1

RENATO HUZAK

Hasselt University, Hasselt, Belgium

Renato Huzak Quartic Liénard equations with linear damping

Motivation

 A simplified version of Hilbert's 16th problem deals with finding the maximum number *l_{n,m}* of limit cycles of a polynomial Liénard equation

$$\begin{cases} \dot{x} = y \\ \dot{y} = -y \sum_{j=0}^{n} a_{j} x^{j} - \sum_{j=0}^{m} b_{j} x^{j}, \end{cases}$$
(1)

◆□→ ◆□→ ◆□→ ◆□→ □ □

where $(a_0,\ldots,a_n,b_0,\ldots,b_m)\in\mathbb{R}^{n+m+2}$ and $a_n,b_m\neq 0$.

Motivation

 A simplified version of Hilbert's 16th problem deals with finding the maximum number *l_{n,m}* of limit cycles of a polynomial Liénard equation

$$\begin{cases} \dot{x} = y \\ \dot{y} = -y \sum_{j=0}^{n} a_{j} x^{j} - \sum_{j=0}^{m} b_{j} x^{j}, \end{cases}$$
(1)

where $(a_0, \ldots, a_n, b_0, \ldots, b_m) \in \mathbb{R}^{n+m+2}$ and $a_n, b_m \neq 0$.

 When m = 1 (resp. m > 1) we call (1) a classical Liénard equation (resp. a generalized Liénard equation).

Motivation

 A simplified version of Hilbert's 16th problem deals with finding the maximum number *l_{n,m}* of limit cycles of a polynomial Liénard equation

$$\begin{cases} \dot{x} = y \\ \dot{y} = -y \sum_{j=0}^{n} a_{j} x^{j} - \sum_{j=0}^{m} b_{j} x^{j}, \end{cases}$$
(1)

where $(a_0, \ldots, a_n, b_0, \ldots, b_m) \in \mathbb{R}^{n+m+2}$ and $a_n, b_m \neq 0$.

- When m = 1 (resp. m > 1) we call (1) a classical Liénard equation (resp. a generalized Liénard equation).
- In the classical case, we know that $l_{1,1} = 0$, $l_{2,1} = 1$ (see [Lins, De Melo,Pugh,1977]) and $l_{3,1} = 1$ (see [Li,Llibre,2012]).

Motivation

• In the generalized case, we have $l_{1,2} = 1$ (see [Coppel, 1989]),

Motivation

• In the generalized case, we have $l_{1,2} = 1$ (see [Coppel, 1989]), $l_{1,3} = 1$ (see [Dumortier,Rousseau,1990; Dumortier,Li,1996]),

Motivation

In the generalized case, we have l_{1,2} = 1 (see [Coppel, 1989]), l_{1,3} = 1 (see [Dumortier,Rousseau,1990; Dumortier,Li,1996]), l_{2,2} = 1 (see [Dumortier,Li,1997])

Motivation

• In the generalized case, we have $l_{1,2} = 1$ (see [Coppel, 1989]), $l_{1,3} = 1$ (see [Dumortier, Rousseau, 1990; Dumortier, Li, 1996]), $l_{2,2} = 1$ (see [Dumortier, Li, 1997]) and $l_{2,3} = 3$ (see [Wang, Jing, 2002]).

Motivation

• In the generalized case, we have $l_{1,2} = 1$ (see [Coppel, 1989]), $l_{1,3} = 1$ (see [Dumortier, Rousseau, 1990; Dumortier, Li, 1996]), $l_{2,2} = 1$ (see [Dumortier, Li, 1997]) and $l_{2,3} = 3$ (see [Wang, Jing, 2002]). As far as we know, only these low degree cases have been completely solved.

Motivation

W

- In the generalized case, we have $l_{1,2} = 1$ (see [Coppel, 1989]), $l_{1,3} = 1$ (see [Dumortier, Rousseau, 1990; Dumortier, Li, 1996]), $l_{2,2} = 1$ (see [Dumortier, Li, 1997]) and $l_{2,3} = 3$ (see [Wang, Jing, 2002]). As far as we know, only these low degree cases have been completely solved.
- The goal of our presentation is to show that l_{1,4} = 2, under condition that (1) with (n, m) = (1,4) is of singular type.
- Our focus is on the quartic Liénard equation with linear damping

$$\begin{cases} \dot{x} = y \\ \dot{y} = -y(a_0 + x) - (b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4), \end{cases}$$
(2)
here $(a_0, b_0, b_1, b_2, b_3) \sim (0, 0, 0, 0, 0).$

Statement of results

Theorem

There exists a small neighborhood V of the origin in the parameter space $(a_0, b_0, b_1, b_2, b_3)$ such that (2) has at most two limit cycles for each $(a_0, b_0, b_1, b_2, b_3) \in V$.

Statement of results

Theorem

There exists a small neighborhood V of the origin in the parameter space $(a_0, b_0, b_1, b_2, b_3)$ such that (2) has at most two limit cycles for each $(a_0, b_0, b_1, b_2, b_3) \in V$.

• We also study the slow-fast version of (2): $\{\dot{x} = y, \dot{y} = -y(a_0 + x) - \epsilon(b_0 + b_1x + b_2x^2 + b_3x^3 + x^4)\},\$ where $\epsilon \sim 0$, $\epsilon > 0$ and $(a_0, b_0, b_1, b_2, b_3) \sim (0, 0, 0, 0, 0).$

Statement of results

Theorem

There exists a small neighborhood V of the origin in the parameter space $(a_0, b_0, b_1, b_2, b_3)$ such that (2) has at most two limit cycles for each $(a_0, b_0, b_1, b_2, b_3) \in V$.

• We also study the slow-fast version of (2): $\{\dot{x} = y, \dot{y} = -y(a_0 + x) - \epsilon(b_0 + b_1x + b_2x^2 + b_3x^3 + x^4)\},\$ where $\epsilon \sim 0, \epsilon > 0$ and $(a_0, b_0, b_1, b_2, b_3) \sim (0, 0, 0, 0, 0).$

Theorem

There exists a small $\epsilon_0 > 0$ and a small neighborhood V of the origin in the parameter space $(a_0, b_0, b_1, b_2, b_3)$ such that the slow-fast system has at most two limit cycles for each $(\epsilon, a_0, b_0, b_1, b_2, b_3) \in [0, \epsilon_0] \times V$.

Proof of Theorem 1 and Theorem 2

- The proof of the theorem consists of 3 steps:
 - Using appropriate linear equivalency we bring (2) to a similar Liénard equation, but of slow-fast type and with the parameters kept on the unit sphere.

<ロト <四ト <注入 <注下 <注下 <

Proof of Theorem 1 and Theorem 2

- The proof of the theorem consists of 3 steps:
 - Using appropriate linear equivalency we bring (2) to a similar Liénard equation, but of slow-fast type and with the parameters kept on the unit sphere.
 - We study the slow-fast Liénard equation in arbitrarily large compact sets in the phase space by using singular perturbation theory and the family blow-up.

< □ > < @ > < 注 > < 注 > ... 注

Proof of Theorem 1 and Theorem 2

- The proof of the theorem consists of 3 steps:
 - Using appropriate linear equivalency we bring (2) to a similar Liénard equation, but of slow-fast type and with the parameters kept on the unit sphere.
 - We study the slow-fast Liénard equation in arbitrarily large compact sets in the phase space by using singular perturbation theory and the family blow-up.
 - We study the slow-fast Liénard equation near infinity by using an appropriate Poincaré-Lyapunov compactification.

Step 1-Bringing the Liénard equation (2) to a slow-fast system

• We may assume that $a_0 = 0$ in (2):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -yx - (b_0 + b_1x + b_2x^2 + b_3x^3 + x^4), \end{cases}$$
(3)

with a new parameter $(b_0, b_1, b_2, b_3) \sim (0, 0, 0, 0)$. We denote the system (3) by X_{b_0, b_1, b_2, b_3} .

Step 1-Bringing the Liénard equation (2) to a slow-fast system

• We may assume that $a_0 = 0$ in (2):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -yx - (b_0 + b_1x + b_2x^2 + b_3x^3 + x^4), \end{cases}$$
(3)

with a new parameter $(b_0, b_1, b_2, b_3) \sim (0, 0, 0, 0)$. We denote the system (3) by X_{b_0, b_1, b_2, b_3} .

• Using a linear coordinate change $(x, y) = (\epsilon \bar{x}, \epsilon^2 \bar{y})$, with $\epsilon > 0$ and $\epsilon \sim 0$, we convert the system $X_{\epsilon^4 B_0, \epsilon^3 B_1, \epsilon^2 B_2, \epsilon B_3}$ to

$$\begin{cases} \dot{\bar{x}} = \epsilon \bar{y} \\ \dot{\bar{y}} = \epsilon \left(-\bar{y}\bar{x} - \epsilon \left(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4\right) \right), \end{cases}$$
(4)

where $(B_0, B_1, B_2, B_3) \in \mathbb{S}^3$.

Step 1-Bringing the Liénard equation (2) to a slow-fast system

• After dividing (4) by the positive constant ϵ , we conclude that $X_{\epsilon^4 B_0,\epsilon^3 B_1,\epsilon^2 B_2,\epsilon B_3}$ is (linearly) equivalent to

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{y}\bar{x} - \epsilon(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4), \end{cases} (5)$$

(日) (國) (필) (필) (필) 표

where $(B_0, B_1, B_2, B_3) \in \mathbb{S}^3$.

