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Quartic Liénard equations with linear damping

Motivation

A simplified version of Hilbert’s 16th problem deals with
finding the maximum number ln,m of limit cycles of a
polynomial Liénard equation{

ẋ = y
ẏ = −y

∑n
j=0 ajx

j −
∑m

j=0 bjx
j ,

(1)

where (a0, . . . , an, b0, . . . , bm) ∈ Rn+m+2 and an, bm 6= 0.

When m = 1 (resp. m > 1) we call (1) a classical Liénard
equation (resp. a generalized Liénard equation).

In the classical case, we know that l1,1 = 0, l2,1 = 1 (see [Lins,
De Melo,Pugh,1977]) and l3,1 = 1 (see [Li,Llibre,2012]).
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Quartic Liénard equations with linear damping

Motivation

In the generalized case, we have l1,2 = 1 (see [Coppel,
1989]),

l1,3 = 1 (see [Dumortier,Rousseau,1990;
Dumortier,Li,1996]),l2,2 = 1 (see [Dumortier,Li,1997])and
l2,3 = 3 (see [Wang,Jing,2002]). As far as we know, only
these low degree cases have been completely solved.

The goal of our presentation is to show that l1,4 = 2, under
condition that (1) with (n,m) = (1, 4) is of singular type.

Our focus is on the quartic Liénard equation with linear
damping{

ẋ = y
ẏ = −y(a0 + x)− (b0 + b1x + b2x

2 + b3x
3 + x4),

(2)
where (a0, b0, b1, b2, b3) ∼ (0, 0, 0, 0, 0).



Quartic Liénard equations with linear damping

Motivation

In the generalized case, we have l1,2 = 1 (see [Coppel,
1989]),l1,3 = 1 (see [Dumortier,Rousseau,1990;
Dumortier,Li,1996]),

l2,2 = 1 (see [Dumortier,Li,1997])and
l2,3 = 3 (see [Wang,Jing,2002]). As far as we know, only
these low degree cases have been completely solved.

The goal of our presentation is to show that l1,4 = 2, under
condition that (1) with (n,m) = (1, 4) is of singular type.

Our focus is on the quartic Liénard equation with linear
damping{
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Quartic Liénard equations with linear damping

Statement of results

Theorem

There exists a small neighborhood V of the origin in the parameter
space (a0, b0, b1, b2, b3) such that (2) has at most two limit cycles
for each (a0, b0, b1, b2, b3) ∈ V .

We also study the slow-fast version of (2):
{ẋ = y , ẏ = −y(a0 + x)− ε(b0 + b1x + b2x

2 + b3x
3 + x4)},

where ε ∼ 0, ε > 0 and (a0, b0, b1, b2, b3) ∼ (0, 0, 0, 0, 0).

Theorem

There exists a small ε0 > 0 and a small neighborhood V of the
origin in the parameter space (a0, b0, b1, b2, b3) such that the
slow-fast system has at most two limit cycles for each
(ε, a0, b0, b1, b2, b3) ∈ [0, ε0]× V .
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Quartic Liénard equations with linear damping

Proof of Theorem 1 and Theorem 2

The proof of the theorem consists of 3 steps:
1 Using appropriate linear equivalency we bring (2) to a similar

Liénard equation, but of slow-fast type and with the
parameters kept on the unit sphere.

2 We study the slow-fast Liénard equation in arbitrarily large
compact sets in the phase space by using singular perturbation
theory and the family blow-up.

3 We study the slow-fast Liénard equation near infinity by using
an appropriate Poincaré-Lyapunov compactification.
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an appropriate Poincaré-Lyapunov compactification.



Quartic Liénard equations with linear damping

Step 1–Bringing the Liénard equation (2) to a slow-fast system

We may assume that a0 = 0 in (2):{
ẋ = y
ẏ = −yx − (b0 + b1x + b2x

2 + b3x
3 + x4),

(3)

with a new parameter (b0, b1, b2, b3) ∼ (0, 0, 0, 0). We denote
the system (3) by Xb0,b1,b2,b3 .

Using a linear coordinate change (x , y) = (εx̄ , ε2ȳ), with
ε > 0 and ε ∼ 0, we convert the system Xε4B0,ε3B1,ε2B2,εB3

to{
˙̄x = εȳ
˙̄y = ε

(
− ȳ x̄ − ε(B0 + B1x̄ + B2x̄

2 + B3x̄
3 + x̄4)

)
,
(4)

where (B0,B1,B2,B3) ∈ S3.
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Quartic Liénard equations with linear damping

Step 1–Bringing the Liénard equation (2) to a slow-fast system

After dividing (4) by the positive constant ε, we conclude that
Xε4B0,ε3B1,ε2B2,εB3

is (linearly) equivalent to{
˙̄x = ȳ
˙̄y = −ȳ x̄ − ε(B0 + B1x̄ + B2x̄

2 + B3x̄
3 + x̄4),

(5)

where (B0,B1,B2,B3) ∈ S3.

