RENATO HUZAK

Hasselt University, Hasselt, Belgium

Motivation

2

• The slow divergence integral has proved to be an important tool in the study of slow-fast cycles defined on an orientable two-dimensional manifold (e.g. \mathbb{R}^2).

Motivation

- The slow divergence integral has proved to be an important tool in the study of slow-fast cycles defined on an orientable two-dimensional manifold (e.g. \mathbb{R}^2).
- The goal of our presentation is to study canard cycle bifurcations on a non-orientable two-dimensional manifold (e.g. the Möbius band).

Motivation

- The slow divergence integral has proved to be an important tool in the study of slow-fast cycles defined on an orientable two-dimensional manifold (e.g. \mathbb{R}^2).
- The goal of our presentation is to study canard cycle bifurcations on a non-orientable two-dimensional manifold (e.g. the Möbius band).
- We give a simple sufficient condition, expressed in terms of the slow divergence integral, for the existence of a period-doubling bifurcation near the 1-canard cycle.

Motivation

- The slow divergence integral has proved to be an important tool in the study of slow-fast cycles defined on an orientable two-dimensional manifold (e.g. \mathbb{R}^2).
- The goal of our presentation is to study canard cycle bifurcations on a non-orientable two-dimensional manifold (e.g. the Möbius band).
- We give a simple sufficient condition, expressed in terms of the slow divergence integral, for the existence of a period-doubling bifurcation near the 1-canard cycle.
- We prove the finite cyclicity property of "singular" 1– and 2–homoclinic loops.

Motivation

- The slow divergence integral has proved to be an important tool in the study of slow-fast cycles defined on an orientable two-dimensional manifold (e.g. \mathbb{R}^2).
- The goal of our presentation is to study canard cycle bifurcations on a non-orientable two-dimensional manifold (e.g. the Möbius band).
- We give a simple sufficient condition, expressed in terms of the slow divergence integral, for the existence of a period-doubling bifurcation near the 1-canard cycle.
- We prove the finite cyclicity property of "singular" 1– and 2–homoclinic loops.
- Using an idea of Khovanskii we find optimal upper bounds for the number of limit cycles Hausdorff close to canard cycles.

Motivation

3

• Let's consider a simple planar slow-fast system $X_{\epsilon,b}$ (depending possibly on an extra finite dimensional parameter):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b - x + O(x^2)) + O(\epsilon y^2) \end{cases}$$
 (1)

where $\epsilon \geq 0$ is a singular perturbation parameter and $b \sim 0$ is a breaking parameter.

Motivation

3

• Let's consider a simple planar slow-fast system $X_{\epsilon,b}$ (depending possibly on an extra finite dimensional parameter):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b - x + O(x^2)) + O(\epsilon y^2) \end{cases}$$
 (1)

where $\epsilon \geq 0$ is a singular perturbation parameter and $b \sim 0$ is a breaking parameter.

ullet $X_{\epsilon,b}$ represents a normal form for a slow-fast Hopf point

Motivation

3

• Let's consider a simple planar slow-fast system $X_{\epsilon,b}$ (depending possibly on an extra finite dimensional parameter):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b - x + O(x^2)) + O(\epsilon y^2) \end{cases}$$
 (1)

where $\epsilon \geq 0$ is a singular perturbation parameter and $b \sim 0$ is a breaking parameter.

- ullet $X_{\epsilon,b}$ represents a normal form for a slow-fast Hopf point
- The fast subsystem $X_{0,b}$ consists of the line of singularities $\{y=0\}$ (the *critical curve* or the *slow curve*) and *fast orbits*, given by parabolas $y=-\frac{1}{2}x^2+c$.

Motivation

3

• Let's consider a simple planar slow-fast system $X_{\epsilon,b}$ (depending possibly on an extra finite dimensional parameter):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b - x + O(x^2)) + O(\epsilon y^2) \end{cases}$$
 (1)

where $\epsilon \geq 0$ is a singular perturbation parameter and $b \sim 0$ is a breaking parameter.

- ullet $X_{\epsilon,b}$ represents a normal form for a slow-fast Hopf point
- The fast subsystem $X_{0,b}$ consists of the line of singularities $\{y=0\}$ (the *critical curve* or the *slow curve*) and *fast orbits*, given by parabolas $y=-\frac{1}{2}x^2+c$.
- All singularities of the critical curve are normally hyperbolic, except the origin where we deal with a generic nilpotent contact point.

Motivation

4

• We distinguish between two types of limit periodic sets: the contact point (x, y) = (0, 0) and canard cycles

Motivation

- We distinguish between two types of limit periodic sets: the contact point (x, y) = (0, 0) and canard cycles
- F. Dumortier, R. Roussarie, *Canard cycles and center manifolds*, 1996

Motivation

- We distinguish between two types of limit periodic sets: the contact point (x, y) = (0, 0) and canard cycles
- F. Dumortier, R. Roussarie, *Canard cycles and center manifolds*, 1996
- M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion, 2001

Motivation

- We distinguish between two types of limit periodic sets: the contact point (x, y) = (0, 0) and canard cycles
- F. Dumortier, R. Roussarie, *Canard cycles and center manifolds*, 1996
- M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion, 2001
- F. Dumortier, Slow divergence integral and balanced canard solutions, 2011

Motivation

5

 Our model can provide much richer dynamics if we consider it on the Möbius band

Motivation

5

 Our model can provide much richer dynamics if we consider it on the Möbius band

• Besides the contact point and the canard cycles we also detect so-called 1– and 2–canard cycles consisting of a fast orbit, turning around the Möbius band, and the part of the critical curve between the α -limit set and the ω -limit set of the fast orbit.

6

• Our model in the Liénard plane:

6

• Our model in the Liénard plane:

Definitions on the smooth Möbius band

7

• Denote by M a smooth Möbius band ("smooth" means C^{∞} -smooth). Let $(\epsilon,\mu) \sim (0,0) \in \mathbb{R} \times \mathbb{R}^{I}$, with $\epsilon \geq 0$, and let $X_{\epsilon,\mu}: M \to TM$ be a smooth (ϵ,μ) -family of vector fields on M.

Definitions on the smooth Möbius band

- Denote by M a smooth Möbius band ("smooth" means C^{∞} -smooth). Let $(\epsilon,\mu)\sim (0,0)\in \mathbb{R}\times \mathbb{R}^I$, with $\epsilon\geq 0$, and let $X_{\epsilon,\mu}:M\to TM$ be a smooth (ϵ,μ) -family of vector fields on M.
- We suppose $X_{\epsilon,\mu}$ has a slow-fast structure, with a singular perturbation parameter ϵ and with a generic turning point (or equivalently, a slow-fast Hopf point) $p \in M$ for $(\epsilon, \mu) = (0, 0)$.

Definitions on the smooth Möbius band

- Denote by M a smooth Möbius band ("smooth" means C^{∞} -smooth). Let $(\epsilon,\mu)\sim (0,0)\in \mathbb{R}\times \mathbb{R}^I$, with $\epsilon\geq 0$, and let $X_{\epsilon,\mu}:M\to TM$ be a smooth (ϵ,μ) -family of vector fields on M.
- We suppose $X_{\epsilon,\mu}$ has a slow-fast structure, with a singular perturbation parameter ϵ and with a generic turning point (or equivalently, a slow-fast Hopf point) $p \in M$ for $(\epsilon, \mu) = (0, 0)$.
- More precisely, we suppose that there exists a local chart on M around p in which the vector field $X_{\epsilon,\mu}$ is locally expressed, up to smooth equivalence, as:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon (b(\mu) - x + x^2 g(x, \epsilon, \mu)) + \epsilon y^2 H(x, y, \epsilon, \mu). \end{cases}$$
(2)

Definitions on the smooth Möbius band

8

• The generic turning point $p \in M$ is represented by (x, y) = (0, 0) in the local coordinates.

Definitions on the smooth Möbius band

- The generic turning point $p \in M$ is represented by (x, y) = (0, 0) in the local coordinates.
- We further assume that $X_{0,\mu}$ has a smooth μ -family of one dimensional embedded manifolds m_{μ} containing singularities of $X_{0,\mu}$ (in the local coordinates, m_{μ} is given by $\{y=0\}$), and that $m_0=m^-\cup\{p\}\cup m^+$, where m^- (resp. m^+) is normally attracting (resp. normally repelling).

Definitions on the smooth Möbius band

- The generic turning point $p \in M$ is represented by (x, y) = (0, 0) in the local coordinates.
- We further assume that $X_{0,\mu}$ has a smooth μ -family of one dimensional embedded manifolds m_{μ} containing singularities of $X_{0,\mu}$ (in the local coordinates, m_{μ} is given by $\{y=0\}$), and that $m_0=m^-\cup\{p\}\cup m^+$, where m^- (resp. m^+) is normally attracting (resp. normally repelling).
- We suppose that the slow dynamics is nonzero on $m^- \cup m^+$, pointing towards p on m^- and away from p on m^+ .