Step 1-Bringing the Liénard equation (2) to a slow-fast system

• After dividing (4) by the positive constant ϵ , we conclude that $X_{\epsilon^4 B_0,\epsilon^3 B_1,\epsilon^2 B_2,\epsilon B_3}$ is (linearly) equivalent to

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{y}\bar{x} - \epsilon(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4), \end{cases} (5)$$

where $(B_0, B_1, B_2, B_3) \in \mathbb{S}^3$.

 Thus, instead of studying system X<sub>ϵ⁴B₀,ϵ³B₁,ϵ²B₂,ϵB₃, with ϵ > 0 and (B₀, B₁, B₂, B₃) ∈ S³, we can study system (5) which is of singular type.
</sub>

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Step 2–Slow-fast Liénard systems (5) at infinity in the phase space

(ロ) (御) (注) (注) 注

2000

• We can study the dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).

Step 2–Slow-fast Liénard systems (5) at infinity in the phase space

- We can study the dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).
- Due to the presence of the small parameter ε > 0, an additional family blow-up in the positive and negative x̄-direction is necessary to completely desingularize (5) at infinity.

《曰》 《聞》 《言》 《言》 三言

Step 2–Slow-fast Liénard systems (5) at infinity in the phase space

- We can study the dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).
- Due to the presence of the small parameter ε > 0, an additional family blow-up in the positive and negative x̄-direction is necessary to completely desingularize (5) at infinity.

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).

Step 2–Transformation of (5) in the negative \bar{x} -direction

• We define the coordinate change

$$(\bar{x},\bar{y})=(rac{-1}{
ho^2},rac{Y}{
ho^5}),$$

where $\rho > 0$, $\rho \sim 0$ and Y is kept in a large compact set. In the coordinates (ρ, Y) , after multiplication by the positive factor ρ^3 , system (5) can be written as:

$$\begin{cases} \dot{\rho} = \frac{1}{2}\rho Y \\ \dot{Y} = \frac{5}{2}Y^2 + \rho Y - \epsilon (B_0\rho^8 - B_1\rho^6 + B_2\rho^4 - B_3\rho^2 + 1). \end{cases}$$
(6)

Step 2–Transformation of (5) in the negative \bar{x} -direction

• We define the coordinate change

$$(\bar{x},\bar{y})=(rac{-1}{
ho^2},rac{Y}{
ho^5}),$$

where $\rho > 0$, $\rho \sim 0$ and Y is kept in a large compact set. In the coordinates (ρ, Y) , after multiplication by the positive factor ρ^3 , system (5) can be written as:

$$\begin{cases} \dot{\rho} = \frac{1}{2}\rho Y \\ \dot{Y} = \frac{5}{2}Y^{2} + \rho Y - \epsilon (B_{0}\rho^{8} - B_{1}\rho^{6} + B_{2}\rho^{4} - B_{3}\rho^{2} + 1). \end{cases}$$
(6)

• When $\rho = \epsilon = 0$, the singularity at Y = 0 of (6) is linearly zero. We blow up the origin $(\rho, Y, \epsilon) = (0, 0, 0)$ using

 $(
ho,Y,\epsilon)=(var
ho,var Y,v^2ar \epsilon),\ v\ge 0,\ ar \epsilon\ge 0,\ ar
ho\ge 0,\ (ar
ho,ar Y,ar \epsilon)\in \mathbb{S}^2.$

Step 2–Transformation of (5) in the negative \bar{x} -direction

The family chart {\(\vec{\epsilon} = 1\)}\). System (6) changes, after dividing by v, into

$$\begin{cases} \dot{\bar{\rho}} = \frac{1}{2}\bar{\rho}\bar{Y} \\ \dot{\bar{Y}} = \frac{5}{2}\bar{Y}^2 + \bar{\rho}\bar{Y} - 1 + O(v^2) \end{cases}$$
(7)

where $\bar{\rho} \ge 0$ and $(\bar{\rho}, \bar{Y})$ is kept in a large compact set. When v = 0, system (7) has one hyperbolic and attracting node at $(\bar{\rho}, \bar{Y}) = (0, -\sqrt{\frac{2}{5}})$ and one hyperbolic and repelling node at $(\bar{\rho}, \bar{Y}) = (0, \sqrt{\frac{2}{5}})$.

Step 2–Transformation of (5) in the negative \bar{x} -direction

The phase directional chart {ρ
 = 1}. In the chart {ρ
 = 1} system (6) becomes, after dividing by ν,

$$\begin{cases} \dot{v} = \frac{1}{2}v\bar{Y} \\ \dot{\bar{\epsilon}} = -\bar{\epsilon}\bar{Y} \\ \dot{\bar{Y}} = \bar{Y} + 2\bar{Y}^2 - \bar{\epsilon}(1 + O(v^2)), \end{cases}$$
(8)

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and \bar{Y} is kept in a large compact set. If $v = \bar{\epsilon} = 0$, then system (8) has a hyperbolic saddle at $\bar{Y} = -\frac{1}{2}$ with eigenvalues $(-\frac{1}{4}, \frac{1}{2}, -1)$ and a semi-hyperbolic singularity at $\bar{Y} = 0$ with the \bar{Y} -axis as the unstable manifold and a two dimensional center manifold transverse to the unstable manifold. Center manifolds can be written as $\bar{Y} = \bar{\epsilon}(1 + O(v, \bar{\epsilon}))$, with the following dynamics $\{\dot{v} = \frac{1}{2}v\bar{\epsilon}(1 + O(v, \bar{\epsilon})), \dot{\bar{\epsilon}} = -\bar{\epsilon}^2(1 + O(v, \bar{\epsilon}))\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Step 2–Transformation of (5) in the negative \bar{x} -direction

• The phase directional chart { $\bar{Y} = 1$ }. System (6) changes, after dividing by v, into

$$\begin{cases} \dot{v} = v(\frac{5}{2} + \bar{\rho} - \bar{\epsilon}(1 + O(v^2))) \\ \dot{\bar{\epsilon}} = -2\bar{\epsilon}(\frac{5}{2} + \bar{\rho} - \bar{\epsilon}(1 + O(v^2))) \\ \dot{\bar{\rho}} = \bar{\rho}(-2 - \bar{\rho} + \bar{\epsilon}(1 + O(v^2))), \end{cases}$$
(9)

<ロト <四ト <注入 <注下 <注下 <

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and $\bar{\rho} \ge 0$ is kept in a large compact set. System (9) has a hyperbolic saddle at $(v, \bar{\epsilon}, \bar{\rho}) = (0, 0, 0)$ with eigenvalues $(\frac{5}{2}, -5, -2)$.

Step 2–Transformation of (5) in the negative \bar{x} -direction

• The phase directional chart $\{\overline{Y} = -1\}$. System (6) changes, after dividing by v, into

$$\begin{cases} \dot{v} = v \left(-\frac{5}{2} + \bar{\rho} + \bar{\epsilon}(1 + O(v^2)) \right) \\ \dot{\bar{\epsilon}} = -2\bar{\epsilon} \left(-\frac{5}{2} + \bar{\rho} + \bar{\epsilon}(1 + O(v^2)) \right) \\ \dot{\bar{\rho}} = \bar{\rho}(2 - \bar{\rho} - \bar{\epsilon}(1 + O(v^2))), \end{cases}$$
(10)

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and $\bar{\rho} \ge 0$ is kept in a large compact set. Besides the hyperbolic saddle found in the chart $\{\bar{\rho} = 1\}$, we find an extra hyperbolic saddle at $(v, \bar{\epsilon}, \bar{\rho}) = (0, 0, 0)$ of (10) with eigenvalues $(-\frac{5}{2}, 5, 2)$.

Step 2–Transformation of (5) in the negative \bar{x} -direction

<ロト <四ト <注入 <注下 <注下 <

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).

Step 2–Transformation of (5) in the positive \bar{x} -direction

• We introduce the coordinate change

$$ig(ar{x},ar{y}ig)=ig(rac{1}{
ho^2},rac{Y}{
ho^5}ig),$$

(日) (周) (注) (注) (注)

where $\rho >$ 0, $\rho \sim$ 0 and Y is kept in a large compact set.

Step 2–Transformation of (5) in the positive \bar{x} -direction

• We introduce the coordinate change

$$(ar{x},ar{y})=(rac{1}{
ho^2},rac{Y}{
ho^5}),$$

where $\rho > 0$, $\rho \sim 0$ and Y is kept in a large compact set. In the coordinates (ρ, Y) , after multiplication by the positive factor ρ^3 , system (5) can be written as:

$$\begin{cases} \dot{\rho} = -\frac{1}{2}\rho Y \\ \dot{Y} = -\frac{5}{2}Y^2 - \rho Y - \epsilon (B_0\rho^8 + B_1\rho^6 + B_2\rho^4 + B_3\rho^2 + 1) \end{cases}$$
(11)

• When $\rho = 0$ and $\epsilon > 0$, system (11) has no singularities. When $\rho = \epsilon = 0$, the singularity at Y = 0 of (11) is linearly zero.