Thus, instead of studying system Xε4B0,ε3B1,ε2B2,εB3
, with ε > 0

and (B0,B1,B2,B3) ∈ S3, we can study system (5) which is of
singular type.
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Quartic Liénard equations with linear damping

Step 2–Slow-fast Liénard systems (5) at infinity in the phase space

We can study the dynamics of (5) near infinity on the
Poincaré-Lyapunov disc of type (2, 5).

Due to the presence of the small parameter ε > 0, an
additional family blow-up in the positive and negative
x̄-direction is necessary to completely desingularize (5) at
infinity.

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2, 5).
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Quartic Liénard equations with linear damping

Step 2–Transformation of (5) in the negative x̄-direction

We define the coordinate change

(x̄ , ȳ) = (
−1

ρ2
,
Y

ρ5
),

where ρ > 0, ρ ∼ 0 and Y is kept in a large compact set. In
the coordinates (ρ,Y ), after multiplication by the positive
factor ρ3, system (5) can be written as:{

ρ̇ = 1
2ρY

Ẏ = 5
2Y

2 + ρY − ε
(
B0ρ

8 − B1ρ
6 + B2ρ

4 − B3ρ
2 + 1

)
.

(6)

When ρ = ε = 0, the singularity at Y = 0 of (6) is linearly
zero. We blow up the origin (ρ,Y , ε) = (0, 0, 0) using

(ρ,Y , ε) = (v ρ̄, vȲ , v2ε̄), v ≥ 0, ε̄ ≥ 0, ρ̄ ≥ 0, (ρ̄, Ȳ , ε̄) ∈ S2.
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Step 2–Transformation of (5) in the negative x̄-direction

The family chart {ε̄ = 1}. System (6) changes, after dividing
by v , into {

˙̄ρ = 1
2 ρ̄Ȳ

˙̄Y = 5
2 Ȳ

2 + ρ̄Ȳ − 1 + O(v2)
(7)

where ρ̄ ≥ 0 and (ρ̄, Ȳ ) is kept in a large compact set. When
v = 0, system (7) has one hyperbolic and attracting node at

(ρ̄, Ȳ ) = (0,−
√

2
5 ) and one hyperbolic and repelling node at

(ρ̄, Ȳ ) = (0,
√

2
5 ).
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Step 2–Transformation of (5) in the negative x̄-direction

The phase directional chart {ρ̄ = 1}. In the chart {ρ̄ = 1}
system (6) becomes, after dividing by v ,

v̇ = 1
2vȲ

˙̄ε = −ε̄Ȳ
˙̄Y = Ȳ + 2Ȳ 2 − ε̄

(
1 + O(v2)

)
,

(8)

where (v , ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and Ȳ is kept in a large
compact set. If v = ε̄ = 0, then system (8) has a hyperbolic
saddle at Ȳ = −1

2 with eigenvalues (−1
4 ,

1
2 ,−1) and a

semi-hyperbolic singularity at Ȳ = 0 with the Ȳ -axis as the
unstable manifold and a two dimensional center manifold
transverse to the unstable manifold. Center manifolds can be
written as Ȳ = ε̄

(
1 + O(v , ε̄)

)
, with the following dynamics

{v̇ = 1
2v ε̄
(
1 + O(v , ε̄)

)
, ˙̄ε = −ε̄2

(
1 + O(v , ε̄)

)
}.
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Step 2–Transformation of (5) in the negative x̄-direction

The phase directional chart {Ȳ = 1}. System (6) changes,
after dividing by v , into

v̇ = v
(

5
2 + ρ̄− ε̄(1 + O(v2))

)
˙̄ε = −2ε̄

(
5
2 + ρ̄− ε̄(1 + O(v2))

)
˙̄ρ = ρ̄

(
− 2− ρ̄+ ε̄(1 + O(v2))

)
,

(9)

where (v , ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large
compact set. System (9) has a hyperbolic saddle at
(v , ε̄, ρ̄) = (0, 0, 0) with eigenvalues ( 5

2 ,−5,−2).
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Step 2–Transformation of (5) in the negative x̄-direction

The phase directional chart {Ȳ = −1}. System (6) changes,
after dividing by v , into

v̇ = v
(
− 5

2 + ρ̄+ ε̄(1 + O(v2))
)

˙̄ε = −2ε̄
(
− 5

2 + ρ̄+ ε̄(1 + O(v2))
)

˙̄ρ = ρ̄
(
2− ρ̄− ε̄(1 + O(v2))

)
,

(10)

where (v , ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large
compact set. Besides the hyperbolic saddle found in the chart
{ρ̄ = 1}, we find an extra hyperbolic saddle at
(v , ε̄, ρ̄) = (0, 0, 0) of (10) with eigenvalues (−5

2 , 5, 2).