Definitions on the smooth Möbius band

- The generic turning point $p \in M$ is represented by (x, y) = (0, 0) in the local coordinates.
- We further assume that $X_{0,\mu}$ has a smooth μ -family of one dimensional embedded manifolds m_{μ} containing singularities of $X_{0,\mu}$ (in the local coordinates, m_{μ} is given by $\{y=0\}$), and that $m_0=m^-\cup\{p\}\cup m^+$, where m^- (resp. m^+) is normally attracting (resp. normally repelling).
- We suppose that the slow dynamics is nonzero on $m^- \cup m^+$, pointing towards p on m^- and away from p on m^+ .
- We assume that the family m_{μ} of slow curves is located in an open orientable submanifold \widetilde{M} of M.

Definitions on the smooth Möbius band

- The generic turning point $p \in M$ is represented by (x, y) = (0, 0) in the local coordinates.
- We further assume that $X_{0,\mu}$ has a smooth μ -family of one dimensional embedded manifolds m_{μ} containing singularities of $X_{0,\mu}$ (in the local coordinates, m_{μ} is given by $\{y=0\}$), and that $m_0=m^-\cup\{p\}\cup m^+$, where m^- (resp. m^+) is normally attracting (resp. normally repelling).
- We suppose that the slow dynamics is nonzero on $m^- \cup m^+$, pointing towards p on m^- and away from p on m^+ .
- We assume that the family m_{μ} of slow curves is located in an open orientable submanifold \widetilde{M} of M.
- Working with such an orientable submanifold, we can choose a volume form and define the divergence of (the restriction of) the vector field $X_{\epsilon,\mu}$.

Definitions on the smooth Möbius band

9

• The slow divergence integral is independent of the chosen volume form and the local chart.

Definitions on the smooth Möbius band

- The slow divergence integral is independent of the chosen volume form and the local chart.
- The slow dynamics of $X_{\epsilon,\mu}$ along the slow curve $m_{\mu} \subset M$, away from the turning point, is given by $x' = f(x,\mu), \ \mu \sim 0$, where f is a smooth function and m_{μ} is parametrized by a regular parameter x

Definitions on the smooth Möbius band

- The slow divergence integral is independent of the chosen volume form and the local chart.
- The slow dynamics of $X_{\epsilon,\mu}$ along the slow curve $m_{\mu} \subset \widetilde{M}$, away from the turning point, is given by $x' = f(x,\mu), \ \mu \sim 0$, where f is a smooth function and m_{μ} is parametrized by a regular parameter x
- We have f < 0. Now we can define the slow divergence integral $I_{\pm}(u, \mu)$ along m^{\pm} :

$$I_{+}(u,\mu) := \int_{\alpha(u)}^{0} \frac{\operatorname{div} X_{0,\mu} dx}{f(x,\mu)} < 0, \quad I_{-}(u,\mu) := \int_{\omega(u)}^{0} \frac{\operatorname{div} X_{0,\mu} dx}{f(x,\mu)} < 0,$$
(3)

Definitions on the smooth Möbius band

10

Figure: Canard cycles on the Möbius band M turning around M, at level $(\epsilon, \mu) = (0, 0)$. (a) 1-canard cycles intersect Σ_+ only once. (b) 2-canard cycles intersect Σ_+ twice

Renato Huzak

Definitions on the smooth Möbius band

Definition (1 and 2-periodic orbits)

11

Let L_{u_0} and L_{u_0,u_1} be 1– and 2–canard cycles.

- (a) Let $V \subset M$ be a small tubular neighborhood of L_{u_0} . Let $\mathcal{O} \subset V$ be a periodic orbit of $X_{\epsilon,\mu}$, with $\epsilon > 0$. We call \mathcal{O} a 1-periodic orbit if \mathcal{O} intersects the section Σ_+ only once. Isolated 1-periodic orbits are called 1-limit cycles.
- (b) Let $V \subset M$ be a small tubular neighborhood of L_{u_0} or L_{u_0,u_1} . Let $\mathcal{O} \subset V$ be a periodic orbit of $X_{\epsilon,\mu}$, with $\epsilon > 0$. We call \mathcal{O} a 2-periodic orbit if \mathcal{O} intersects the section Σ_+ twice. Isolated 2-periodic orbits are called 2-limit cycles.

Definitions on the smooth Möbius band

Definition (Cyclicity of L_{u_0} and L_{u_0,u_1})

Let $X_{\epsilon,\mu}$ be a smooth (ϵ,μ) -family of vector fields on M, defined above, and let L_{u_0} and L_{u_0,u_1} be the limit periodic sets. The cyclicity of L_{u_0} (resp. L_{u_0,u_1}) in the family $X_{\epsilon,\mu}$ is bounded from above by $N \in \mathbb{N}$ if there exists $\epsilon_0 > 0$, $\delta_0 > 0$ and a neighborhood W of 0 in the μ -space such that $X_{\epsilon,\mu}$, with $(\epsilon,\mu) \in [0,\epsilon_0] \times W$, generates at most N limit cycles, lying each within Hausdorff distance δ_0 of L_{u_0} (resp. L_{u_0,u_1}). We call the smallest N with this property the cyclicity of L_{u_0} (resp. L_{u_0,u_1}) in the family $X_{\epsilon,\mu}$, and denote it by $\text{Cycl}(X_{\epsilon,\mu},L_{u_0})$ (resp. $\text{Cycl}(X_{\epsilon,\mu},L_{u_0,u_1})$).

Limit cycle bifurcations Hausdorff-close to L_{u_0}

• For $(u, \mu) \sim (u_0, 0)$, the slow divergence integral along the slow curve from $\omega(u) \in m^-$ to $\alpha(u) \in m^+$ is given by:

$$I(u,\mu) = I_{-}(u,\mu) - I_{+}(u,\mu) \tag{4}$$

Theorem

Suppose that $I(u,\mu)$ is nonzero near $(u,\mu)=(u_0,0)$. Then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0})=1$ and $X_{\epsilon,\mu}$ has no 2-periodic orbits Hausdorff-close to L_{u_0} . In case $I(u_0,0)<0$ (resp. $I(u_0,0)>0$) any 1-limit cycle bifurcating from L_{u_0} is hyperbolically attracting (resp. hyperbolically repelling).

Limit cycle bifurcations Hausdorff-close to L_{u_0}

• If the function $u \to I(u,0)$ has a simple zero at $u=u_0$, then for $\lambda \sim 0$, $\epsilon \sim 0$ and $\epsilon > 0$ the *b*-family $X_{\epsilon,\mu} = X_{\epsilon,b,\lambda}$ undergoes, Hausdorff-close to L_{u_0} , a *period doubling bifurcation*, giving rise to a 2-limit cycle. In this case we do not need the parameter λ .

$\mathsf{Theorem}$

14

Let us suppose that the function $u \to I(u,0)$ has a simple zero at $u=u_0$ (i.e. $I(u_0,0)=0$ and $\frac{\partial I}{\partial u}(u_0,0)\neq 0$). Then there are continuous functions $u(\epsilon,\lambda)$ and $b(\epsilon,\lambda)$ defined for $\epsilon\geq 0$, $\epsilon\sim 0$ and $\lambda\sim 0$, smooth for $\epsilon>0$, with $u(0,0)=u_0$ and $b(0,\lambda)=0$, such that for each $\epsilon>0$, $\epsilon\sim 0$ and $\lambda\sim 0$ the b-family $X_{\epsilon,b,\lambda}$ undergoes a period doubling bifurcation at $(u(\epsilon,\lambda),b(\epsilon,\lambda))$.

Limit cycle bifurcations Hausdorff-close to $oldsymbol{L}_{oldsymbol{u}_0}$

• To prove that, under the same condition on I, $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0}) \leq 2$, we use a method of Khovanskii (Mamouhdi, Roussarie).

Theorem

Let us suppose that $u \to I(u,0)$ has a simple zero at $u=u_0$. Then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0})=2$.

Limit cycle bifurcations Hausdorff-close to L_{u_0}

• To prove that, under the same condition on I, $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0}) \leq 2$, we use a method of Khovanskii (Mamouhdi, Roussarie).

Theorem

Let us suppose that $u \to I(u,0)$ has a simple zero at $u=u_0$. Then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0})=2$.

 The case of higher multiplicity zeros in the slow divergence integral is a topic of further study.

Limit cycle bifurcations Hausdorff-close to L_{u_0}

• We call the 1–canard cycle L_{u_0} a singular 1–homoclinic loop if the slow dynamics has a hyperbolic saddle at precisely one corner point: " $f(\omega(u_0),0)=0, \frac{\partial f}{\partial x}(\omega(u_0),0)\neq 0$ " or " $f(\alpha(u_0),0)=0, \frac{\partial f}{\partial x}(\alpha(u_0),0)\neq 0$ ". We prove that such a limit periodic set can produce at most one limit cycle.

Theorem

16

Let us suppose that $f(\omega(u_0),0)=0, \frac{\partial f}{\partial x}(\omega(u_0),0)\neq 0$ and f(x,0)<0 for all $x\in [\alpha(u_0),\omega(u_0)[$. Then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0})=1$ and $X_{\epsilon,\mu}$ has no 2-periodic orbits Hausdorff-close to L_{u_0} . When a 1-limit cycle exists, it is hyperbolic and attracting. A similar result is true in the case $f(\alpha(u_0),0)=0, \frac{\partial f}{\partial x}(\alpha(u_0),0)\neq 0$ and f(x,0)<0 for all $x\in]\alpha(u_0),\omega(u_0)[$. A 1-limit cycle bifurcating from L_{u_0} is hyperbolic and repelling.