Step 2–Transformation of (5) in the positive \bar{x} -direction

• We introduce the coordinate change

$$(ar{x},ar{y})=(rac{1}{
ho^2},rac{Y}{
ho^5}),$$

where $\rho > 0$, $\rho \sim 0$ and Y is kept in a large compact set. In the coordinates (ρ, Y) , after multiplication by the positive factor ρ^3 , system (5) can be written as:

$$\begin{cases} \dot{\rho} = -\frac{1}{2}\rho Y \\ \dot{Y} = -\frac{5}{2}Y^2 - \rho Y - \epsilon (B_0\rho^8 + B_1\rho^6 + B_2\rho^4 + B_3\rho^2 + 1) \\ (11) \end{cases}$$

When ρ = 0 and ε > 0, system (11) has no singularities. When ρ = ε = 0, the singularity at Y = 0 of (11) is linearly zero. To desingularize (11) we use the following blow-up at the origin in (ρ, Y, ε)-space: (ρ, Y, ε) = (vρ̄, vȲ, v²ε̄), v ≥ 0, v ~ 0, ε̄ ≥ 0, ρ̄ ≥ 0, (ρ̄, Ȳ, ε̄) ∈ S².

Step 2–Transformation of (5) in the positive \bar{x} -direction

• The family chart { $\bar{\epsilon} = 1$ }. System (11) changes, after dividing by v, into

$$\begin{cases} \dot{\bar{\rho}} = -\frac{1}{2}\bar{\rho}\bar{Y} \\ \dot{\bar{Y}} = -\frac{5}{2}\bar{Y}^2 - \bar{\rho}\bar{Y} - 1 + O(v^2) \end{cases}$$
(12)

◆□→ ◆御→ ◆注→ ◆注→ 注目

200

where $\bar{\rho} \ge 0$ and $(\bar{\rho}, \bar{Y})$ is kept in a large compact set.

Step 2–Transformation of (5) in the positive \bar{x} -direction

• The family chart { $\bar{\epsilon} = 1$ }. System (11) changes, after dividing by v, into

$$\begin{cases} \dot{\bar{\rho}} = -\frac{1}{2}\bar{\rho}\bar{Y} \\ \dot{\bar{Y}} = -\frac{5}{2}\bar{Y}^2 - \bar{\rho}\bar{Y} - 1 + O(v^2) \end{cases}$$
(12)

(日) (월) (일) (전) (전)

where $\bar{\rho} \ge 0$ and $(\bar{\rho}, \bar{Y})$ is kept in a large compact set. When v = 0, system (12) has no singularities.

Step 2–Transformation of (5) in the positive \bar{x} -direction

• The family chart { $\bar{\epsilon} = 1$ }. System (11) changes, after dividing by v, into

$$\begin{cases} \dot{\bar{\rho}} = -\frac{1}{2}\bar{\rho}\bar{Y} \\ \dot{\bar{Y}} = -\frac{5}{2}\bar{Y}^2 - \bar{\rho}\bar{Y} - 1 + O(v^2) \end{cases}$$
(12)

where $\bar{\rho} \ge 0$ and $(\bar{\rho}, \bar{Y})$ is kept in a large compact set. When v = 0, system (12) has no singularities. The phase directional chart $\{\bar{\rho} = 1\}$. In the chart $\{\bar{\rho} = 1\}$ system (11) becomes, after dividing by v,

$$\begin{cases} \dot{v} = -\frac{1}{2}v\bar{Y} \\ \dot{\bar{\epsilon}} = \bar{\epsilon}\bar{Y} \\ \dot{\bar{Y}} = -\bar{Y} - 2\bar{Y}^2 - \bar{\epsilon}(1 + O(v^2)), \end{cases}$$
(13)

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and \bar{Y} is kept in a large compact set.
Step 2–Transformation of (5) in the positive \bar{x} -direction

- The phase directional chart { Y
 = 1}. In this chart, system
 (11) changes, after dividing by v, into

$$\begin{cases} \dot{v} = v \left(-\frac{5}{2} - \bar{\rho} - \bar{\epsilon}(1 + O(v^2)) \right) \\ \dot{\bar{\epsilon}} = -2\bar{\epsilon} \left(-\frac{5}{2} - \bar{\rho} - \bar{\epsilon}(1 + O(v^2)) \right) \\ \dot{\bar{\rho}} = \bar{\rho} \left(2 + \bar{\rho} + \bar{\epsilon}(1 + O(v^2)) \right), \end{cases}$$
(14)

200

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and $\bar{\rho} \ge 0$ is kept in a large compact set. When $v = \bar{\epsilon} = 0$, system (14) has a hyperbolic saddle at $\bar{\rho} = 0$ with eigenvalues $(-\frac{5}{2}, 5, 2)$.

Step 2–Transformation of (5) in the positive \bar{x} -direction

The phase directional chart { Y
 = -1}. In this phase directional chart, system (11) changes, after dividing by v, into

$$\begin{cases} \dot{v} = v(\frac{5}{2} - \bar{\rho} + \bar{\epsilon}(1 + O(v^2))) \\ \dot{\bar{\epsilon}} = -2\bar{\epsilon}(\frac{5}{2} - \bar{\rho} + \bar{\epsilon}(1 + O(v^2))) \\ \dot{\bar{\rho}} = \bar{\rho}(-2 + \bar{\rho} - \bar{\epsilon}(1 + O(v^2))), \end{cases}$$
(15)

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and $\bar{\rho} \ge 0$ is kept in a large compact set.

Step 2–Transformation of (5) in the positive \bar{x} -direction

The phase directional chart { Y
 = −1}. In this phase directional chart, system (11) changes, after dividing by v, into

$$\begin{cases} \dot{v} = v(\frac{5}{2} - \bar{\rho} + \bar{\epsilon}(1 + O(v^2))) \\ \dot{\bar{\epsilon}} = -2\bar{\epsilon}(\frac{5}{2} - \bar{\rho} + \bar{\epsilon}(1 + O(v^2))) \\ \dot{\bar{\rho}} = \bar{\rho}(-2 + \bar{\rho} - \bar{\epsilon}(1 + O(v^2))), \end{cases}$$
(15)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $(v, \bar{\epsilon}) \sim (0, 0)$, $v \ge 0$, $\bar{\epsilon} \ge 0$ and $\bar{\rho} \ge 0$ is kept in a large compact set. Besides the hyperbolic saddle found in the chart $\{\bar{\rho} = 1\}$, system (15) has an extra hyperbolic saddle at $(v, \bar{\epsilon}, \bar{\rho}) = (0, 0, 0)$ with eigenvalues $(\frac{5}{2}, -5, -2)$.

Step 2–Transformation of (5) in the positive \bar{x} -direction

<ロト <四ト <注入 <注下 <注下 <

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).

Step 2–Transformation of (5) in the positive and negative \bar{y} -direction

• We have

$$\begin{cases} \dot{\rho} = \frac{1}{5}\rho^{2}X + \frac{\epsilon}{5}\left(B_{0}\rho^{9} + B_{1}X\rho^{7} + B_{2}X^{2}\rho^{5} + B_{3}X^{3}\rho^{3} + X^{4}\rho\right) \\ \dot{X} = \frac{2}{5}X\left(\rho X + \epsilon\left(B_{0}\rho^{8} + B_{1}X\rho^{6} + B_{2}X^{2}\rho^{4} + B_{3}X^{3}\rho^{2} + X^{4}\right)\right) + 1.$$

$$(16)$$

and

$$\begin{cases} \dot{\rho} = \frac{1}{5}\rho^{2}X - \frac{\epsilon}{5}(B_{0}\rho^{9} + B_{1}X\rho^{7} + B_{2}X^{2}\rho^{5} + B_{3}X^{3}\rho^{3} + X^{4}\rho) \\ \dot{X} = \frac{2}{5}X\left(\rho X - \epsilon(B_{0}\rho^{8} + B_{1}X\rho^{6} + B_{2}X^{2}\rho^{4} + B_{3}X^{3}\rho^{2} + X^{4})\right) - 1.$$

$$(17)$$

Step 2–Transformation of (5) in the positive \bar{x} -direction

<ロト <四ト <注入 <注下 <注下 <

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of type (2,5).

Step 3–Slow-fast Liénard systems (5) in compact sets in the phase space

Suppose that K is any compact set in the (x̄, ȳ)-plane and fix it. We prove that system (5) has at most two limit cycles in K, for each fixed ε ≥ 0, ε ~ 0 and (B₀, B₁, B₂, B₃) ∈ S³.

イロト イポト イヨト イヨト ヨ ノクへの

Step 3–Slow-fast Liénard systems (5) in compact sets in the phase space

- Suppose that K is any compact set in the (x̄, ȳ)-plane and fix it. We prove that system (5) has at most two limit cycles in K, for each fixed ε ≥ 0, ε ~ 0 and (B₀, B₁, B₂, B₃) ∈ S³.
- When $\epsilon = 0$:

・ロト ・ 母 ト ・ 言 ト ・ 言 ト りへで

Step 3–Slow-fast Liénard systems (5) in compact sets in the phase space

- Suppose that K is any compact set in the (x̄, ȳ)-plane and fix it. We prove that system (5) has at most two limit cycles in K, for each fixed ε≥ 0, ε ~ 0 and (B₀, B₁, B₂, B₃) ∈ S³.
- When $\epsilon = 0$:

• Our problem is equivalent with the following problem: Prove that slow-fast and regular codimension 4 saddle-node bifurcations can produce at most 2 small-amplitude limit cycles.