Quartic Liénard equations with linear damping

Step 2–Transformation of (5) in the negative x̄-direction

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2, 5).
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Step 2–Transformation of (5) in the positive x̄-direction

We introduce the coordinate change

(x̄ , ȳ) = (
1

ρ2
,
Y

ρ5
),

where ρ > 0, ρ ∼ 0 and Y is kept in a large compact set.

In
the coordinates (ρ,Y ), after multiplication by the positive
factor ρ3, system (5) can be written as:{

ρ̇ = −1
2ρY

Ẏ = −5
2Y

2 − ρY − ε
(
B0ρ

8 + B1ρ
6 + B2ρ

4 + B3ρ
2 + 1

)
.

(11)

When ρ = 0 and ε > 0, system (11) has no singularities.
When ρ = ε = 0, the singularity at Y = 0 of (11) is linearly
zero. To desingularize (11) we use the following blow-up at
the origin in (ρ,Y , ε)-space: (ρ,Y , ε) = (v ρ̄, vȲ , v2ε̄), v ≥
0, v ∼ 0, ε̄ ≥ 0, ρ̄ ≥ 0, (ρ̄, Ȳ , ε̄) ∈ S2.
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by v , into {

˙̄ρ = −1
2 ρ̄Ȳ

˙̄Y = −5
2 Ȳ

2 − ρ̄Ȳ − 1 + O(v2)
(12)

where ρ̄ ≥ 0 and (ρ̄, Ȳ ) is kept in a large compact set. When
v = 0, system (12) has no singularities.

The phase directional chart {ρ̄ = 1}. In the chart {ρ̄ = 1}
system (11) becomes, after dividing by v ,
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Step 2–Transformation of (5) in the positive x̄-direction

When v = ε̄ = 0, system (13) has a hyperbolic saddle at
Ȳ = −1

2 with eigenvalues ( 1
4 ,−

1
2 , 1) and a semi-hyperbolic

singularity at Ȳ = 0 with the stable manifold {v = ε̄ = 0} and
a two dimensional center manifold transverse to the stable
manifold. Center manifolds are given by Ȳ = −ε̄

(
1 + O(v , ε̄)

)
and the dynamics inside the center manifolds is given by
{v̇ = 1

2v ε̄
(
1 + O(v , ε̄)

)
, ˙̄ε = −ε̄2

(
1 + O(v , ε̄)

)
}.

The phase directional chart {Ȳ = 1}. In this chart, system
(11) changes, after dividing by v , into

v̇ = v
(
− 5

2 − ρ̄− ε̄(1 + O(v2))
)

˙̄ε = −2ε̄
(
− 5

2 − ρ̄− ε̄(1 + O(v2))
)

˙̄ρ = ρ̄
(
2 + ρ̄+ ε̄(1 + O(v2))

)
,

(14)

where (v , ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large
compact set. When v = ε̄ = 0, system (14) has a hyperbolic
saddle at ρ̄ = 0 with eigenvalues (−5

2 , 5, 2).



Quartic Liénard equations with linear damping

Step 2–Transformation of (5) in the positive x̄-direction

The phase directional chart {Ȳ = −1}. In this phase
directional chart, system (11) changes, after dividing by v ,
into 

v̇ = v
(

5
2 − ρ̄+ ε̄(1 + O(v2))

)
˙̄ε = −2ε̄

(
5
2 − ρ̄+ ε̄(1 + O(v2))

)
˙̄ρ = ρ̄

(
− 2 + ρ̄− ε̄(1 + O(v2))

)
,

(15)

where (v , ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large
compact set.

Besides the hyperbolic saddle found in the chart
{ρ̄ = 1}, system (15) has an extra hyperbolic saddle at
(v , ε̄, ρ̄) = (0, 0, 0) with eigenvalues ( 5

2 ,−5,−2).