Limit cycle bifurcations Hausdorff-close to L_{u_0}

17

• "Regular" 1-homoclinic loops of finite codimension have been studied by Guimond, 1999.

Limit cycle bifurcations Hausdorff-close to L_{u_0,u_1}

• Let $u_0, u_1 \in \Sigma_+$, with $u_0 < u_1$, be arbitrary but fixed. For $(u, \tilde{u}, \mu) \sim (u_0, u_1, 0)$, we define the so-called *total slow* divergence integral of L_{u_0, u_1} :

$$T(u, \tilde{u}, \mu) = I_{-}(u, \mu) - I_{+}(\tilde{u}, \mu) + I_{-}(\tilde{u}, \mu) - I_{+}(u, \mu).$$
 (5)

Theorem

Suppose that T is nonzero near $(u, \tilde{u}, \mu) = (u_0, u_1, 0)$. Then $\operatorname{Cycl}(X_{\epsilon,\mu}, L_{u_0,u_1}) \leq 1$. In case $T(u_0, u_1, 0) < 0$ (resp. $T(u_0, u_1, 0) > 0$) any 2-limit cycle bifurcating from L_{u_0,u_1} is hyperbolically attracting (resp. hyperbolically repelling).

19

Limit cycle bifurcations Hausdorff-close to L_{u_0,u_1}

• If $I_{-}(u_1,0)-I_{+}(u_1,0)\neq 0$, then there exists $\epsilon_0>0$, $\delta_0>0$ and a neighborhood W of 0 in the μ -space such that system $X_{\epsilon,\mu}$, with $(\epsilon,\mu)\in [0,\epsilon_0]\times W$, has no limit cycles lying within Hausdorff distance δ_0 of L_{u_0,u_1} .

Limit cycle bifurcations Hausdorff-close to L_{u_0,u_1}

- If $I_{-}(u_1,0)-I_{+}(u_1,0)\neq 0$, then there exists $\epsilon_0>0$, $\delta_0>0$ and a neighborhood W of 0 in the μ -space such that system $X_{\epsilon,\mu}$, with $(\epsilon,\mu)\in [0,\epsilon_0]\times W$, has no limit cycles lying within Hausdorff distance δ_0 of L_{u_0,u_1} .
- ② If $I_{-}(u_{1},0) I_{+}(u_{1},0) = 0$ and $I_{-}(u_{0},0) I_{+}(u_{0},0) \neq 0$ (this implies $T(u_{0},u_{1},0) \neq 0$), then we have that $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_{0},u_{1}}) \leq 1$. In case $I_{-}(u_{0},0) I_{+}(u_{0},0) < 0$ (resp. $I_{-}(u_{0},0) I_{+}(u_{0},0) > 0$) any 2-limit cycle bifurcating from $L_{u_{0},u_{1}}$ is hyperbolic and attracting (resp. repelling). Moreover, if $\frac{\partial (I_{-}-I_{+})}{\partial u}(u_{1},0) \neq 0$, then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_{0},u_{1}}) = 1$.

Limit cycle bifurcations Hausdorff-close to L_{u_0,u_1}

19

- If $I_-(u_1,0)-I_+(u_1,0)\neq 0$, then there exists $\epsilon_0>0$, $\delta_0>0$ and a neighborhood W of 0 in the μ -space such that system $X_{\epsilon,\mu}$, with $(\epsilon,\mu)\in [0,\epsilon_0]\times W$, has no limit cycles lying within Hausdorff distance δ_0 of L_{u_0,u_1} .
- ② If $I_{-}(u_1,0) I_{+}(u_1,0) = 0$ and $I_{-}(u_0,0) I_{+}(u_0,0) \neq 0$ (this implies $T(u_0,u_1,0) \neq 0$), then we have that $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0,u_1}) \leq 1$. In case $I_{-}(u_0,0) I_{+}(u_0,0) < 0$ (resp. $I_{-}(u_0,0) I_{+}(u_0,0) > 0$) any 2-limit cycle bifurcating from L_{u_0,u_1} is hyperbolic and attracting (resp. repelling). Moreover, if $\frac{\partial (I_{-}-I_{+})}{\partial u}(u_1,0) \neq 0$, then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0,u_1}) = 1$.
- ③ If $I_{-}(u_i,0) I_{+}(u_i,0) = 0$ for i = 0,1 (this implies $T(u_0,u_1,0) = 0$) and $\frac{\partial (I_{-}-I_{+})}{\partial u}(u_i,0) \neq 0$ for i = 0,1, then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0,u_1}) \leq 2$.

Limit cycle bifurcations Hausdorff-close to L_{u_0,u_1}

• We allow the slow dynamics to have a hyperbolic saddle at precisely one corner point, $\omega(u_0)$ or $\alpha(u_0)$. In this case we call L_{u_0,u_1} a singular 2-homoclinic loop.

$\mathsf{Theorem}$

Llet us suppose that $f(\omega(u_0),0)=0$, $\frac{\partial f}{\partial x}(\omega(u_0),0)\neq 0$ and that f(x,0)<0 for all $x\in [\alpha(u_0),\omega(u_0)[$. Then $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0,u_1})\leq 1$. Any 2-limit cycle bifurcating from L_{u_0,u_1} is hyperbolic and attracting.

A similar result is true in the case $f(\alpha(u_0), 0) = 0$, $\frac{\partial f}{\partial x}(\alpha(u_0), 0) \neq 0$ and f(x, 0) < 0 for all $x \in]\alpha(u_0), \omega(u_0)]$. Any 2-limit cycle bifurcating from L_{u_0,u_1} is hyperbolic and repelling.

Transition maps

21

- We define now the following transition maps for $(\bar{\epsilon}, B, \lambda) \sim (0, 0, 0)$:
 - ① the forward transition map $\Delta_-: \Sigma_+ \to \Sigma_p$ along the flow of $X_{\bar{\epsilon}^2, \bar{\epsilon}B, \lambda}$;
 - ② the backward transition map $\Delta_+: \Sigma_+ \to \Sigma_p$ along the flow of $-X_{\bar{\epsilon}^2,\bar{\epsilon}B,\lambda}.$

The map Δ_{\pm} includes a passage near m^{\pm} .

Transition maps

21

- We define now the following transition maps for $(\bar{\epsilon}, B, \lambda) \sim (0, 0, 0)$:
 - ① the forward transition map $\Delta_-: \Sigma_+ \to \Sigma_p$ along the flow of $X_{\bar{\epsilon}^2, \bar{\epsilon}B, \lambda}$;
 - ② the backward transition map $\Delta_+: \Sigma_+ \to \Sigma_p$ along the flow of $-X_{\bar{\epsilon}^2,\bar{\epsilon}B,\lambda}.$

The map Δ_{\pm} includes a passage near m^{\pm} .

• The system $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has a 1-periodic orbit passing through the point $u\in\Sigma_+$ if and only if the following holds:

$$\Delta_{-}(u,B,\lambda,\bar{\epsilon})=\Delta_{+}(u,B,\lambda,\bar{\epsilon}).$$

Transition maps

21

- We define now the following transition maps for $(\bar{\epsilon}, B, \lambda) \sim (0, 0, 0)$:
 - ① the forward transition map $\Delta_-:\Sigma_+\to\Sigma_p$ along the flow of $X_{\bar\epsilon^2,\bar\epsilon B,\lambda}$;
 - ② the backward transition map $\Delta_+: \Sigma_+ \to \Sigma_p$ along the flow of $-X_{\bar{\epsilon}^2,\bar{\epsilon}B,\lambda}.$

The map Δ_{\pm} includes a passage near m^{\pm} .

- The system $X_{\bar{\epsilon}^2,\bar{\epsilon}B,\lambda}$ has a 1-periodic orbit passing through the point $u \in \Sigma_+$ if and only if the following holds: $\Delta_-(u,B,\lambda,\bar{\epsilon}) = \Delta_+(u,B,\lambda,\bar{\epsilon}).$
- Similarly, the system $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has a 2-periodic orbit passing through the points $u,u'\in\Sigma_+$, with $u\neq u'$, if and only if the following holds: $\Delta_-(u,B,\lambda,\overline{\epsilon})=\Delta_+(u',B,\lambda,\overline{\epsilon})$ and $\Delta_-(u',B,\lambda,\overline{\epsilon})=\Delta_+(u,B,\lambda,\overline{\epsilon})$.

Transition maps

• For a regular slow dynamics, the study of the transition maps relies on [Dumortier, Roussarie,1996]. The following theorem gives the structure of Δ_{\pm} .