Regular and slow-fast codimension 4 saddle-node bifurcations

• We consider:

$$X_{\epsilon,b,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4 + x^5 G(x,\lambda) \\ + y^2 H(x,y,\lambda) \Big). \end{cases}$$

(日) (四) (문) (문) (문)

Regular and slow-fast codimension 4 saddle-node bifurcations

• We consider:

$$X_{\epsilon,b,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4 + x^5 G(x,\lambda) \\ + y^2 H(x,y,\lambda) \Big). \end{cases}$$

When b = 0 and e > 0, then the origin (x, y) = (0, 0) is a nilpotent singularity of saddle-node type.

Regular and slow-fast codimension 4 saddle-node bifurcations

• We consider:

$$X_{\epsilon,b,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4 + x^5 G(x,\lambda) \\ + y^2 H(x,y,\lambda) \Big). \end{cases}$$

When b = 0 and e > 0, then the origin (x, y) = (0, 0) is a nilpotent singularity of saddle-node type.

Blow-up in the parameter space

Regular and slow-fast codimension 4 saddle-node bifurcations

• We consider:

$$X_{\epsilon,b,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4 + x^5 G(x,\lambda) \\ + y^2 H(x,y,\lambda) \Big). \end{cases}$$

When b = 0 and e > 0, then the origin (x, y) = (0, 0) is a nilpotent singularity of saddle-node type.

Blow-up in the parameter space

We first reparametrize the *b*-parameters, by introducing weighted spherical coordinates: (b₀, b₁, b₂, b₃) = (r⁴B₀, r³B₁, r²B₂, rB₃), r ≥ 0, B = (B₀, B₁, B₂, B₃) ∈ S³.

Regular and slow-fast codimension 4 saddle-node bifurcations

• We consider:

$$X_{\epsilon,b,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4 + x^5 G(x,\lambda) \\ + y^2 H(x,y,\lambda) \Big). \end{cases}$$

When b = 0 and e > 0, then the origin (x, y) = (0, 0) is a nilpotent singularity of saddle-node type.

Blow-up in the parameter space

- We first reparametrize the *b*-parameters, by introducing weighted spherical coordinates: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, r^2 B_2, r B_3), r \ge 0, B = (B_0, B_1, B_2, B_3) \in \mathbb{S}^3.$
- Instead of coordinates on the sphere, we use one of the 8 charts of the sphere:

Regular and slow-fast codimension 4 saddle-node bifurcations

• We consider:

$$X_{\epsilon,b,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(b_0 + b_1 x + b_2 x^2 + b_3 x^3 + x^4 + x^5 G(x,\lambda) \\ + y^2 H(x,y,\lambda) \Big). \end{cases}$$

When b = 0 and e > 0, then the origin (x, y) = (0, 0) is a nilpotent singularity of saddle-node type.

Blow-up in the parameter space

- We first reparametrize the *b*-parameters, by introducing weighted spherical coordinates: $(b_0, b_1, b_2, b_3) = (r^4B_0, r^3B_1, r^2B_2, rB_3), r \ge 0, B = (B_0, B_1, B_2, B_3) \in \mathbb{S}^3.$
- Instead of coordinates on the sphere, we use one of the 8 charts of the sphere:

a) Jump region: $(b_0, b_1, b_2, b_3) = (\pm r^4, r^3B_1, r^2B_2, rB_3)$

b) Slow-fast Hopf region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, -r^3, r^2 B_2, r B_3)$

b) Slow-fast Hopf region:

$$(b_0, b_1, b_2, b_3) = (r^4 B_0, -r^3, r^2 B_2, r B_3)$$

c) Saddle region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3, r^2 B_2, r B_3)$

b) Slow-fast Hopf region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, -r^3, r^2 B_2, r B_3)$ c) Saddle region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3, r^2 B_2, r B_3)$ d) Slow-fast Bogdanov-Takens region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, \pm r^2, r B_3)$

b) Slow-fast Hopf region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, -r^3, r^2 B_2, r B_3)$ c) Saddle region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3, r^2 B_2, r B_3)$ d) Slow-fast Bogdanov-Takens region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, \pm r^2, r B_3)$ e) Slow-fast codimension 3 saddle region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, r^2 B_2, r).$

b) Slow-fast Hopf region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, -r^3, r^2 B_2, r B_3)$ c) Saddle region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3, r^2 B_2, r B_3)$ d) Slow-fast Bogdanov-Takens region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, \pm r^2, r B_3)$ e) Slow-fast codimension 3 saddle region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, r^2 B_2, r).$ f) Slow-fast codimension 3 elliptic region: $(b_0, b_1, b_2, b_3) = (r^4 B_0, r^3 B_1, r^2 B_2, -r).$

b) Slow-fast Hopf region: $(b_0, b_1, b_2, b_3) = (r^4B_0, -r^3, r^2B_2, rB_3)$ c) Saddle region: $(b_0, b_1, b_2, b_3) = (r^4B_0, r^3, r^2B_2, rB_3)$ d) Slow-fast Bogdanov-Takens region: $(b_0, b_1, b_2, b_3) = (r^4B_0, r^3B_1, \pm r^2, rB_3)$ e) Slow-fast codimension 3 saddle region: $(b_0, b_1, b_2, b_3) = (r^4B_0, r^3B_1, r^2B_2, r).$ f) Slow-fast codimension 3 elliptic region: $(b_0, b_1, b_2, b_3) = (r^4B_0, r^3B_1, r^2B_2, -r).$

We obtain

$$X_{\epsilon,B,r,\lambda}: \begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \left(r^4 B_0 + r^3 B_1 x + r^2 B_2 x^2 + r B_3 x^3 + x^4 + x^5 G(x,\lambda) \right. \\ \left. + y^2 H(x,y,\lambda) \right). \end{cases}$$

Blow-up of the origin (x, y, r) = (0, 0, 0) (primary blow-up)

• We blow up the origin using the blow up transformation

$$(x, y, r) = (u\bar{x}, u^2\bar{y}, u\bar{r}), \ u \ge 0, \ \bar{r} \ge 0, \ (\bar{x}, \bar{y}, \bar{r}) \in S^2.$$
 (18)

The study of the dynamics in the blown-up coordinates will be done in different charts:

The family chart $\bar{r}=+1$

In this family chart, the vector field X_{ε,B,r,λ} yields, after division by the positive factor u,

$$X_{\epsilon,B,u,\lambda}^{F}: \begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \epsilon u \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4 + u\bar{x}^5G(u\bar{x},\lambda) \\ + \bar{y}^2H(u\bar{x},u^2\bar{y},\lambda) \Big). \end{cases}$$

The family chart $\bar{r} = +1$

In this family chart, the vector field X_{ε,B,r,λ} yields, after division by the positive factor u,

$$X_{\epsilon,B,u,\lambda}^{F}: \begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \epsilon u \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4 + u\bar{x}^5 G(u\bar{x},\lambda) \\ + \bar{y}^2 H(u\bar{x},u^2\bar{y},\lambda) \Big). \end{cases}$$

• We write $\bar{\epsilon} = \epsilon u \sim 0$ ($\epsilon \in [0, M]$, $u \sim 0$):

$$X^{F}_{\bar{\epsilon},B,u,\lambda}: \begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4 + u\bar{x}^5G(u\bar{x},\lambda) \\ + \bar{y}^2H(u\bar{x},u^2\bar{y},\lambda) \Big) \end{cases}$$

where $\bar{\epsilon} \sim 0$ is a singular perturbation parameter.

The family chart $\bar{r} = +1$

In this family chart, the vector field X_{ε,B,r,λ} yields, after division by the positive factor u,

$$X_{\epsilon,B,u,\lambda}^{F}: \begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \epsilon u \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4 + u\bar{x}^5 G(u\bar{x},\lambda) \\ + \bar{y}^2 H(u\bar{x},u^2\bar{y},\lambda) \Big). \end{cases}$$

• We write $\bar{\epsilon} = \epsilon u \sim 0$ ($\epsilon \in [0, M]$, $u \sim 0$):

$$X_{\bar{\epsilon},B,u,\lambda}^{F}: \begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 + B_3\bar{x}^3 + \bar{x}^4 + u\bar{x}^5G(u\bar{x},\lambda) \\ + \bar{y}^2H(u\bar{x},u^2\bar{y},\lambda) \Big) \end{cases}$$

where $\bar{\epsilon} \sim 0$ is a singular perturbation parameter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

The slow-fast Hopf region

• We consider

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(r^4 B_0 - r^3 x + r^2 B_2 x^2 + r B_3 x^3 + x^4 + x^5 G(x, \lambda) \\ + y^2 H(x, y, \lambda) \Big). \end{cases}$$

• We consider

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \Big(r^4 B_0 - r^3 x + r^2 B_2 x^2 + r B_3 x^3 + x^4 + x^5 G(x, \lambda) \\ + y^2 H(x, y, \lambda) \Big). \end{cases}$$

Theorem

Let $B_1 = -1$. Given any $B_i^1 > 0$, i = 2, 3. There exist a neighborhood V of (x, y) = (0, 0), $r_0 > 0$ and $B_0^1 > 0$ such that $X_{\epsilon,B,r,\lambda}$ has at most 2 limit cycles in V for each $(\epsilon, B_0, B_2, B_3, r, \lambda) \in$ $[0, M] \times [-B_0^1, B_0^1] \times [-B_2^1, B_2^1] \times [-B_3^1, B_3^1] \times [0, r_0] \times \Lambda$.