Quartic Liénard equations with linear damping

Step 2–Transformation of (5) in the positive x̄-direction

The phase directional chart {Ȳ = −1}. In this phase
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Step 2–Transformation of (5) in the positive x̄-direction

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2, 5).
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Step 2–Transformation of (5) in the positive and negative
ȳ -direction

We have
ρ̇ = 1

5ρ
2X + ε

5

(
B0ρ

9 + B1Xρ
7 + B2X

2ρ5 + B3X
3ρ3 + X 4ρ

)
Ẋ = 2

5X

(
ρX + ε

(
B0ρ

8 + B1Xρ
6 + B2X

2ρ4

+B3X
3ρ2 + X 4

))
+ 1.

(16)
and

ρ̇ = 1
5ρ

2X − ε
5

(
B0ρ

9 + B1Xρ
7 + B2X

2ρ5 + B3X
3ρ3 + X 4ρ

)
Ẋ = 2

5X

(
ρX − ε

(
B0ρ

8 + B1Xρ
6 + B2X

2ρ4

+B3X
3ρ2 + X 4

))
− 1.

(17)
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Step 2–Transformation of (5) in the positive x̄-direction

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2, 5).



Quartic Liénard equations with linear damping

Step 3–Slow-fast Liénard systems (5) in compact sets in the phase
space

Suppose that K is any compact set in the (x̄ , ȳ)-plane and fix
it. We prove that system (5) has at most two limit cycles in
K , for each fixed ε ≥ 0, ε ∼ 0 and (B0,B1,B2,B3) ∈ S3.

When ε = 0:

Our problem is equivalent with the following problem:
Prove that slow-fast and regular codimension 4 saddle-node
bifurcations can produce at most 2 small-amplitude limit
cycles.
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Regular and slow-fast codimension 4 saddle-node bifurcations

We consider:

Xε,b,λ :


ẋ = y

ẏ = −xy + ε
(
b0 + b1x + b2x

2 + b3x
3 + x4 + x5G(x , λ)

+y 2H(x , y , λ)
)
.

When b = 0 and ε > 0, then the origin (x , y) = (0, 0) is a
nilpotent singularity of saddle-node type.

Blow-up in the parameter space

We first reparametrize the b-parameters, by introducing
weighted spherical coordinates: (b0, b1, b2, b3) =
(r4B0, r

3B1, r
2B2, rB3), r ≥ 0, B = (B0,B1,B2,B3) ∈ S3.

Instead of coordinates on the sphere, we use one of the 8
charts of the sphere:
a) Jump region: (b0, b1, b2, b3) = (±r4, r3B1, r

2B2, rB3)
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ẋ = y

ẏ = −xy + ε
(
b0 + b1x + b2x

2 + b3x
3 + x4 + x5G(x , λ)

+y 2H(x , y , λ)
)
.

When b = 0 and ε > 0, then the origin (x , y) = (0, 0) is a
nilpotent singularity of saddle-node type.

Blow-up in the parameter space

We first reparametrize the b-parameters, by introducing
weighted spherical coordinates: (b0, b1, b2, b3) =
(r4B0, r

3B1, r
2B2, rB3), r ≥ 0, B = (B0,B1,B2,B3) ∈ S3.

Instead of coordinates on the sphere, we use one of the 8
charts of the sphere:
a) Jump region: (b0, b1, b2, b3) = (±r4, r3B1, r

2B2, rB3)



Quartic Liénard equations with linear damping

Regular and slow-fast codimension 4 saddle-node bifurcations

We consider:

Xε,b,λ :
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Blow-up in the parameter space

b) Slow-fast Hopf region:
(b0, b1, b2, b3) = (r4B0,−r3, r2B2, rB3)

c) Saddle region: (b0, b1, b2, b3) = (r4B0, r
3, r2B2, rB3)

d) Slow-fast Bogdanov-Takens region:
(b0, b1, b2, b3) = (r4B0, r

3B1,±r2, rB3)
e) Slow-fast codimension 3 saddle region:
(b0, b1, b2, b3) = (r4B0, r

3B1, r
2B2, r).

f) Slow-fast codimension 3 elliptic region:
(b0, b1, b2, b3) = (r4B0, r

3B1, r
2B2,−r).

We obtain

Xε,B,r,λ :


ẋ = y

ẏ = −xy + ε
(
r 4B0 + r 3B1x + r 2B2x

2 + rB3x
3 + x4 + x5G(x , λ)

+y 2H(x , y , λ)
)
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ẏ = −xy + ε
(
r 4B0 + r 3B1x + r 2B2x

2 + rB3x
3 + x4 + x5G(x , λ)

+y 2H(x , y , λ)
)
.