Theorem

22

There exist $\bar{\epsilon}$ -regularly smooth functions \bar{l}_{\pm} in (u,B,λ) and $\bar{\epsilon}$ -regularly smooth functions f_{\pm} in (B,λ) such that $\bar{l}_{\pm}(u,B,\lambda,0)=l_{\pm}(u,0,\lambda)$, with l_{\pm} defined in (3), and such that

$$\Delta_{\pm}(u, B, \lambda, \bar{\epsilon}) = f_{\pm}(B, \lambda, \bar{\epsilon}) \pm \exp\left(\frac{\bar{I}_{\pm}(u, B, \lambda, \bar{\epsilon})}{\bar{\epsilon}^2}\right).$$
 (6)

Furthermore, $f(0, \lambda, 0) = 0$ and $\frac{\partial f}{\partial B}(0, \lambda, 0) \neq 0$ where $f(B, \lambda, \bar{\epsilon}) := f_{-}(B, \lambda, \bar{\epsilon}) - f_{+}(B, \lambda, \bar{\epsilon})$.

Transition maps

• The following theorem gives the structure of the transition map Δ_{-} ([De Maesschalck,Dumortier, 2008, Huzak, De Maesschalck,Dumortier,2013]).

Theorem

23

For all k>0 there exists $\overline{\epsilon}_k>0$ so that Δ_- is C^∞ on $U_-\cap\{\overline{\epsilon}\leq\overline{\epsilon}_k\}$ and has a C^k -extension to the closure of $U_-\cap\{\overline{\epsilon}\leq\overline{\epsilon}_k\}$. Furthermore,

$$\frac{\partial \Delta_{-}}{\partial u}(u, B, \lambda, \bar{\epsilon}) = -\exp\left(\frac{\mathcal{I}_{-}(u, B, \lambda, \bar{\epsilon})}{\bar{\epsilon}^2}\right),\tag{7}$$

where $(u, B, \lambda, \bar{\epsilon}) \in U_{-} \cap \{\bar{\epsilon} \leq \bar{\epsilon}_{k}\}$, \mathcal{I}_{-} is $\bar{\epsilon}$ -regularly C^{k} in (u, B, λ) , $\mathcal{I}_{-}(u, B, \lambda, \bar{\epsilon}) \to -\infty$ as $(u, B, \lambda, \bar{\epsilon}) \to (u_{0}, 0, 0, 0)$ and $\frac{\partial \mathcal{I}_{-}}{\partial u}(u, B, \lambda, \bar{\epsilon}) > 0$.

Transition maps

• Using Theorem 9, the equation for 1-limit cycles can be written as:

$$\exp\left(\frac{\overline{I}_{-}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) + \exp\left(\frac{\overline{I}_{+}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) = f(B,\lambda,\overline{\epsilon}), (8)$$

Transition maps

 Using Theorem 9, the equation for 1-limit cycles can be written as:

$$\exp\left(\frac{\overline{I}_{-}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) + \exp\left(\frac{\overline{I}_{+}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) = f(B,\lambda,\overline{\epsilon}), (8)$$

• and the system for 2-limit cycles can be written as:

$$\begin{cases}
\exp\left(\frac{\overline{I}_{-}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) + \exp\left(\frac{\overline{I}_{+}(u',B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) = f(B,\lambda,\overline{\epsilon}) \\
\exp\left(\frac{\overline{I}_{-}(u',B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) + \exp\left(\frac{\overline{I}_{+}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^{2}}\right) = f(B,\lambda,\overline{\epsilon}).
\end{cases} (9)$$

Transition maps

• Instead of working with (9), it is sometimes more convenient to use the equation for the fixed points

 $\{P_{B,\lambda,\bar{\epsilon}}\circ P_{B,\lambda,\bar{\epsilon}}(u)=u\}$, where $P_{B,\lambda,\bar{\epsilon}}(u)=\Delta_+^{-1}\circ\Delta_-(u)$ is the 1–return map, or to use the difference equation

$$\{\Delta_{B,\lambda,\bar{\epsilon}}(u)=0\}$$
 where $\Delta_{B,\lambda,\bar{\epsilon}}(u)=P_{B,\lambda,\bar{\epsilon}}(u)-P_{B,\lambda,\bar{\epsilon}}^{-1}(u)$.

• Let I be nonzero near $(u, \mu) = (u_0, 0, 0)$ (i.e. $I_-(u_0, 0, 0) \neq I_+(u_0, 0, 0)$).

Proof of Theorem 3

26

• Let I be nonzero near $(u,\mu)=(u_0,0,0)$ (i.e. $I_-(u_0,0,0) \neq I_+(u_0,0,0)$). Let us suppose that for $(B,\lambda,\bar{\epsilon}) \sim (0,0,0)$, $\bar{\epsilon}>0$, $X_{\bar{\epsilon}^2,\bar{\epsilon}B,\lambda}$ has a 2-periodic orbit intersecting Σ_+ in two points $\bar{u}\sim u_0$ and $\tilde{u}\sim u_0$, with $\bar{u}<\tilde{u}$.

- Let I be nonzero near $(u,\mu)=(u_0,0,0)$ (i.e. $I_-(u_0,0,0) \neq I_+(u_0,0,0)$). Let us suppose that for $(B,\lambda,\overline{\epsilon}) \sim (0,0,0)$, $\overline{\epsilon}>0$, $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has a 2-periodic orbit intersecting Σ_+ in two points $\overline{u}\sim u_0$ and $\widetilde{u}\sim u_0$, with $\overline{u}<\widetilde{u}$.
- Then $\Delta_{B,\lambda,\bar{\epsilon}}(\bar{u}) = \Delta_{B,\lambda,\bar{\epsilon}}(\tilde{u}) = 0$, $P_{B,\lambda,\bar{\epsilon}}(\bar{u}) = \tilde{u}$, $P_{B,\lambda,\bar{\epsilon}}(\tilde{u}) = \bar{u}$ and $P_{B,\lambda,\bar{\epsilon}}([\bar{u},\tilde{u}]) = [\bar{u},\tilde{u}]$.

- Let I be nonzero near $(u,\mu)=(u_0,0,0)$ (i.e. $I_-(u_0,0,0) \neq I_+(u_0,0,0)$). Let us suppose that for $(B,\lambda,\bar{\epsilon}) \sim (0,0,0)$, $\bar{\epsilon}>0$, $X_{\bar{\epsilon}^2,\bar{\epsilon}B,\lambda}$ has a 2-periodic orbit intersecting Σ_+ in two points $\bar{u}\sim u_0$ and $\tilde{u}\sim u_0$, with $\bar{u}<\tilde{u}$.
- Then $\Delta_{B,\lambda,\bar{\epsilon}}(\bar{u}) = \Delta_{B,\lambda,\bar{\epsilon}}(\tilde{u}) = 0$, $P_{B,\lambda,\bar{\epsilon}}(\bar{u}) = \tilde{u}$, $P_{B,\lambda,\bar{\epsilon}}(\tilde{u}) = \bar{u}$ and $P_{B,\lambda,\bar{\epsilon}}([\bar{u},\tilde{u}]) = [\bar{u},\tilde{u}]$.
- The derivative of $\Delta_{B,\lambda,\overline{\epsilon}}$ can be written as:

$$\begin{split} \Delta'_{B,\lambda,\overline{\epsilon}}(u) &= -\exp\left(\frac{I_{-}(u) - I_{+}(P_{B,\lambda,\overline{\epsilon}}(u)) + o(1)}{\overline{\epsilon}^2}\right) \\ &+ \exp\left(\frac{I_{+}(u) - I_{-}(P_{B,\lambda,\overline{\epsilon}}^{-1}(u)) + o(1)}{\overline{\epsilon}^2}\right), \ u \in [\bar{u},\tilde{u}]. \end{split}$$

27

Proof of Theorem 3

• This implies that the equation $\{\Delta'_{B,\lambda,\bar{\epsilon}}=0\}$ is equivalent, for $\bar{\epsilon}>0$ and $u\in[\bar{u},\tilde{u}]$, to the following equation:

$$I_{-}(u) - I_{+}(P_{B,\lambda,\bar{\epsilon}}(u)) + I_{-}(P_{B,\lambda,\bar{\epsilon}}^{-1}(u)) - I_{+}(u) + o(1) = 0, (10)$$

for a new o(1)-term.

27

Proof of Theorem 3

• This implies that the equation $\{\Delta'_{B,\lambda,\overline{\epsilon}}=0\}$ is equivalent, for $\overline{\epsilon}>0$ and $u\in[\overline{u},\widetilde{u}]$, to the following equation:

$$I_{-}(u) - I_{+}(P_{B,\lambda,\bar{\epsilon}}(u)) + I_{-}(P_{B,\lambda,\bar{\epsilon}}^{-1}(u)) - I_{+}(u) + o(1) = 0, (10)$$

for a new o(1)-term.

• Since I_{\pm} are smooth and $u, P_{B,\lambda,\bar{\epsilon}}(u), P_{B,\lambda,\bar{\epsilon}}^{-1}(u) \approx u_0$ for all $u \in [\bar{u}, \tilde{u}]$, we have:

$$I_{-}(u) - I_{+}(P_{B,\lambda,\bar{\epsilon}}(u)) + I_{-}(P_{B,\lambda,\bar{\epsilon}}^{-1}(u)) - I_{+}(u)$$

$$\approx I_{-}(u_{0}) - I_{+}(u_{0}) + I_{-}(u_{0}) - I_{+}(u_{0})$$

$$= 2(I_{-}(u_{0}) - I_{+}(u_{0})) \neq 0,$$

for $u \in [\bar{u}, \tilde{u}]$.