• It is sufficient to consider the following singular perturbation system:

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \delta^2 \Big(\delta \bar{B}_0 - \bar{x} + B_2 \bar{x}^2 + B_3 \bar{x}^3 + \bar{x}^4 + u \bar{x}^5 G(u \bar{x}, \lambda) \\ + \bar{y}^2 H(u \bar{x}, u^2 \bar{y}, \lambda) \Big), \end{cases}$$

where $(\epsilon, B_0) = (\delta^2, \delta \overline{B}_0)$, with $\delta \sim 0$ and $\overline{B}_0 \sim 0$ (\overline{B}_0 is the regular breaking parameter).

• It is sufficient to consider the following singular perturbation system:

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \delta^2 \Big(\delta \bar{B}_0 - \bar{x} + B_2 \bar{x}^2 + B_3 \bar{x}^3 + \bar{x}^4 + u \bar{x}^5 G(u \bar{x}, \lambda) \\ + \bar{y}^2 H(u \bar{x}, u^2 \bar{y}, \lambda) \Big), \end{cases}$$

where $(\epsilon, B_0) = (\delta^2, \delta \overline{B}_0)$, with $\delta \sim 0$ and $\overline{B}_0 \sim 0$ (\overline{B}_0 is the regular breaking parameter).

• When $(\epsilon, B_0) = (\delta^2 E, \pm \delta)$, we have no limit cycles (a jump case).

• It is sufficient to consider the following singular perturbation system:

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \delta^2 \Big(\delta \bar{B}_0 - \bar{x} + B_2 \bar{x}^2 + B_3 \bar{x}^3 + \bar{x}^4 + u \bar{x}^5 G(u \bar{x}, \lambda) \\ + \bar{y}^2 H(u \bar{x}, u^2 \bar{y}, \lambda) \Big), \end{cases}$$

where $(\epsilon, B_0) = (\delta^2, \delta \overline{B}_0)$, with $\delta \sim 0$ and $\overline{B}_0 \sim 0$ (\overline{B}_0 is the regular breaking parameter).

- When $(\epsilon, B_0) = (\delta^2 E, \pm \delta)$, we have no limit cycles (a jump case).
- "D. Dumortier, R. Roussarie, Canard cycles and center manifolds, 1996".

• It is sufficient to consider the following singular perturbation system:

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \delta^2 \Big(\delta \bar{B}_0 - \bar{x} + B_2 \bar{x}^2 + B_3 \bar{x}^3 + \bar{x}^4 + u \bar{x}^5 G(u \bar{x}, \lambda) \\ + \bar{y}^2 H(u \bar{x}, u^2 \bar{y}, \lambda) \Big), \end{cases}$$

where $(\epsilon, B_0) = (\delta^2, \delta \overline{B}_0)$, with $\delta \sim 0$ and $\overline{B}_0 \sim 0$ (\overline{B}_0 is the regular breaking parameter).

- When $(\epsilon, B_0) = (\delta^2 E, \pm \delta)$, we have no limit cycles (a jump case).
- "D. Dumortier, R. Roussarie, Canard cycles and center manifolds, 1996".
- We have two types of limit periodic sets: the contact point and detectable canard limit periodic sets

The slow-fast Hopf region

The slow-fast Hopf region

• From the following theorem it follows that the limit cycles may bifurcate from the contact point $(\bar{x}, \bar{y}) = (0, 0)$. In other words, at $\bar{B}_0 = 0$, a (slow-fast) Hopf bifurcation takes place.

<ロ> (四) (四) (注) (注) (注) [注

The slow-fast Hopf region

Theorem

- (i) Let $B_2^0 > 0$ be any arbitrarily small fixed number and let $K := \mathcal{B} \cap \{|B_2| \ge B_2^0\}$. There exist small $\delta_0 > 0$, $\overline{B}_0^0 > 0$, $u_0 > 0$ and a neighborhood U of $(\bar{x}, \bar{y}) = (0, 0)$ such that the following statements are true.
 - 1 The family $X_{\delta^2,(\delta\bar{B}_0,-1,B_2,B_3),u,\lambda}^F$ has at most 1 (hyperbolic) limit cycle in U for each $(\delta,\bar{B}_0,B_2,B_3,u,\lambda) \in [0,\delta_0] \times [-\bar{B}_0^0,\bar{B}_0^0] \times K \times [0,u_0] \times \Lambda.$

The slow-fast Hopf region

Theorem

- (i) Let $B_2^0 > 0$ be any arbitrarily small fixed number and let $K := \mathcal{B} \cap \{|B_2| \ge B_2^0\}$. There exist small $\delta_0 > 0$, $\overline{B}_0^0 > 0$, $u_0 > 0$ and a neighborhood U of $(\bar{x}, \bar{y}) = (0, 0)$ such that the following statements are true.
 - 1 The family $X_{\delta^2,(\delta\bar{B}_0,-1,B_2,B_3),u,\lambda}^F$ has at most 1 (hyperbolic) limit cycle in U for each $(\delta,\bar{B}_0,B_2,B_3,u,\lambda) \in [0,\delta_0] \times [-\bar{B}_0^0,\bar{B}_0^0] \times K \times [0,u_0] \times \Lambda.$
 - 2 When we fix $(\delta, B_2, B_3, u, \lambda) \in]0, \delta_0] \times K \times [0, u_0] \times \Lambda$, the \overline{B}_0 -family $X_{\delta^2, (\delta \overline{B}_0, -1, B_2, B_3), u, \lambda}^F$ undergoes, in U and at $\overline{B}_0 = 0$, a Hopf bifurcation of codimension 1. Assume $(B_2, B_3) \in K$ and $B_2 > 0$. When \overline{B}_0 increases there is in U an attracting hyperbolic focus and no limit cycle; when \overline{B}_0 decreases there is in U a repelling hyperbolic focus and an attracting limit cycle of which the size monotonically grows as \overline{B}_1 decreases A formation $(B_1, B_2) \in K$ and $\overline{B}_2 \in K$.
The slow-fast Hopf region

Theorem

(i)

2 Assume $(B_2, B_3) \in K$ and $B_2 < 0$. When \overline{B}_0 decreases there is in U a repelling hyperbolic focus and no limit cycle; when \overline{B}_0 increases there is in U an attracting hyperbolic focus and a repelling limit cycle of which the size monotonically grows as \overline{B}_0 increases.

The slow-fast Hopf region

Theorem

(i) 2 Assume (B₂, B₃) ∈ K and B₂ < 0. When B
₀ decreases there is in U a repelling hyperbolic focus and no limit cycle; when B
₀ increases there is in U an attracting hyperbolic focus and a repelling limit cycle of which the size monotonically grows as B
₀ increases.

(ii) There exist small $\delta_0 > 0$, $\bar{B}_0^0 > 0$, $B_2^0 > 0$ and $u_0 > 0$ and a neighborhood U of $(\bar{x}, \bar{y}) = (0,0)$ such that the family $X_{\delta^2, (\delta\bar{B}_0, -1, B_2, B_3), u, \lambda}^F$ has at most 2 limit cycles in U for each $(\delta, \bar{B}_0, B_2, B_3, u, \lambda) \in [0, \delta_0] \times [-\bar{B}_0^0, \bar{B}_0^0] \times \mathcal{B} \cap \{|B_2| \leq B_2^0\} \times [0, u_0] \times \Lambda.$

The slow-fast Hopf region

Theorem

(i) 2 Assume (B₂, B₃) ∈ K and B₂ < 0. When B
₀ decreases there is in U a repelling hyperbolic focus and no limit cycle; when B
₀ increases there is in U an attracting hyperbolic focus and a repelling limit cycle of which the size monotonically grows as B
₀ increases.

(ii) There exist small $\delta_0 > 0$, $\bar{B}_0^0 > 0$, $B_2^0 > 0$ and $u_0 > 0$ and a neighborhood U of $(\bar{x}, \bar{y}) = (0,0)$ such that the family $X_{\delta^2, (\delta\bar{B}_0, -1, B_2, B_3), u, \lambda}^F$ has at most 2 limit cycles in U for each $(\delta, \bar{B}_0, B_2, B_3, u, \lambda) \in [0, \delta_0] \times [-\bar{B}_0^0, \bar{B}_0^0] \times \mathcal{B} \cap \{|B_2| \leq B_2^0\} \times [0, u_0] \times \Lambda.$

The slow-fast Hopf region

Theorem

- (i) 2 Assume (B₂, B₃) ∈ K and B₂ < 0. When B
 ₀ decreases there is in U a repelling hyperbolic focus and no limit cycle; when B
 ₀ increases there is in U an attracting hyperbolic focus and a repelling limit cycle of which the size monotonically grows as B
 ₀ increases.
- (ii) There exist small $\delta_0 > 0$, $\bar{B}_0^0 > 0$, $B_2^0 > 0$ and $u_0 > 0$ and a neighborhood U of $(\bar{x}, \bar{y}) = (0,0)$ such that the family $X_{\delta^2, (\delta\bar{B}_0, -1, B_2, B_3), u, \lambda}^F$ has at most 2 limit cycles in U for each $(\delta, \bar{B}_0, B_2, B_3, u, \lambda) \in [0, \delta_0] \times [-\bar{B}_0^0, \bar{B}_0^0] \times \mathcal{B} \cap \{|B_2| \leq B_2^0\} \times [0, u_0] \times \Lambda.$

ヘロマ ヘロマ ヘビマ ヘ

 R. Huzak, Canard Explosion Near Non-Liénard Type Slow-Fast Hopf Point, 2018

The slow-fast Hopf region

• On the other hand, the slow dynamics of our system, which is given by

$$\bar{x}' = -1 + B_2 \bar{x} + B_3 \bar{x}^2 + \bar{x}^3 + u \bar{x}^4 G(u \bar{x}, \lambda),$$
 (19)

<ロト <四ト <注入 <注下 <注下 <

points from the right to the left at least near $\bar{x} = 0$.

