maesschalck,
Dumortier, 2008]
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Future research

@ The cyclicity of 1- and 2-canard cycles in the case of
in the slow divergence integral

@ The cyclicity of 1- and 2-canard cycles if the slow dynamics
has a

@ The cyclicity of 1- and 2-canard cycles if the slow dynamics
has , located away from
the contact point (a generic contact point), [De Maesschalck,
Dumortier, 2008]

@ The cyclicity of 1- and 2-canard cycles if the slow dynamics
has singularities (non-generic
contact point)
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