Proof of Theorem 4

28

• Let $I(u_0, 0, 0) = 0$ and $\frac{\partial I}{\partial u}(u_0, 0, 0) \neq 0$. The 1-return map $P_{B,\lambda,\bar{\epsilon}}$ fulfils the conditions of the following theorem:

Theorem (period doubling bifurcation)

Let $p_B : \mathbb{R} \to \mathbb{R}$ be a smooth one-parameter family of mappings such that p_{B_0} has a fixed point x_0 with eigenvalue -1. Assume

(PD1)
$$\frac{\partial p}{\partial B} \frac{\partial^2 p}{\partial x^2} + 2 \frac{\partial^2 p}{\partial x \partial B} \neq 0$$
 at $(x, B) = (x_0, B_0)$;

(PD2)
$$a := \frac{1}{2} \left(\frac{\partial^2 p}{\partial x^2} \right)^2 + \frac{1}{3} \frac{\partial^3 p}{\partial x^3} \neq 0 \text{ at } (x, B) = (x_0, B_0).$$

Then there is a smooth curve of fixed points of p_B passing through (x_0, B_0) , the stability of which changes at (x_0, B_0) . There is also a smooth curve γ passing through (x_0, B_0) so that $\gamma \setminus \{(x_0, B_0)\}$ is a union of hyperbolic period 2 orbits. The curve γ has a quadratic tangency with the line $B = B_0$ at (x_0, B_0) . If a is positive (resp. pagative), the pariod 2 orbits are attracting (resp. repelling)

Renato Huzak

The slow divergence integral on a Möbius band

• The derivative of $P_{B,\lambda,\overline{\epsilon}}$ w.r.t. u is given by

$$\frac{\partial P_{B,\lambda,\bar{\epsilon}}}{\partial u}(u) = \frac{\frac{\partial \Delta_{-}}{\partial u}(u,B,\lambda,\bar{\epsilon})}{\frac{\partial \Delta_{+}}{\partial u}(P_{B,\lambda,\bar{\epsilon}}(u),B,\lambda,\bar{\epsilon})},$$
(11)

with

$$\frac{\partial \Delta_{\pm}}{\partial u}(u, B, \lambda, \overline{\epsilon}) = \pm \exp\left(\frac{\hat{I}_{\pm}(u, B, \lambda, \overline{\epsilon})}{\overline{\epsilon}^2}\right)$$

where functions \hat{I}_{\pm} are $\bar{\epsilon}$ -regularly smooth in (u, B, λ) and $\hat{I}_{\pm}(u, B, \lambda, 0) = I_{\pm}(u, 0, \lambda)$.

• The derivative of $P_{B,\lambda,\overline{\epsilon}}$ w.r.t. u is given by

$$\frac{\partial P_{B,\lambda,\bar{\epsilon}}}{\partial u}(u) = \frac{\frac{\partial \Delta_{-}}{\partial u}(u,B,\lambda,\bar{\epsilon})}{\frac{\partial \Delta_{+}}{\partial u}(P_{B,\lambda,\bar{\epsilon}}(u),B,\lambda,\bar{\epsilon})},$$
(11)

with

$$\frac{\partial \Delta_{\pm}}{\partial u}(u, B, \lambda, \overline{\epsilon}) = \pm \exp\left(\frac{\hat{I}_{\pm}(u, B, \lambda, \overline{\epsilon})}{\overline{\epsilon}^2}\right)$$

where functions \hat{I}_{\pm} are $\bar{\epsilon}$ -regularly smooth in (u, B, λ) and $\hat{I}_{\pm}(u, B, \lambda, 0) = I_{\pm}(u, 0, \lambda)$.

• Since the function $u \to I_-(u,0,0) - I_+(u,0,0)$ has a simple zero at $u = u_0$, f(0,0,0) = 0 and $\frac{\partial f}{\partial B}(0,0,0) \neq 0$, we can apply the Implicit Function Theorem to the following $\bar{\epsilon}$ -regularly smooth in (u,B,λ) system:

•

 $\begin{cases} \Delta_{-}(u, B, \lambda, \overline{\epsilon}) - \Delta_{+}(u, B, \lambda, \overline{\epsilon}) = 0\\ \hat{I}_{-}(u, B, \lambda, \overline{\epsilon}) - \hat{I}_{+}(u, B, \lambda, \overline{\epsilon}) = 0, \end{cases}$

and find a solution $(\lambda, \bar{\epsilon}) \to (u(\lambda, \bar{\epsilon}), B(\lambda, \bar{\epsilon}))$, $\bar{\epsilon}$ -regularly smooth in λ , with $u(0,0) = u_0$ and B(0,0) = 0.

•

$$\left\{ \begin{array}{l} \Delta_{-}(u,B,\lambda,\bar{\epsilon}) - \Delta_{+}(u,B,\lambda,\bar{\epsilon}) = 0 \\ \hat{I}_{-}(u,B,\lambda,\bar{\epsilon}) - \hat{I}_{+}(u,B,\lambda,\bar{\epsilon}) = 0, \end{array} \right.$$

and find a solution $(\lambda, \bar{\epsilon}) \to (u(\lambda, \bar{\epsilon}), B(\lambda, \bar{\epsilon}))$, $\bar{\epsilon}$ -regularly smooth in λ , with $u(0,0) = u_0$ and B(0,0) = 0.

• From this and (11) follows

$$P_{B(\lambda,\overline{\epsilon}),\lambda,\overline{\epsilon}}(u(\lambda,\overline{\epsilon})) = u(\lambda,\overline{\epsilon}) \text{ and } \frac{\partial P_{B(\lambda,\overline{\epsilon}),\lambda,\overline{\epsilon}}}{\partial u}(u(\lambda,\overline{\epsilon})) = -1,$$

for all $(\lambda, \bar{\epsilon}) \sim (0,0)$ and $\bar{\epsilon} > 0$.

•

$$\left\{ \begin{array}{l} \Delta_{-}(u,B,\lambda,\bar{\epsilon}) - \Delta_{+}(u,B,\lambda,\bar{\epsilon}) = 0 \\ \hat{I}_{-}(u,B,\lambda,\bar{\epsilon}) - \hat{I}_{+}(u,B,\lambda,\bar{\epsilon}) = 0, \end{array} \right.$$

and find a solution $(\lambda, \bar{\epsilon}) \to (u(\lambda, \bar{\epsilon}), B(\lambda, \bar{\epsilon}))$, $\bar{\epsilon}$ -regularly smooth in λ , with $u(0,0) = u_0$ and B(0,0) = 0.

• From this and (11) follows

$$P_{B(\lambda,\overline{\epsilon}),\lambda,\overline{\epsilon}}(u(\lambda,\overline{\epsilon})) = u(\lambda,\overline{\epsilon}) \text{ and } \frac{\partial P_{B(\lambda,\overline{\epsilon}),\lambda,\overline{\epsilon}}}{\partial u}(u(\lambda,\overline{\epsilon})) = -1,$$

for all $(\lambda, \bar{\epsilon}) \sim (0,0)$ and $\bar{\epsilon} > 0$.

• Thus, for each $(\lambda, \bar{\epsilon}) \sim (0,0)$ and $\bar{\epsilon} > 0$, $P_{B(\lambda,\bar{\epsilon}),\lambda,\bar{\epsilon}}$ has a fixed point $u(\lambda,\bar{\epsilon})$ with eigenvalue -1.

• The quantity (PD1) becomes:

$$\frac{\frac{\partial(\Delta_{-}-\Delta_{+})}{\partial B}(u)\left(\frac{\partial I_{-}}{\partial u}(u)-\frac{\partial I_{+}}{\partial u}(u)\right)+o(1)}{\overline{\epsilon}^{2}\frac{\partial \Delta_{-}}{\partial u}(u)},$$
 (12)

where
$$(u, B) = (u(\lambda, \bar{\epsilon}), B(\lambda, \bar{\epsilon})).$$

• The quantity (PD1) becomes:

$$\frac{\frac{\partial(\Delta_{-}-\Delta_{+})}{\partial B}(u)\left(\frac{\partial I_{-}}{\partial u}(u)-\frac{\partial I_{+}}{\partial u}(u)\right)+o(1)}{\overline{\epsilon}^{2}\frac{\partial \Delta_{-}}{\partial u}(u)},$$
 (12)

where
$$(u, B) = (u(\lambda, \bar{\epsilon}), B(\lambda, \bar{\epsilon})).$$

The quantity (PD2) becomes

$$a = \frac{\left(\frac{\partial I_{-}}{\partial u}(u)\right)^{2} - \left(\frac{\partial I_{+}}{\partial u}(u)\right)^{2} + o(1)}{6\overline{\epsilon}^{4}}, \ (u, B) = (u(\lambda, \overline{\epsilon}), B(\lambda, \overline{\epsilon})).$$

Lemma

Let $m \in \mathbb{N}$, m > 1. Then we have:

$$\overline{\epsilon}^{2m} \frac{\partial^{m+1} \Delta_{\pm}}{\partial u^{m+1}}(u) = \pm \left(\left(\frac{\partial I_{\pm}}{\partial u}(u) \right)^m + o(1) \right) \exp \left(\frac{\hat{I}_{\pm}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^2} \right),$$

where $\hat{I}_{\pm}(u, B, \lambda, \bar{\epsilon})$ are defined after (11), $I_{\pm}(u) = I_{\pm}(u, 0, \lambda)$ and the o(1)-term is $\bar{\epsilon}$ -regularly smooth in (u, B, λ) .