• On the other hand, the slow dynamics of our system, which is given by

$$\bar{x}' = -1 + B_2 \bar{x} + B_3 \bar{x}^2 + \bar{x}^3 + u \bar{x}^4 G(u \bar{x}, \lambda), \qquad (19)$$

< □ > < @ > < 注 > < 注 > ... 注

points from the right to the left at least near $\bar{x} = 0$. Thus, canard limit cycles can also arise in the (\bar{x}, \bar{y}) -plane.

• On the other hand, the slow dynamics of our system, which is given by

$$\bar{x}' = -1 + B_2 \bar{x} + B_3 \bar{x}^2 + \bar{x}^3 + u \bar{x}^4 G(u \bar{x}, \lambda),$$
 (19)

points from the right to the left at least near $\bar{x} = 0$. Thus, canard limit cycles can also arise in the (\bar{x}, \bar{y}) -plane.

• The discriminant

$$J = B_2^2 B_3^2 - 4B_2^3 + 4B_3^3 - 18B_2B_3 - 27$$

of the cubic \bar{x} -polynomial $-1 + B_2 \bar{x} + B_3 \bar{x}^2 + \bar{x}^3$ can be used to find out how many real zeros the slow dynamics has.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへの

The slow-fast Hopf region

• We study zeros of the slow divergence integral along the slow curve if the slow dynamics is regular:

$$I(y, B_2, B_3, u, \lambda) = \int_{-\sqrt{2y}}^{\sqrt{2y}} \frac{\bar{x}d\bar{x}}{-1 + B_2\bar{x} + B_3\bar{x}^2 + \bar{x}^3 + u\bar{x}^4G(u\bar{x}, \lambda)}$$

The slow-fast Hopf region

• We study zeros of the slow divergence integral along the slow curve if the slow dynamics is regular:

$$I(y, B_2, B_3, u, \lambda) = \int_{-\sqrt{2y}}^{\sqrt{2y}} \frac{\bar{x}d\bar{x}}{-1 + B_2\bar{x} + B_3\bar{x}^2 + \bar{x}^3 + u\bar{x}^4G(u\bar{x}, \lambda)}$$

• The slow divergence integral along a slow curve between two points p_1 and p_2 is the integral of the divergence of the vector field, with $\delta = 0$, along the slow curve from p_1 to p_2 w.r.t. the slow time.

The slow-fast Hopf region

• We study zeros of the slow divergence integral along the slow curve if the slow dynamics is regular:

$$I(y, B_2, B_3, u, \lambda) = \int_{-\sqrt{2y}}^{\sqrt{2y}} \frac{\bar{x}d\bar{x}}{-1 + B_2\bar{x} + B_3\bar{x}^2 + \bar{x}^3 + u\bar{x}^4G(u\bar{x}, \lambda)}$$

- The slow divergence integral along a slow curve between two points p_1 and p_2 is the integral of the divergence of the vector field, with $\delta = 0$, along the slow curve from p_1 to p_2 w.r.t. the slow time.
- The slow dynamics of the vector field along the slow curve, away from the contact point, is given by

$$\frac{d\bar{x}}{d\tau} = -1 + B_2 \bar{x} + B_3 \bar{x}^2 + \bar{x}^3 + u \bar{x}^4 G(u \bar{x}, \lambda), \ \bar{x} \neq 0.$$

The slow-fast Hopf region

• We study zeros of the slow divergence integral along the slow curve if the slow dynamics is regular:

$$I(y, B_2, B_3, u, \lambda) = \int_{-\sqrt{2y}}^{\sqrt{2y}} \frac{\bar{x}d\bar{x}}{-1 + B_2\bar{x} + B_3\bar{x}^2 + \bar{x}^3 + u\bar{x}^4G(u\bar{x}, \lambda)}$$

- The slow divergence integral along a slow curve between two points p_1 and p_2 is the integral of the divergence of the vector field, with $\delta = 0$, along the slow curve from p_1 to p_2 w.r.t. the slow time.
- The slow dynamics of the vector field along the slow curve, away from the contact point, is given by

$$\frac{d\bar{x}}{d\tau} = -1 + B_2 \bar{x} + B_3 \bar{x}^2 + \bar{x}^3 + u \bar{x}^4 G(u \bar{x}, \lambda), \ \bar{x} \neq 0.$$

The slow-fast Hopf region

• If we write $au = (\delta, ar{B}_0, B_2, B_3, u, \lambda)$, then we have

$$\begin{split} \frac{\partial \Delta}{\partial \bar{y}}(\bar{y},\tau) &= -\frac{1}{\delta^4} L_+(\bar{y},\tau) \exp \mathcal{I}_+(\bar{y},\tau) \\ &- \big(-\frac{1}{\delta^4} L_-(\bar{y},\tau) \exp \mathcal{I}_-(\bar{y},\tau) \big) \end{split}$$

where L_{\pm} are strictly positive functions

The slow-fast Hopf region

• If we write $au = (\delta, \bar{B}_0, B_2, B_3, u, \lambda)$, then we have

$$\begin{split} \frac{\partial \Delta}{\partial \bar{y}}(\bar{y},\tau) &= -\frac{1}{\delta^4} \mathcal{L}_+(\bar{y},\tau) \exp \mathcal{I}_+(\bar{y},\tau) \\ &- \big(-\frac{1}{\delta^4} \mathcal{L}_-(\bar{y},\tau) \exp \mathcal{I}_-(\bar{y},\tau) \big) \end{split}$$

where L_{\pm} are strictly positive functions and where

$$\mathcal{I}_{\pm}(\bar{y},\tau) = \int_{\mathcal{O}^{\pm}(\bar{y},\tau)} \operatorname{div} (\pm X^{\mathsf{F}}_{\delta^2,(\delta\bar{B}_0,-1,B_2,B_3),u,\lambda}) dt.$$

The slow-fast Hopf region

• If we write $au = (\delta, ar{B}_0, B_2, B_3, u, \lambda)$, then we have

$$\begin{split} \frac{\partial \Delta}{\partial \bar{y}}(\bar{y},\tau) &= -\frac{1}{\delta^4} L_+(\bar{y},\tau) \exp \mathcal{I}_+(\bar{y},\tau) \\ &- \big(-\frac{1}{\delta^4} L_-(\bar{y},\tau) \exp \mathcal{I}_-(\bar{y},\tau) \big) \end{split}$$

where L_{\pm} are strictly positive functions and where

$$\mathcal{I}_{\pm}(\bar{y},\tau) = \int_{\mathcal{O}^{\pm}(\bar{y},\tau)} \operatorname{div} (\pm X^{\mathsf{F}}_{\delta^2,(\delta\bar{B}_0,-1,B_2,B_3),u,\lambda}) dt.$$

 If we introduce the analytic function A(α, β) = exp α - exp β/α-β > 0 if α ≠ β and A(α, α) = exp α, and if we write I = I₊ - I₋, then we have:

$$\frac{\partial \Delta}{\partial \bar{y}}(\bar{y},\tau) = -\frac{1}{\delta^6} A(\alpha,\beta) \left(\delta^2 \mathcal{I}(\bar{y},\tau) + O(\delta^2) \right)$$

with $\alpha = \mathcal{I}_+(\bar{y}, \tau) + \ln(\mathcal{L}_+(\bar{y}, \tau))$ and $\beta = \mathcal{I}_-(\bar{y}, \tau) + \ln(\mathcal{L}_-(\bar{y}, \tau))$

$$\frac{\partial \Delta}{\partial \bar{y}}(\bar{y},\tau) = -\frac{1}{\delta^6} A(\alpha,\beta) \left(\delta^2 \mathcal{I}(\bar{y},\tau) + O(\delta^2) \right)$$

with $\alpha = \mathcal{I}_+(\bar{y}, \tau) + \ln(\mathcal{L}_+(\bar{y}, \tau))$ and $\beta = \mathcal{I}_-(\bar{y}, \tau) + \ln(\mathcal{L}_-(\bar{y}, \tau))$

We don't specify the O(δ²)-term since it is not the leading order part in the expression δ² I + O(δ²).

$$\frac{\partial \Delta}{\partial \bar{y}}(\bar{y},\tau) = -\frac{1}{\delta^6} A(\alpha,\beta) \left(\delta^2 \mathcal{I}(\bar{y},\tau) + O(\delta^2) \right)$$

with $\alpha = \mathcal{I}_+(\bar{y}, \tau) + \ln(\mathcal{L}_+(\bar{y}, \tau))$ and $\beta = \mathcal{I}_-(\bar{y}, \tau) + \ln(\mathcal{L}_-(\bar{y}, \tau))$

- We don't specify the O(δ²)-term since it is not the leading order part in the expression δ² I + O(δ²).
- Using Rolle's theorem, it can be shown that the number of periodic orbits of $X_{\delta^2,(\delta\bar{B}_0,-1,B_2,B_3),u,\lambda}^F$ near the set $\cup_{\bar{y}\in[\mu,\eta]}\Gamma_{\bar{y}}$, at the τ -level, is bounded by 1+ the number of zeros (counting multiplicity) of $\delta^2\mathcal{I}$ w.r.t. $\bar{y}\in[\mu,\eta]$.