Quartic Liénard equations with linear damping

Blow-up in the parameter space

b) Slow-fast Hopf region:
(b0, b1, b2, b3) = (r4B0,−r3, r2B2, rB3)
c) Saddle region: (b0, b1, b2, b3) = (r4B0, r

3, r2B2, rB3)
d) Slow-fast Bogdanov-Takens region:
(b0, b1, b2, b3) = (r4B0, r

3B1,±r2, rB3)
e) Slow-fast codimension 3 saddle region:
(b0, b1, b2, b3) = (r4B0, r

3B1, r
2B2, r).

f) Slow-fast codimension 3 elliptic region:
(b0, b1, b2, b3) = (r4B0, r

3B1, r
2B2,−r).

We obtain

Xε,B,r,λ :
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Blow-up of the origin (x , y , r) = (0, 0, 0) (primary blow-up)

We blow up the origin using the blow up transformation

(x , y , r) = (ux̄ , u2ȳ , ur̄), u ≥ 0, r̄ ≥ 0, (x̄ , ȳ , r̄) ∈ S2. (18)

The study of the dynamics in the blown-up coordinates will be
done in different charts:

x̄ = −1

x̄ = +1

ȳ = −1

r̄ = +1

Figure: Different charts.
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The family chart r̄ = +1

In this family chart, the vector field Xε,B,r ,λ yields, after
division by the positive factor u,

X F
ε,B,u,λ :


˙̄x = ȳ

˙̄y = −x̄ ȳ + εu
(
B0 + B1x̄ + B2x̄

2 + B3x̄
3 + x̄4 + ux̄5G(ux̄ , λ)

+ȳ 2H(ux̄ , u2ȳ , λ)
)
.

We write ε̄ = εu ∼ 0 (ε ∈ [0,M], u ∼ 0):

X F
ε̄,B,u,λ :


˙̄x = ȳ

˙̄y = −x̄ ȳ + ε̄
(
B0 + B1x̄ + B2x̄

2 + B3x̄
3 + x̄4 + ux̄5G(ux̄ , λ)

+ȳ 2H(ux̄ , u2ȳ , λ)
)

where ε̄ ∼ 0 is a singular perturbation parameter.
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+ȳ 2H(ux̄ , u2ȳ , λ)
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˙̄y = −x̄ ȳ + εu
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The phase-directional charts {x̄ = ±1, ȳ = ±1}
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The slow-fast Hopf region

We consider
ẋ = y

ẏ = −xy + ε
(
r 4B0 − r 3x + r 2B2x

2 + rB3x
3 + x4 + x5G(x , λ)

+y 2H(x , y , λ)
)
.

Theorem

Let B1 = −1. Given any B1
i > 0, i = 2, 3. There exist a

neighborhood V of (x , y) = (0, 0), r0 > 0 and B1
0 > 0 such that

Xε,B,r ,λ has at most 2 limit cycles in V for each
(ε,B0,B2,B3, r , λ) ∈
[0,M]× [−B1

0 ,B
1
0 ]× [−B1

2 ,B
1
2 ]× [−B1

3 ,B
1
3 ]× [0, r0]× Λ.
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The slow-fast Hopf region

It is sufficient to consider the following singular perturbation
system:

˙̄x = ȳ

˙̄y = −x̄ ȳ + δ2
(
δB̄0 − x̄ + B2x̄

2 + B3x̄
3 + x̄4 + ux̄5G(ux̄ , λ)

+ȳ 2H(ux̄ , u2ȳ , λ)
)
,

where (ε,B0) = (δ2, δB̄0), with δ ∼ 0 and B̄0 ∼ 0 (B̄0 is the
regular breaking parameter).

When (ε,B0) = (δ2E ,±δ), we have no limit cycles (a jump
case).

“D. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996”.

We have two types of limit periodic sets: the contact point
and detectable canard limit periodic sets
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)
,

where (ε,B0) = (δ2, δB̄0), with δ ∼ 0 and B̄0 ∼ 0 (B̄0 is the
regular breaking parameter).

When (ε,B0) = (δ2E ,±δ), we have no limit cycles (a jump
case).

“D. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996”.

We have two types of limit periodic sets: the contact point
and detectable canard limit periodic sets



Quartic Liénard equations with linear damping

The slow-fast Hopf region

It is sufficient to consider the following singular perturbation
system:

˙̄x = ȳ
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The slow-fast Hopf region

From the following theorem it follows that the limit cycles
may bifurcate from the contact point (x̄ , ȳ) = (0, 0).

In other
words, at B̄0 = 0, a (slow-fast) Hopf bifurcation takes place.