Lemma

Let $m \in \mathbb{N}$, m > 1. Then we have:

$$\overline{\epsilon}^{2m} \frac{\partial^{m+1} \Delta_{\pm}}{\partial u^{m+1}}(u) = \pm \left(\left(\frac{\partial I_{\pm}}{\partial u}(u) \right)^m + o(1) \right) \exp \left(\frac{\hat{I}_{\pm}(u,B,\lambda,\overline{\epsilon})}{\overline{\epsilon}^2} \right),$$

where $\hat{I}_{\pm}(u, B, \lambda, \bar{\epsilon})$ are defined after (11), $I_{\pm}(u) = I_{\pm}(u, 0, \lambda)$ and the o(1)-term is $\bar{\epsilon}$ -regularly smooth in (u, B, λ) .

• Thus, putting all the informations together, we have proved that for each fixed $(\lambda, \bar{\epsilon}) \sim (0,0)$, $\bar{\epsilon} > 0$, the *B*-family $X_{\bar{\epsilon}^2, \bar{\epsilon}B, \lambda}$ undergoes a period doubling bifurcation at $(u,B) = (u(\lambda,\bar{\epsilon}), B(\lambda,\bar{\epsilon}))$.

We consider

$$\begin{cases} \exp\left(\frac{\bar{I}_{-}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) + \exp\left(\frac{\bar{I}_{+}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) = f(B,\lambda,\bar{\epsilon}) \\ \exp\left(\frac{\bar{I}_{-}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) + \exp\left(\frac{\bar{I}_{+}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) = f(B,\lambda,\bar{\epsilon}). \end{cases}$$

We consider

$$\begin{cases} & \exp\left(\frac{\bar{I}_{-}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^2}\right) + \exp\left(\frac{\bar{I}_{+}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^2}\right) = f(B,\lambda,\bar{\epsilon}) \\ & \exp\left(\frac{\bar{I}_{-}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^2}\right) + \exp\left(\frac{\bar{I}_{+}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^2}\right) = f(B,\lambda,\bar{\epsilon}). \end{cases}$$

• The main difficulty lies in the fact that the limit $\bar{\epsilon}=0$ of this system is degenerate. Our goal is, therefore, to replace the system with a new system, non-singular for $\bar{\epsilon}=0$, using [Mamouhdi, Roussarie,2012].

Proof of Theorem 5

• Let us suppose that $\Psi(u,u')$ and $\Phi(u,u')$ are two smooth functions defined on a rectangle $R = [\bar{U}_1,\tilde{U}_1] \times [\bar{U}_2,\tilde{U}_2]$ and let us suppose that $\frac{\partial \Psi}{\partial u}$, $\frac{\partial \Psi}{\partial u'}$, $\frac{\partial \Phi}{\partial u}$ and $\frac{\partial \Phi}{\partial u'}$ are nonzero for all $(u,u') \in R$.

34

Proof of Theorem 5

- Let us suppose that $\Psi(u,u')$ and $\Phi(u,u')$ are two smooth functions defined on a rectangle $R = [\bar{U}_1,\tilde{U}_1] \times [\bar{U}_2,\tilde{U}_2]$ and let us suppose that $\frac{\partial \Psi}{\partial u}$, $\frac{\partial \Psi}{\partial u'}$, $\frac{\partial \Phi}{\partial u}$ and $\frac{\partial \Phi}{\partial u'}$ are nonzero for all $(u,u') \in R$.
- We further assume that the equation $\{\det(\Psi,\Phi)(u,u')=0\}$ for contact points is equivalent on R to an equation $\{E(u,u')=0\}$, where E is a smooth function on R, and where $\frac{\partial E}{\partial u}$ and $\frac{\partial E}{\partial u'}$ are nonzero for all $(u,u')\in R$. (Equivalent means $\det(\Psi,\Phi)=F.E$, where the factor F is a smooth nowhere zero function on R.)

Proof of Theorem 5

- Let us suppose that $\Psi(u,u')$ and $\Phi(u,u')$ are two smooth functions defined on a rectangle $R = [\bar{U}_1,\tilde{U}_1] \times [\bar{U}_2,\tilde{U}_2]$ and let us suppose that $\frac{\partial \Psi}{\partial u}$, $\frac{\partial \Psi}{\partial u'}$, $\frac{\partial \Phi}{\partial u}$ and $\frac{\partial \Phi}{\partial u'}$ are nonzero for all $(u,u') \in R$.
- We further assume that the equation $\{\det(\Psi,\Phi)(u,u')=0\}$ for contact points is equivalent on R to an equation $\{E(u,u')=0\}$, where E is a smooth function on R, and where $\frac{\partial E}{\partial u}$ and $\frac{\partial E}{\partial u'}$ are nonzero for all $(u,u')\in R$. (Equivalent means $\det(\Psi,\Phi)=F.E$, where the factor F is a smooth nowhere zero function on R.)
- Now we can define a regular pair of foliations $(\widetilde{\Psi}, \widetilde{\Phi})$ on R as follows: the curves $\{\Psi(u, u') = \alpha\}$ (resp. $\{\Phi(u, u') = \beta\}$) are the leaves of foliation $\widetilde{\Psi}$ (resp. $\widetilde{\Phi}$).

- Let us suppose that $\Psi(u,u')$ and $\Phi(u,u')$ are two smooth functions defined on a rectangle $R = [\bar{U}_1,\tilde{U}_1] \times [\bar{U}_2,\tilde{U}_2]$ and let us suppose that $\frac{\partial \Psi}{\partial u}$, $\frac{\partial \Psi}{\partial u'}$, $\frac{\partial \Phi}{\partial u}$ and $\frac{\partial \Phi}{\partial u'}$ are nonzero for all $(u,u') \in R$.
- We further assume that the equation $\{\det(\Psi,\Phi)(u,u')=0\}$ for contact points is equivalent on R to an equation $\{E(u,u')=0\}$, where E is a smooth function on R, and where $\frac{\partial E}{\partial u}$ and $\frac{\partial E}{\partial u'}$ are nonzero for all $(u,u')\in R$. (Equivalent means $\det(\Psi,\Phi)=F.E$, where the factor F is a smooth nowhere zero function on R.)
- Now we can define a regular pair of foliations $(\widetilde{\Psi}, \widetilde{\Phi})$ on R as follows: the curves $\{\Psi(u, u') = \alpha\}$ (resp. $\{\Phi(u, u') = \beta\}$) are the leaves of foliation $\widetilde{\Psi}$ (resp. $\widetilde{\Phi}$).
- Each leaf and the curve $\{E(u, u') = 0\}$ are simple connected

Proof of Theorem 5

• We relate the number of intersection points of two leaves $\{\Psi(u,u')=\alpha\}$ and $\{\Phi(u,u')=\beta\}$ in R with the number of intersection points of the curve $\{E(u,u')=0\}$ and one of these two leaves in R.

Lemma

Let $(\widetilde{\Psi}, \widetilde{\Phi})$ be a regular pair of foliations on R as defined above and let $\alpha, \beta \in \mathbb{R}$ be arbitrary but fixed. Let $\mathcal{N}(\alpha, \beta)$ be the number of intersection points of $\{\Psi(u, u') = \alpha\}$ with $\{\Phi(u, u') = \beta\}$ in R, counting multiplicity, and let $\mathcal{N}(\beta)$ be the number of intersection points of $\{E(u, u') = 0\}$ with $\{\Phi(u, u') = \beta\}$ in R, counting multiplicity. If $\mathcal{N}(\beta)$ is finite, then

$$\mathcal{N}(\alpha,\beta) \le \mathcal{N}(\beta) + 1. \tag{13}$$

• To find at most 3 solutions of the system in $[\bar{u}, \tilde{u}] \times [\bar{u}, \tilde{u}]$, for each $(B, \lambda, \bar{\epsilon}) \sim (0, 0, 0)$, with $\bar{\epsilon} > 0$, we use the lemma twice. The system (9) is a special case of the more general system

$$\begin{cases}
\exp\left(\frac{\bar{I}_{-}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) + \exp\left(\frac{\bar{I}_{+}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) = \alpha \\
\exp\left(\frac{\bar{I}_{-}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) + \exp\left(\frac{\bar{I}_{+}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) = \beta
\end{cases}$$
(14)

where $\alpha, \beta \in \mathbb{R}$, and it suffices to prove that (14) has at most 3 solutions in $[\bar{u}, \tilde{u}] \times [\bar{u}, \tilde{u}]$, for each fixed $(B, \lambda, \bar{\epsilon}) \sim (0, 0, 0)$, with $\bar{\epsilon} > 0$, and $\alpha, \beta \in \mathbb{R}$.