For u = 0 and (B₂, B₃) = (−1, 1), the slow dynamics has a singularity of multiplicity 1 at x̄ = 1 and a singularity of multiplicity 2 at x̄ = −1.

- For u = 0 and (B₂, B₃) = (−1, 1), the slow dynamics has a singularity of multiplicity 1 at x̄ = 1 and a singularity of multiplicity 2 at x̄ = −1.
- At $\bar{x} = 1$ and near the parameter value $(\bar{B}_0, B_2, B_3, u) = (0, -1, 1, 0)$ we use a C^k -normal form (see Takens or Bonckaert):

$$\begin{cases} \dot{v_1} = \delta^2 \nu_1 v_1 \\ \dot{v_2} = -v_2, \end{cases}$$
(20)

where $-\delta^2 \nu_1$, $\nu_1 > 0$, is ratio of eigenvalues of a persistent hyperbolic saddle of $X^F_{\delta^2,(\delta \bar{B}_0,-1,B_2,B_3),u,\lambda}$ near $(\bar{x},\bar{y}) = (1,0)$.

- For u = 0 and (B₂, B₃) = (−1, 1), the slow dynamics has a singularity of multiplicity 1 at x̄ = 1 and a singularity of multiplicity 2 at x̄ = −1.
- At $\bar{x} = 1$ and near the parameter value $(\bar{B}_0, B_2, B_3, u) = (0, -1, 1, 0)$ we use a C^k -normal form (see Takens or Bonckaert):

$$\begin{cases} \dot{v_1} = \delta^2 \nu_1 v_1 \\ \dot{v_2} = -v_2, \end{cases}$$
(20)

where $-\delta^2 \nu_1$, $\nu_1 > 0$, is ratio of eigenvalues of a persistent hyperbolic saddle of $X^F_{\delta^2,(\delta \bar{B}_0,-1,B_2,B_3),u,\lambda}$ near $(\bar{x},\bar{y}) = (1,0)$.

 Following [De Maesschalck,Dumortier,2008] or [De Maesschalck,Dumortier, Huzak,2013], we have:

$$\delta^2 \mathcal{I}_+(\bar{y},\tau) = \int_{lpha_+(\bar{y},\tau)}^1 rac{-1+
u_1\delta^2}{
u_1 v_1} dv_1 + O(1),$$

near $\bar{y} = \frac{1}{2}$.

• The integral in the expression for $\delta^2 \mathcal{I}_+$ is the divergence integral (multiplied by δ^2) calculated in the normal form coordinates from $\{v_2 = 1\}$ to $\{v_1 = 1\}$ where we assume that the orbit $\mathcal{O}^+(\bar{y}, \tau)$ intersects the plane $\{v_2 = 1\}$ in a point with $v_1 = \alpha_+(\bar{y}, \tau)$. Clearly, α_+ is a C^k -diffeomorphism with $\alpha_+(\frac{1}{2}, 0, 0, -1, 1, 0, \lambda) = 0$ and $\frac{\partial \alpha_+}{\partial \bar{y}} < 0$.

$$\delta^2 \mathcal{I}_+(\bar{y},\tau) = \int_{lpha_+(\bar{y},\tau)}^1 rac{-1+
u_1\delta^2}{
u_1
u_1} d
u_1 + O(1),$$

near $\bar{y} = \frac{1}{2}$.

- The integral in the expression for $\delta^2 \mathcal{I}_+$ is the divergence integral (multiplied by δ^2) calculated in the normal form coordinates from $\{v_2 = 1\}$ to $\{v_1 = 1\}$ where we assume that the orbit $\mathcal{O}^+(\bar{y}, \tau)$ intersects the plane $\{v_2 = 1\}$ in a point with $v_1 = \alpha_+(\bar{y}, \tau)$. Clearly, α_+ is a C^k -diffeomorphism with $\alpha_+(\frac{1}{2}, 0, 0, -1, 1, 0, \lambda) = 0$ and $\frac{\partial \alpha_+}{\partial \bar{y}} < 0$.
- The O(1)-term is δ -regularly C^k in $(\bar{y}, \bar{B}_0, B_2, B_3, u, \lambda)$, i.e. O(1) and all its derivatives up to order k w.r.t. $(\bar{y}, \bar{B}_0, B_2, B_3, u, \lambda)$ are continuous including at $\delta = 0$.

The slow-fast Hopf region

• At $\bar{x} = -1$ and near the parameter value $(\bar{B}_0, B_2, B_3, u) = (0, -1, 1, 0)$ we have a C^k -normal form (see Takens or Bonckaert):

$$\begin{cases} \dot{v}_1 = -\delta^2 h(v_1, \tau) \\ \dot{v}_2 = v_2, \end{cases}$$
(21)

where $h(v_1, 0, 0, -1, 1, 0, \lambda)$ has a zero of multiplicity 2 at $v_1 = 0$.

The slow-fast Hopf region

• At $\bar{x} = -1$ and near the parameter value $(\bar{B}_0, B_2, B_3, u) = (0, -1, 1, 0)$ we have a C^k -normal form (see Takens or Bonckaert):

$$\begin{cases} \dot{v}_1 = -\delta^2 h(v_1, \tau) \\ \dot{v}_2 = v_2, \end{cases}$$
(21)

where $h(v_1, 0, 0, -1, 1, 0, \lambda)$ has a zero of multiplicity 2 at $v_1 = 0$. Similarly, we find that

$$\delta^2 \mathcal{I}_-(\bar{y},\tau) = \int_{lpha_-(\bar{y},\tau)}^1 rac{-1+\delta^2rac{\partial h}{\partial v_1}(v_1,\tau)}{h(v_1,\tau)} dv_1 + O(1),$$

near $\bar{y} = \frac{1}{2}$. The orbit $\mathcal{O}^{-}(\bar{y}, \tau)$ intersects the plane $\{v_2 = 1\}$ in a point with $v_1 = \alpha_{-}(\bar{y}, \tau)$. The function α_{-} and the O(1)-term have the same properties like α_{+} and the O(1)-term in the expression for $\delta^2 \mathcal{I}_{+}$.

Thus, we get

$$\delta^{2} \frac{\partial \mathcal{I}}{\partial \bar{y}}(\bar{y},\tau) = \frac{(1-\nu_{1}\delta^{2})\frac{\partial \alpha_{+}}{\partial \bar{y}}(\bar{y},\tau)}{\nu_{1}\alpha_{+}(\bar{y},\tau)} - \frac{(1-\delta^{2}\frac{\partial h}{\partial \nu_{1}}(\alpha_{-}(\bar{y},\tau),\tau))\frac{\partial \alpha_{-}}{\partial \bar{y}}(\bar{y},\tau)}{h(\alpha_{-}(\bar{y},\tau),\tau)} + O(1),$$

near $\bar{y} = \frac{1}{2}$. Using the above expression and the properties of α_{\pm} and *h*, we finally get

$$\delta^2 \frac{\partial \mathcal{I}}{\partial \bar{y}}(\bar{y},\tau) = \frac{\beta_0 + \beta_1(\bar{y} - \frac{1}{2}) + O\left((\bar{y} - \frac{1}{2})^2\right)}{\nu_1 \alpha_+(\bar{y},\tau)h(\alpha_-(\bar{y},\tau),\tau)}$$
(22)

where $\beta_0 = O(\delta, \bar{B}_0, B_2 + 1, B_3 - 1, u)$ and

The slow-fast Hopf region

and

$$egin{aligned} eta_1 &= -
u_1 rac{\partial lpha_+}{\partial ar y} (rac{1}{2}, 0, 0, -1, 1, 0, \lambda) rac{\partial lpha_-}{\partial ar y} (rac{1}{2}, 0, 0, -1, 1, 0, \lambda) \ &+ O(\delta, ar B_0, B_2 + 1, B_3 - 1, u). \end{aligned}$$

(日) (四) (문) (문) (문)

and

$$\begin{split} \beta_1 &= -\nu_1 \frac{\partial \alpha_+}{\partial \bar{y}} (\frac{1}{2}, 0, 0, -1, 1, 0, \lambda) \frac{\partial \alpha_-}{\partial \bar{y}} (\frac{1}{2}, 0, 0, -1, 1, 0, \lambda) \\ &+ O(\delta, \bar{B}_0, B_2 + 1, B_3 - 1, u). \end{split}$$

• Clearly, the coefficient β_1 is strictly negative. From this together with (22) and Rolle's theorem we conclude that $\frac{\partial \mathcal{I}}{\partial \bar{y}}$ has at most 1 zero (counting multiplicity) near $\bar{y} = \frac{1}{2}$.