Theorem

(i) Let B0
2 > 0 be any arbitrarily small fixed number and let

K := B ∩ {|B2| ≥ B0
2}. There exist small δ0 > 0, B̄0

0 > 0, u0 > 0
and a neighborhood U of (x̄ , ȳ) = (0, 0) such that the following
statements are true.

1 The family X F
δ2,(δB̄0,−1,B2,B3),u,λ has at most 1 (hyperbolic) limit

cycle in U for each
(δ, B̄0,B2,B3, u, λ) ∈ [0, δ0]× [−B̄0

0 , B̄
0
0 ]× K × [0, u0]× Λ.

2 When we fix (δ,B2,B3, u, λ) ∈]0, δ0]×K × [0, u0]× Λ, the B̄0-family
X F
δ2,(δB̄0,−1,B2,B3),u,λ undergoes, in U and at B̄0 = 0, a Hopf

bifurcation of codimension 1. Assume (B2,B3) ∈ K and B2 > 0.
When B̄0 increases there is in U an attracting hyperbolic focus and
no limit cycle; when B̄0 decreases there is in U a repelling
hyperbolic focus and an attracting limit cycle of which the size
monotonically grows as B̄0 decreases. Assume (B2,B3) ∈ K and
B2 < 0. When B̄0 decreases there is in U a repelling hyperbolic
focus and no limit cycle; when B̄0 increases there is in U an
attracting hyperbolic focus and a repelling limit cycle of which the
size monotonically grows as B̄0 increases.

(ii) There exist small δ0 > 0, B̄0
0 > 0, B0

2 > 0 and u0 > 0 and a
neighborhood U of (x̄ , ȳ) = (0, 0) such that the family
X F
δ2,(δB̄0,−1,B2,B3),u,λ

has at most 2 limit cycles in U for each

(δ, B̄0,B2,B3, u, λ) ∈ [0, δ0]× [−B̄0
0 , B̄

0
0 ]× B ∩ {|B2| ≤

B0
2} × [0, u0]× Λ.
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words, at B̄0 = 0, a (slow-fast) Hopf bifurcation takes place.

Theorem

(i) Let B0
2 > 0 be any arbitrarily small fixed number and let

K := B ∩ {|B2| ≥ B0
2}. There exist small δ0 > 0, B̄0

0 > 0, u0 > 0
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The slow-fast Hopf region

Theorem

(i) 2 Assume (B2,B3) ∈ K and B2 < 0. When B̄0 decreases there is
in U a repelling hyperbolic focus and no limit cycle; when B̄0

increases there is in U an attracting hyperbolic focus and a
repelling limit cycle of which the size monotonically grows as
B̄0 increases.

(ii) There exist small δ0 > 0, B̄0
0 > 0, B0
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R. Huzak, Canard Explosion Near Non-Liénard Type
Slow-Fast Hopf Point, 2018
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The slow-fast Hopf region

On the other hand, the slow dynamics of our system, which is
given by

x̄ ′ = −1 + B2x̄ + B3x̄
2 + x̄3 + ux̄4G (ux̄ , λ), (19)

points from the right to the left at least near x̄ = 0.

Thus,
canard limit cycles can also arise in the (x̄ , ȳ)-plane.

The discriminant

J = B2
2B

2
3 − 4B3

2 + 4B3
3 − 18B2B3 − 27

of the cubic x̄-polynomial −1 + B2x̄ + B3x̄
2 + x̄3 can be used

to find out how many real zeros the slow dynamics has.
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Figure: Canard limit periodic sets Γȳ , for (δ, B̄0, u) = (0, 0, 0) and
(B2,B3) ∈ B, with indication of slow dynamics.
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The slow-fast Hopf region

We study zeros of the slow divergence integral along the slow
curve if the slow dynamics is regular:

I (y ,B2,B3, u, λ) =

∫ √2y

−
√

2y

x̄d x̄

−1 + B2x̄ + B3x̄2 + x̄3 + ux̄4G (ux̄ , λ)
.

The slow divergence integral along a slow curve between two
points p1 and p2 is the integral of the divergence of the vector
field, with δ = 0, along the slow curve from p1 to p2 w.r.t.
the slow time.

The slow dynamics of the vector field along the slow curve,
away from the contact point, is given by

dx̄

dτ
= −1 + B2x̄ + B3x̄

2 + x̄3 + ux̄4G (ux̄ , λ), x̄ 6= 0.
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The slow-fast Hopf region

If we write τ = (δ, B̄0,B2,B3, u, λ), then we have

∂∆

∂ȳ
(ȳ , τ) = − 1

δ4
L+(ȳ , τ) exp I+(ȳ , τ)

−
(
− 1

δ4
L−(ȳ , τ) exp I−(ȳ , τ)

)
where L± are strictly positive functions

and where

I±(ȳ , τ) =

∫
O±(ȳ ,τ)

div (±X F
δ2,(δB̄0,−1,B2,B3),u,λ

)dt.