• We denote by $\Psi_{B,\lambda,\overline{\epsilon}}(u,u'), \Phi_{B,\lambda,\overline{\epsilon}}(u,u')$ the functions on the left-hand side of (14). We have

$$\det(\Psi_{B,\lambda,\bar{\epsilon}},\Phi_{B,\lambda,\bar{\epsilon}}) = \exp\left(\frac{I_{-}(u) + I_{-}(u') + o(1)}{\bar{\epsilon}^2}\right) - \exp\left(\frac{I_{+}(u) + I_{+}(u') + o(1)}{\bar{\epsilon}^2}\right).$$

• We denote by $\Psi_{B,\lambda,\overline{\epsilon}}(u,u'), \Phi_{B,\lambda,\overline{\epsilon}}(u,u')$ the functions on the left-hand side of (14). We have

$$\det(\Psi_{B,\lambda,\bar{\epsilon}},\Phi_{B,\lambda,\bar{\epsilon}}) = \exp\left(\frac{I_{-}(u) + I_{-}(u') + o(1)}{\bar{\epsilon}^2}\right) - \exp\left(\frac{I_{+}(u) + I_{+}(u') + o(1)}{\bar{\epsilon}^2}\right).$$

• This implies that the set $\{\det(\Psi_{B,\lambda,\bar\epsilon},\Phi_{B,\lambda,\bar\epsilon})(u,u')=0\}$ of the contact points between the two foliations $\widetilde{\Psi}_{B,\lambda,\bar\epsilon}$ and $\widetilde{\Phi}_{B,\lambda,\bar\epsilon}$ is equivalent for $\bar\epsilon>0$ to $\{E_{B,\lambda,\bar\epsilon}(u,u')=0\}$ with

$$E_{B,\lambda,\bar{\epsilon}}(u,u') = I_{-}(u) - I_{+}(u') + I_{-}(u') - I_{+}(u) + o(1).$$

• We define the following system:

$$\begin{cases}
E_{B,\lambda,\bar{\epsilon}}(u,u') = I_{-}(u) - I_{+}(u') + I_{-}(u') - I_{+}(u) + o(1) = 0 \\
\Phi_{B,\lambda,\bar{\epsilon}}(u,u') = \exp\left(\frac{\bar{I}_{-}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) + \exp\left(\frac{\bar{I}_{+}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) = \beta.
\end{cases}$$
(15)

• We define the following system:

$$\begin{cases}
E_{B,\lambda,\bar{\epsilon}}(u,u') = I_{-}(u) - I_{+}(u') + I_{-}(u') - I_{+}(u) + o(1) = 0 \\
\Phi_{B,\lambda,\bar{\epsilon}}(u,u') = \exp\left(\frac{\bar{I}_{-}(u',B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) + \exp\left(\frac{\bar{I}_{+}(u,B,\lambda,\bar{\epsilon})}{\bar{\epsilon}^{2}}\right) = \beta.
\end{cases}$$
(15)

• Following Lemma 13, if we denote by $\mathcal{N}_{B,\lambda,\overline{\epsilon}}(\alpha,\beta)$ (resp. $\mathcal{N}_{B,\lambda,\overline{\epsilon}}(\beta)$) the number of solutions of (14) (resp. (15)), counting multiplicity, in $[\bar{u},\tilde{u}]\times[\bar{u},\tilde{u}]$, then

$$\mathcal{N}_{B,\lambda,\bar{\epsilon}}(\alpha,\beta) \leq 1 + \mathcal{N}_{B,\lambda,\bar{\epsilon}}(\beta).$$

We have

$$\begin{split} \det(E_{B,\lambda,\overline{\epsilon}},\Phi_{B,\lambda,\overline{\epsilon}}) &= \\ &\left(\frac{\partial I_{-}}{\partial u}(u) - \frac{\partial I_{+}}{\partial u}(u) + o(1)\right) \exp\left(\frac{I_{-}(u') + o(1)}{\overline{\epsilon}^2}\right) \\ &- \left(\frac{\partial I_{-}}{\partial u}(u') - \frac{\partial I_{+}}{\partial u}(u') + o(1)\right) \exp\left(\frac{I_{+}(u) + o(1)}{\overline{\epsilon}^2}\right). \end{split}$$

We have

$$\begin{split} \det(E_{B,\lambda,\overline{\epsilon}},\Phi_{B,\lambda,\overline{\epsilon}}) &= \\ &\left(\frac{\partial I_{-}}{\partial u}(u) - \frac{\partial I_{+}}{\partial u}(u) + o(1)\right) \exp\left(\frac{I_{-}(u') + o(1)}{\overline{\epsilon}^2}\right) \\ &- \left(\frac{\partial I_{-}}{\partial u}(u') - \frac{\partial I_{+}}{\partial u}(u') + o(1)\right) \exp\left(\frac{I_{+}(u) + o(1)}{\overline{\epsilon}^2}\right). \end{split}$$

Clearly, the equation $\{\det(E_{B,\lambda,\bar\epsilon},\Phi_{B,\lambda,\bar\epsilon})(u,u')=0\}$ is equivalent for $\bar\epsilon>0$ to $\{\bar E_{B,\lambda,\bar\epsilon}(u,u')=0\}$ where

$$\bar{E}_{B,\lambda,\bar{\epsilon}}(u,u') = I_{-}(u') - I_{+}(u) + o(1).$$

Proof of Theorem 5

Lemma 13 implies that

$$\mathcal{N}_{B,\lambda,\bar{\epsilon}}(\beta) \leq 1 + \mathcal{N}_{B,\lambda,\bar{\epsilon}},$$

where $\mathcal{N}_{B,\lambda,\overline{\epsilon}}$ is the number of solutions (counting multiplicity) of the system $\{I_-(u)-I_+(u')+I_-(u')-I_+(u)+o(1)=0\}$, or equivalently the system

$$\begin{cases}
I_{-}(u) - I_{+}(u') + o(1) = 0 \\
I_{-}(u') - I_{+}(u) + o(1) = 0.
\end{cases}$$
(16)

Thus, we have proved that

$$\mathcal{N}_{B,\lambda,\bar{\epsilon}}(\alpha,\beta) \leq 2 + \mathcal{N}_{B,\lambda,\bar{\epsilon}}$$

for each $(B, \lambda, \bar{\epsilon}) \sim (0, 0, 0)$, with $\bar{\epsilon} > 0$, and $\alpha, \beta \in \mathbb{R}$.

41

Proof of Theorem 6

• Assume that $f(\omega(u_0), 0) = 0$, $\frac{\partial f}{\partial x}(\omega(u_0), 0) \neq 0$ and f(x, 0) < 0 for all $x \in [\alpha(u_0), \omega(u_0)]$.

41

- Assume that $f(\omega(u_0), 0) = 0$, $\frac{\partial f}{\partial x}(\omega(u_0), 0) \neq 0$ and f(x, 0) < 0 for all $x \in [\alpha(u_0), \omega(u_0)]$.
- First, let us prove that $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0}) \leq 1$, i.e. there are no 2-periodic orbits Hausdorff close to L_{u_0} .

41

- Assume that $f(\omega(u_0), 0) = 0$, $\frac{\partial f}{\partial x}(\omega(u_0), 0) \neq 0$ and f(x, 0) < 0 for all $x \in [\alpha(u_0), \omega(u_0)]$.
- First, let us prove that $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0}) \leq 1$, i.e. there are no 2-periodic orbits Hausdorff close to L_{u_0} .
- Suppose, on the contrary, that for $(B, \lambda, \bar{\epsilon}) \sim (0, 0, 0)$, $\bar{\epsilon} > 0$, $X_{\bar{\epsilon}^2, \bar{\epsilon}B, \lambda}$ has a 2-periodic orbit intersecting Σ_+ in two points $\bar{u} \sim u_0$ and $\tilde{u} \sim u_0$, with $u(B, \lambda, \bar{\epsilon}) < \bar{u} < \tilde{u}$.

Proof of Theorem 6

- Assume that $f(\omega(u_0), 0) = 0$, $\frac{\partial f}{\partial x}(\omega(u_0), 0) \neq 0$ and f(x, 0) < 0 for all $x \in [\alpha(u_0), \omega(u_0)]$.
- First, let us prove that $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0}) \leq 1$, i.e. there are no 2-periodic orbits Hausdorff close to L_{u_0} .
- Suppose, on the contrary, that for $(B, \lambda, \bar{\epsilon}) \sim (0, 0, 0)$, $\bar{\epsilon} > 0$, $X_{\bar{\epsilon}^2, \bar{\epsilon}B, \lambda}$ has a 2-periodic orbit intersecting Σ_+ in two points $\bar{u} \sim u_0$ and $\tilde{u} \sim u_0$, with $u(B, \lambda, \bar{\epsilon}) < \bar{u} < \tilde{u}$.
- We have for $u \in [\bar{u}, \tilde{u}]$:

$$\begin{split} \Delta'_{B,\lambda,\overline{\epsilon}}(u) &= -\exp\left(\frac{\mathcal{I}_{-}(u,B,\lambda,\overline{\epsilon}) - I_{+}(P_{B,\lambda,\overline{\epsilon}}(u)) + o(1)}{\overline{\epsilon}^2}\right) \\ &+ \exp\left(\frac{I_{+}(u) - \mathcal{I}_{-}(P_{B,\lambda,\overline{\epsilon}}^{-1}(u),B,\lambda,\overline{\epsilon}) + o(1)}{\overline{\epsilon}^2}\right). \end{split}$$

Proof of Theorem 7

42

• Let $u_0, u_1 \in \Sigma_+$, with $u_0 < u_1$, be arbitrary but fixed, and let us suppose that $T(u_0, u_1, 0) \neq 0$, where T is the total slow divergence integral.