<ロト <四ト <注入 <注下 <注下 <

The slow-fast codimension 3 saddle/elliptic region

• We consider

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \left(r^4 B_0 + r^3 B_1 x + r^2 B_2 x^2 \pm r x^3 + x^4 + x^5 G(x, \lambda) \right. \\ + y^2 H(x, y, \lambda) \end{cases}$$

The slow-fast codimension 3 saddle/elliptic region

• We consider

$$\begin{cases} \dot{x} = y \\ \dot{y} = -xy + \epsilon \left(r^4 B_0 + r^3 B_1 x + r^2 B_2 x^2 \pm r x^3 + x^4 + x^5 G(x, \lambda) \right. \\ + y^2 H(x, y, \lambda) \end{cases}$$

Theorem

Let $B_3 = +1$ or $B_3 = -1$. There exist a neighborhood V of (x, y) = (0, 0), $r_0 > 0$ and a (B_0, B_1, B_2) -neighborhood U_3 of the origin such that $X_{\epsilon,B,r,\lambda}$ has at most 2 limit cycles in V for each $(\epsilon, B_0, B_1, B_2, r, \lambda) \in [0, M] \times U_3 \times [0, r_0] \times \Lambda$.

The slow-fast codimension 3 saddle/elliptic region

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 \pm \bar{x}^3 + \bar{x}^4 + u\bar{x}^5 G(u\bar{x},\lambda) \\ + \bar{y}^2 H(u\bar{x},u^2\bar{y},\lambda) \Big) \end{cases}$$

The slow-fast codimension 3 saddle/elliptic region

• It is sufficient to consider the following singular perturbation system:

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 \pm \bar{x}^3 + \bar{x}^4 + u\bar{x}^5G(u\bar{x},\lambda) \\ + \bar{y}^2H(u\bar{x},u^2\bar{y},\lambda) \Big) \end{cases}$$

The contact point (x̄, ȳ) = (0,0) can produce at most 2 limit cycles (the coefficient in front of x̄⁴ is ≠ 0).

The slow-fast codimension 3 saddle/elliptic region

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 \pm \bar{x}^3 + \bar{x}^4 + u\bar{x}^5G(u\bar{x},\lambda) \\ + \bar{y}^2H(u\bar{x},u^2\bar{y},\lambda) \Big) \end{cases}$$

- The contact point (x̄, ȳ) = (0,0) can produce at most 2 limit cycles (the coefficient in front of x̄⁴ is ≠ 0).
- In the saddle case, there are no detectable canard limit cycles

The slow-fast codimension 3 saddle/elliptic region

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 \pm \bar{x}^3 + \bar{x}^4 + u\bar{x}^5G(u\bar{x},\lambda) \\ + \bar{y}^2H(u\bar{x},u^2\bar{y},\lambda) \Big) \end{cases}$$

- The contact point (x̄, ȳ) = (0,0) can produce at most 2 limit cycles (the coefficient in front of x̄⁴ is ≠ 0).
- In the saddle case, there are no detectable canard limit cycles $\left(\bar{x}' = \bar{x}^2 (1 + O(\bar{x})) \right)$

The slow-fast codimension 3 saddle/elliptic region

$$\begin{cases} \dot{\bar{x}} = \bar{y} \\ \dot{\bar{y}} = -\bar{x}\bar{y} + \bar{\epsilon} \Big(B_0 + B_1\bar{x} + B_2\bar{x}^2 \pm \bar{x}^3 + \bar{x}^4 + u\bar{x}^5 G(u\bar{x},\lambda) \\ + \bar{y}^2 H(u\bar{x}, u^2\bar{y}, \lambda) \Big) \end{cases}$$

- The contact point (x̄, ȳ) = (0,0) can produce at most 2 limit cycles (the coefficient in front of x̄⁴ is ≠ 0).
- In the saddle case, there are no detectable canard limit cycles $\left(\bar{x}' = \bar{x}^2 (1 + O(\bar{x})) \right)$
- In the elliptic case, the slow dynamics is given by:

$$\bar{x}' = B_1 + B_2 \bar{x} + \bar{x}^2 (-1 + \bar{x} + u \bar{x}^2 G(u \bar{x}, \lambda))$$

◆□ → ◆□ → ◆ □ → ◆ □ → ● □

• The slow divergence integral

$$I(\bar{y}, B_1, B_2, u, \lambda) = \int_{-\sqrt{2\bar{y}}}^{\sqrt{2\bar{y}}} \frac{wdw}{d(w, B_1, B_2, u, \lambda)}, \ \bar{y} \in]0, \frac{1}{2}\bar{x}_R^2[,$$

becomes $\infty - \infty$ as $(B_1, B_2) \rightarrow (0, 0)$. The function $d(\bar{x}, B_1, B_2, u, \lambda)$ is the right hand side of the slow dynamics.

• The slow divergence integral

$$I(\bar{y}, B_1, B_2, u, \lambda) = \int_{-\sqrt{2\bar{y}}}^{\sqrt{2\bar{y}}} \frac{wdw}{d(w, B_1, B_2, u, \lambda)}, \ \bar{y} \in]0, \frac{1}{2}\bar{x}_R^2[,$$

becomes $\infty - \infty$ as $(B_1, B_2) \rightarrow (0, 0)$. The function $d(\bar{x}, B_1, B_2, u, \lambda)$ is the right hand side of the slow dynamics.

• As shown in [De Maesschalck, Dumortier, 2010], it is better to deal with $\delta^2 \frac{\partial \mathcal{I}}{\partial \bar{y}}$ which is well approximated by the (well defined) derivative of the slow divergence integral

$$\frac{\partial I}{\partial \bar{y}}(\bar{y}, B_1, B_2, u, \lambda) = \frac{-2\sqrt{2\bar{y}}(B_2 + 2\bar{y} + uO((\sqrt{2\bar{y}})^3))}{d(\sqrt{2\bar{y}}, B_1, B_2, u, \lambda).d(-\sqrt{2\bar{y}}, B_1, B_2, u, \lambda)}$$

• Clearly, for any fixed small $\mu > 0$ we have that $\frac{\partial I}{\partial \bar{y}}(\bar{y}, B_1, B_2, u, \lambda)$ is strictly negative for all $\bar{y} \in [\mu, \frac{1}{2}\bar{x}_R^2 - \mu]$ and $\lambda \in \Lambda$, by taking the parameter (B_1, B_2, u) sufficiently small.

<ロト <四ト <注入 <注下 <注下 <

- Clearly, for any fixed small $\mu > 0$ we have that $\frac{\partial I}{\partial \bar{y}}(\bar{y}, B_1, B_2, u, \lambda)$ is strictly negative for all $\bar{y} \in [\mu, \frac{1}{2}\bar{x}_R^2 - \mu]$ and $\lambda \in \Lambda$, by taking the parameter (B_1, B_2, u) sufficiently small.
- Thus $\frac{\partial I}{\partial \bar{y}}$ has no zeros on the interval $[\mu, \frac{1}{2}\bar{x}_R^2 \mu]$ under the given conditions on the parameters, and, we find that the set $\cup_{\bar{y} \in [\mu, \frac{1}{2}\bar{x}_R^2 \mu]} \Gamma_{\bar{y}}$ produces at most 2 limit cycles.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Clearly, for any fixed small $\mu > 0$ we have that $\frac{\partial I}{\partial \bar{y}}(\bar{y}, B_1, B_2, u, \lambda)$ is strictly negative for all $\bar{y} \in [\mu, \frac{1}{2}\bar{x}_R^2 - \mu]$ and $\lambda \in \Lambda$, by taking the parameter (B_1, B_2, u) sufficiently small.
- Thus $\frac{\partial I}{\partial \bar{y}}$ has no zeros on the interval $[\mu, \frac{1}{2}\bar{x}_R^2 \mu]$ under the given conditions on the parameters, and, we find that the set $\cup_{\bar{y} \in [\mu, \frac{1}{2}\bar{x}_R^2 \mu]} \Gamma_{\bar{y}}$ produces at most 2 limit cycles.
- We have to study separately the cyclicity of $\Gamma_{\frac{1}{2}\bar{x}_{R}^{2}}$ (Takens normal forms).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Slow-fast and regular codimension ℓ bifurcations, $\ell \geq 5$

• Find the number of limit cycles in

$$\begin{cases} \dot{x} = y \\ \dot{y} = -(a_0 + x)y + \epsilon \Big(b_0 + b_1 x + ... + b_{\ell-1} x^{\ell-1} \pm x^\ell \Big), \\ \text{where } (a_0, b_0, \dots, b_{\ell-1}) \sim (0, 0, \dots, 0). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Slow-fast and regular codimension ℓ bifurcations, $\ell \geq 5$

• Find the number of limit cycles in

$$\begin{cases} \dot{x} = y \\ \dot{y} = -(a_0 + x)y + \epsilon \Big(b_0 + b_1 x + ... + b_{\ell-1} x^{\ell-1} \pm x^\ell \Big), \\ \end{cases}$$
where $(a_0, b_0, \dots, b_{\ell-1}) \sim (0, 0, \dots, 0).$

Thank you for your attention!