If we introduce the analytic function A(α, β) = expα−expβ
α−β > 0

if α 6= β and A(α, α) = expα, and if we write I = I+ − I−,
then we have:
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If we introduce the analytic function A(α, β) = expα−expβ
α−β > 0

if α 6= β and A(α, α) = expα, and if we write I = I+ − I−,
then we have:
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∂∆

∂ȳ
(ȳ , τ) = − 1

δ6
A(α, β)

(
δ2I(ȳ , τ) + O(δ2)

)

with α = I+(ȳ , τ) + ln(L+(ȳ , τ)) and β = I−(ȳ , τ) + ln(L−(ȳ , τ))

We don’t specify the O(δ2)-term since it is not the leading
order part in the expression δ2I + O(δ2).

Using Rolle’s theorem, it can be shown that the number of
periodic orbits of X F

δ2,(δB̄0,−1,B2,B3),u,λ
near the set ∪ȳ∈[µ,η]Γȳ ,

at the τ -level, is bounded by 1+ the number of zeros
(counting multiplicity) of δ2I w.r.t. ȳ ∈ [µ, η].
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∂ȳ
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For u = 0 and (B2,B3) = (−1, 1), the slow dynamics has a
singularity of multiplicity 1 at x̄ = 1 and a singularity of
multiplicity 2 at x̄ = −1.

At x̄ = 1 and near the parameter value
(B̄0,B2,B3, u) = (0,−1, 1, 0) we use a C k -normal form (see
Takens or Bonckaert):{

v̇1 = δ2ν1v1

v̇2 = −v2,
(20)

where −δ2ν1, ν1 > 0, is ratio of eigenvalues of a persistent
hyperbolic saddle of X F

δ2,(δB̄0,−1,B2,B3),u,λ
near (x̄ , ȳ) = (1, 0).

Following [De Maesschalck,Dumortier,2008] or [De
Maesschalck,Dumortier, Huzak,2013], we have:
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δ2I+(ȳ , τ) =

∫ 1

α+(ȳ ,τ)

−1 + ν1δ
2

ν1v1
dv1 + O(1),

near ȳ = 1
2 .

The integral in the expression for δ2I+ is the divergence
integral (multiplied by δ2) calculated in the normal form
coordinates from {v2 = 1} to {v1 = 1} where we assume that
the orbit O+(ȳ , τ) intersects the plane {v2 = 1} in a point
with v1 = α+(ȳ , τ). Clearly, α+ is a C k -diffeomorphism with
α+( 1

2 , 0, 0,−1, 1, 0, λ) = 0 and ∂α+

∂ȳ < 0.

The O(1)-term is δ-regularly C k in (ȳ , B̄0,B2,B3, u, λ), i.e.
O(1) and all its derivatives up to order k w.r.t.
(ȳ , B̄0,B2,B3, u, λ) are continuous including at δ = 0.
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At x̄ = −1 and near the parameter value
(B̄0,B2,B3, u) = (0,−1, 1, 0) we have a C k -normal form (see
Takens or Bonckaert):{

v̇1 = −δ2h(v1, τ)
v̇2 = v2,

(21)

where h(v1, 0, 0,−1, 1, 0, λ) has a zero of multiplicity 2 at
v1 = 0.

Similarly, we find that

δ2I−(ȳ , τ) =

∫ 1

α−(ȳ ,τ)

−1 + δ2 ∂h
∂v1

(v1, τ)

h(v1, τ)
dv1 + O(1),

near ȳ = 1
2 . The orbit O−(ȳ , τ) intersects the plane {v2 = 1}

in a point with v1 = α−(ȳ , τ). The function α− and the
O(1)-term have the same properties like α+ and the
O(1)-term in the expression for δ2I+.
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Thus, we get

δ2∂I
∂ȳ

(ȳ , τ) =
(1− ν1δ

2)∂α+

∂ȳ (ȳ , τ)

ν1α+(ȳ , τ)

−
(
1− δ2 ∂h

∂v1
(α−(ȳ , τ), τ)

)∂α−
∂ȳ (ȳ , τ)

h(α−(ȳ , τ), τ)
+ O(1),

near ȳ = 1
2 . Using the above expression and the properties of

α± and h, we finally get

δ2∂I
∂ȳ

(ȳ , τ) =
β0 + β1(ȳ − 1

2 ) + O
(
(ȳ − 1

2 )2
)

ν1α+(ȳ , τ)h(α−(ȳ , τ), τ)
(22)

where β0 = O(δ, B̄0,B2 + 1,B3 − 1, u) and
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and

β1 = −ν1
∂α+

∂ȳ
(

1

2
, 0, 0,−1, 1, 0, λ)

∂α−
∂ȳ

(
1

2
, 0, 0,−1, 1, 0, λ)

+ O(δ, B̄0,B2 + 1,B3 − 1, u).