- Let $u_0, u_1 \in \Sigma_+$, with $u_0 < u_1$, be arbitrary but fixed, and let us suppose that $T(u_0, u_1, 0) \neq 0$, where T is the total slow divergence integral.
- Suppose, on the contrary, that for $(B,\lambda,\overline{\epsilon})\sim (0,0,0)$, $\overline{\epsilon}>0$, $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has two 2-periodic orbits, one intersecting Σ_+ in two points $\overline{u}\sim u_0$ and $\widetilde{u}\sim u_1$, and the other in $\overline{u}\sim u_0$ and $\widetilde{u}\sim u_1$.

- Let $u_0, u_1 \in \Sigma_+$, with $u_0 < u_1$, be arbitrary but fixed, and let us suppose that $T(u_0, u_1, 0) \neq 0$, where T is the total slow divergence integral.
- Suppose, on the contrary, that for $(B,\lambda,\overline{\epsilon})\sim (0,0,0)$, $\overline{\epsilon}>0$, $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has two 2-periodic orbits, one intersecting Σ_+ in two points $\bar{u}\sim u_0$ and $\tilde{u}\sim u_1$, and the other in $\bar{u}\sim u_0$ and $\tilde{u}\sim u_1$.
- Then we have $\bar{u}<\bar{\bar{u}}<\tilde{\bar{u}}<\tilde{\bar{u}}$ or $\bar{\bar{u}}<\bar{u}<\tilde{u}<\tilde{\bar{u}}<\tilde{\bar{u}}$

- Let $u_0, u_1 \in \Sigma_+$, with $u_0 < u_1$, be arbitrary but fixed, and let us suppose that $T(u_0, u_1, 0) \neq 0$, where T is the total slow divergence integral.
- Suppose, on the contrary, that for $(B,\lambda,\overline{\epsilon})\sim (0,0,0)$, $\overline{\epsilon}>0$, $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has two 2-periodic orbits, one intersecting Σ_+ in two points $\bar{u}\sim u_0$ and $\tilde{u}\sim u_1$, and the other in $\bar{u}\sim u_0$ and $\tilde{u}\sim u_1$.
- Then we have $\bar{u} < \bar{\bar{u}} < \tilde{\bar{u}} < \tilde{\bar{u}}$ or $\bar{\bar{u}} < \bar{u} < \tilde{\bar{u}} < \tilde{\bar{u}}$
- Suppose without loss of generality that $\bar{u} < \bar{\tilde{u}} < \tilde{\tilde{u}} < \tilde{\tilde{u}} < \tilde{u}$.

- Let $u_0, u_1 \in \Sigma_+$, with $u_0 < u_1$, be arbitrary but fixed, and let us suppose that $T(u_0, u_1, 0) \neq 0$, where T is the total slow divergence integral.
- Suppose, on the contrary, that for $(B,\lambda,\overline{\epsilon})\sim (0,0,0)$, $\overline{\epsilon}>0$, $X_{\overline{\epsilon}^2,\overline{\epsilon}B,\lambda}$ has two 2-periodic orbits, one intersecting Σ_+ in two points $\bar{u}\sim u_0$ and $\tilde{u}\sim u_1$, and the other in $\bar{u}\sim u_0$ and $\tilde{u}\sim u_1$.
- Then we have $\bar{u}<\bar{\bar{u}}<\tilde{\bar{u}}<\tilde{\bar{u}}$ or $\bar{\bar{u}}<\bar{u}<\tilde{\bar{u}}<\tilde{\bar{u}}$
- Suppose without loss of generality that $\bar{u} < \bar{\bar{u}} < \tilde{\bar{u}} < \tilde{\bar{u}} < \tilde{\bar{u}}$. Then $\Delta_{B,\lambda,\bar{\epsilon}}(\bar{u}) = \Delta_{B,\lambda,\bar{\epsilon}}(\bar{\bar{u}}) = 0$, $P_{B,\lambda,\bar{\epsilon}}(\bar{u}) = \tilde{u}$, $P_{B,\lambda,\bar{\epsilon}}(\bar{\bar{u}}) = \tilde{\bar{u}}$, $P_{B,\lambda,\bar{\epsilon}}([\bar{u},\bar{\bar{u}}]) = [\tilde{\bar{u}},\tilde{u}]$ and $P_{B,\lambda,\bar{\epsilon}}^{-1}([\bar{u},\bar{\bar{u}}]) = [\tilde{\bar{u}},\tilde{u}]$.

43

Proof of Theorem 7

We get

$$\Delta'_{B,\lambda,\overline{\epsilon}}(u) = -\exp\left(\frac{I_{-}(u) - I_{+}(P_{B,\lambda,\overline{\epsilon}}(u)) + o(1)}{\overline{\epsilon}^2}\right) + \exp\left(\frac{I_{+}(u) - I_{-}(P_{B,\lambda,\overline{\epsilon}}^{-1}(u)) + o(1)}{\overline{\epsilon}^2}\right),$$

where $u \in [\bar{u}, \bar{\bar{u}}]$.

43

Proof of Theorem 7

We get

$$\Delta'_{B,\lambda,\overline{\epsilon}}(u) = -\exp\left(\frac{I_{-}(u) - I_{+}(P_{B,\lambda,\overline{\epsilon}}(u)) + o(1)}{\overline{\epsilon}^{2}}\right) + \exp\left(\frac{I_{+}(u) - I_{-}(P_{B,\lambda,\overline{\epsilon}}^{-1}(u)) + o(1)}{\overline{\epsilon}^{2}}\right),$$

where $u \in [\bar{u}, \bar{\bar{u}}]$.

• The equation $\{\Delta'_{B,\lambda,\overline{\epsilon}}(u)=0\}$ is equivalent for $\overline{\epsilon}>0$ and $u\in[\bar{u},\bar{\bar{u}}]$ to an equation given in (10). Since $T(u_0,u_1,0)\neq 0,\ u\sim u_0,\ P_{B,\lambda,\overline{\epsilon}}(u),P_{B,\lambda,\overline{\epsilon}}^{-1}(u)\sim u_1$ for all $u\in[\bar{u},\bar{\bar{u}}],\ (10)$ has no solutions w.r.t. $u\in[\bar{u},\bar{\bar{u}}].$

Proof of Theorem 7

We get

43

$$\Delta'_{B,\lambda,\overline{\epsilon}}(u) = -\exp\left(\frac{I_{-}(u) - I_{+}(P_{B,\lambda,\overline{\epsilon}}(u)) + o(1)}{\overline{\epsilon}^{2}}\right) + \exp\left(\frac{I_{+}(u) - I_{-}(P_{B,\lambda,\overline{\epsilon}}^{-1}(u)) + o(1)}{\overline{\epsilon}^{2}}\right),$$

where $u \in [\bar{u}, \bar{\bar{u}}]$.

- The equation $\{\Delta'_{B,\lambda,\overline{\epsilon}}(u)=0\}$ is equivalent for $\overline{\epsilon}>0$ and $u\in[\bar{u},\bar{\bar{u}}]$ to an equation given in (10). Since $T(u_0,u_1,0)\neq 0,\ u\sim u_0,\ P_{B,\lambda,\overline{\epsilon}}(u),P_{B,\lambda,\overline{\epsilon}}^{-1}(u)\sim u_1$ for all $u\in[\bar{u},\bar{\bar{u}}],\ (10)$ has no solutions w.r.t. $u\in[\bar{u},\bar{\bar{u}}].$
- This is a contradiction with $\Delta'_{B,\lambda,\overline{\epsilon}}(u')=0$. Thus, $\operatorname{Cycl}(X_{\epsilon,\mu},L_{u_0,u_1})\leq 1$.

Future research

44

 The cyclicity of 1– and 2-canard cycles in the case of higher multiplicity zero in the slow divergence integral

Future research

- The cyclicity of 1- and 2-canard cycles in the case of higher multiplicity zero in the slow divergence integral
- The cyclicity of 1- and 2-canard cycles if the slow dynamics has a hyperbolic saddle or any singularity at both corner points

Future research

- The cyclicity of 1– and 2-canard cycles in the case of higher multiplicity zero in the slow divergence integral
- The cyclicity of 1– and 2-canard cycles if the slow dynamics has a hyperbolic saddle or any singularity at both corner points
- The cyclicity of 1– and 2-canard cycles if the slow dynamics has singularities between the corner points, located away from the contact point (a generic contact point), [De Maesschalck, Dumortier, 2008]

44

Future research

- The cyclicity of 1– and 2-canard cycles in the case of higher multiplicity zero in the slow divergence integral
- The cyclicity of 1– and 2-canard cycles if the slow dynamics has a hyperbolic saddle or any singularity at both corner points
- The cyclicity of 1— and 2-canard cycles if the slow dynamics has singularities between the corner points, located away from the contact point (a generic contact point), [De Maesschalck, Dumortier, 2008]
- The cyclicity of 1- and 2-canard cycles if the slow dynamics has singularities including at the contact point (non-generic contact point)