Clearly, the coefficient β1 is strictly negative. From this
together with (22) and Rolle’s theorem we conclude that ∂I

∂ȳ

has at most 1 zero (counting multiplicity) near ȳ = 1
2 .
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The slow-fast codimension 3 saddle/elliptic region

We consider
ẋ = y

ẏ = −xy + ε
(
r 4B0 + r 3B1x + r 2B2x

2 ± rx3 + x4 + x5G(x , λ)

+y 2H(x , y , λ)
)
.

Theorem

Let B3 = +1 or B3 = −1. There exist a neighborhood V of
(x , y) = (0, 0), r0 > 0 and a (B0,B1,B2)-neighborhood U3 of the
origin such that Xε,B,r ,λ has at most 2 limit cycles in V for each
(ε,B0,B1,B2, r , λ) ∈ [0,M]× U3 × [0, r0]× Λ.
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The slow-fast codimension 3 saddle/elliptic region

It is sufficient to consider the following singular perturbation
system:

˙̄x = ȳ

˙̄y = −x̄ ȳ + ε̄
(
B0 + B1x̄ + B2x̄

2 ± x̄3 + x̄4 + ux̄5G(ux̄ , λ)

+ȳ 2H(ux̄ , u2ȳ , λ)
)

The contact point (x̄ , ȳ) = (0, 0) can produce at most 2 limit
cycles (the coefficient in front of x̄4 is 6= 0).

In the saddle case, there are no detectable canard limit cycles(
x̄ ′ = x̄2(1 + O(x̄))

)
In the elliptic case, the slow dynamics is given by:

x̄ ′ = B1 + B2x̄ + x̄2(−1 + x̄ + ux̄2G (ux̄ , λ))
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+ȳ 2H(ux̄ , u2ȳ , λ)
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The slow-fast codimension 3 elliptic region

x̄R

There are 3 types of limit periodic sets:

1 the contact point: at most 2 limit cycles
2 Γx̄ , x̄ ∈]0, x̄R [: at most 2 limit cycles
3 Γx̄R : at most 2 limit cycles
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The slow divergence integral

I (ȳ ,B1,B2, u, λ) =

∫ √2ȳ

−
√

2ȳ

wdw

d(w ,B1,B2, u, λ)
, ȳ ∈]0,

1

2
x̄2
R [,

becomes ∞−∞ as (B1,B2)→ (0, 0). The function
d(x̄ ,B1,B2, u, λ) is the right hand side of the slow dynamics.

As shown in [De Maesschalck, Dumortier, 2010], it is better
to deal with δ2 ∂I

∂ȳ which is well approximated by the (well
defined) derivative of the slow divergence integral

∂I

∂ȳ
(ȳ ,B1,B2, u, λ) =

−2
√

2ȳ
(
B2 + 2ȳ + uO((

√
2ȳ)3)

)
d(
√

2ȳ ,B1,B2, u, λ).d(−
√

2ȳ ,B1,B2, u, λ)
.
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Clearly, for any fixed small µ > 0 we have that
∂I
∂ȳ (ȳ ,B1,B2, u, λ) is strictly negative for all ȳ ∈ [µ, 1

2 x̄
2
R − µ]

and λ ∈ Λ, by taking the parameter (B1,B2, u) sufficiently
small.

Thus ∂I
∂ȳ has no zeros on the interval [µ, 1

2 x̄
2
R − µ] under the

given conditions on the parameters, and, we find that the set
∪ȳ∈[µ, 1

2
x̄2
R−µ]Γȳ produces at most 2 limit cycles.

We have to study separately the cyclicity of Γ 1
2
x̄2
R

(Takens

normal forms).
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Future Research

Slow-fast and regular codimension ` bifurcations, ` ≥ 5

Find the number of limit cycles in{
ẋ = y

ẏ = −(a0 + x)y + ε
(
b0 + b1x + ...+ b`−1x

`−1 ± x`
)
,

where (a0, b0, . . . , b`−1) ∼ (0, 0, . . . , 0).

Thank you for your attention!
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