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@ A simplified version of deals with
finding the maximum number /, ,, of limit cycles of a
polynomial Liénard equation

Y (1)
y = —yXjeapd =3 bid,

where (ag, ..., an, bo, - - -, bm) € R™M*2 and a,, b, # 0.
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@ A simplified version of deals with
finding the maximum number /, ,, of limit cycles of a
polynomial Liénard equation

X =Y
{ y o= —yXjead — Yo b, M
where (ag, ..., an, bo, - - -, bm) € R™M*2 and a,, b, # 0.
@ When m=1 (resp. m > 1) we call (1) a
(resp. a ).
@ In the classical case, we know that (see [Lins,

De Melo,Pugh,1977]) and (see [Li,Llibre,2012]).
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@ In the generalized case, we have (see [Coppel,
1989]), (see [Dumortier,Rousseau,1990;
Dumortier,Li,1996]), (see [Dumortier,Li,1997])and

(see [Wang,Jing,2002]). As far as we know, only
these low degree cases have been completely solved.

@ The goal of our presentation is to show that , under
condition that (1) with (n,m) = (1,4) is of singular type.

@ Our focus is on the

X =y
{y = —y(ao + x) — (bo + bix + box? + b3x3 + x*),
(2)

where (ao, bo, bl, bg, b3) A (O, 0, 0, 0, 0).
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Statement of results

Theorem

There exists a small neighborhood V of the origin in the parameter
space (ao, bo, b1, ba, b3) such that (2) has at most two limit cycles
for each (ag, bo, b1, b2, b3) € V.
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Theorem

There exists a small neighborhood V of the origin in the parameter
space (ao, bo, b1, ba, b3) such that (2) has at most two limit cycles
for each (ag, bo, b1, b2, b3) € V.

e We also study the version of (2):
{x=y,y = —y(ao + x) = e(bo + bix + bpx® + bsx® + x*)},
where € ~ 0, ¢ > 0 and (ao, by, b1, by, b3) ~ (0, 0,0, 0,0).
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Statement of results

There exists a small neighborhood V of the origin in the parameter
space (ao, bo, b1, ba, b3) such that (2) has at most two limit cycles
for each (ao, bo, b1, ba, b3) € V.

e We also study the version of (2):
{x=y,y = —y(ao + x) = e(bo + bix + bpx® + bsx® + x*)},
where € ~ 0, ¢ > 0 and (ao, by, b1, by, b3) ~ (0, 0,0, 0,0).

There exists a small g > 0 and a small neighborhood V' of the
origin in the parameter space (ao, bo, b1, bz, b3) such that the
slow-fast system has at most two limit cycles for each

(6, ao, bo, b1, by, b3) € [0, 60] x V.
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Proof of Theorem 1 and Theorem 2

@ The proof of the theorem consists of 3 steps:

@ Using appropriate linear equivalency we bring (2) to a similar
Liénard equation, but of and with
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Proof of Theorem 1 and Theorem 2

@ The proof of the theorem consists of 3 steps:

@ Using appropriate linear equivalency we bring (2) to a similar
Liénard equation, but of and with

@ We study the slow-fast Liénard equation in arbitrarily large
compact sets in the phase space by using
and the .
© We study the slow-fast Liénard equation near infinity by using
an appropriate :
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Step 1-Bringing the Liénard equation (2) to a slow-fast system

e We may assume that agp = 0 in (2):

S (3)
y = —yx—(bo+ bix + bax® + b3x® + x*),

with a new parameter (b, b1, b, b3) ~ (0,0,0,0). We denote
the system (3) by Xpy.b;,b,,b5-
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Step 1-Bringing the Liénard equation (2) to a slow-fast system

e We may assume that agp = 0 in (2):

7 (3)
y = —yx— (bo + bix + bax? + b3x3 + x*),

with a new parameter (b, b1, b, b3) ~ (0,0,0,0). We denote
the system (3) by Xpy.b;,b,,b5-

o Using a linear coordinate change (x,y) = (eX, €2y), with
€ >0 and € ~ 0, we convert the system Xupg 3p, 2B, B, tO

{

where (Bg, By, By, B3) € S5.

€y
e( — yx — e(Bo + Bix + Box? 4 B3x® + %)),
(4)

<I- XI-
[
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Step 1-Bringing the Liénard equation (2) to a slow-fast system

o After dividing (4) by the positive constant ¢, we conclude that
Xe4By 3B, .28, ¢B; 1S (linearly) equivalent to

{

where (Bo, B1, B>, B3) € Ss.

=Yy

= —yx —e(By+ BiX + Box? + B3x® + x%), (5)

<I- Xl
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Step 1-Bringing the Liénard equation (2) to a slow-fast system

o After dividing (4) by the positive constant ¢, we conclude that
Xe4By 3B, .28, ¢B; 1S (linearly) equivalent to

{

where (Bo, B1, B>, B3) € Ss.

@ Thus, instead of studying system Xupg, 3p, 28, g, With € >0
and (By, By, Bz, B3) € S3, we can study system (5) which is of
singular type.

g (5)
= —yx —€(By + BiX + Bax? + B33 + x%),

<I- XI-
|

v
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Step 2-Slow-fast Liénard systems (5) at infinity in the phase space

@ We can study the dynamics of (5) near infinity on the
Poincaré-Lyapunov disc of type (2,5).
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@ We can study the dynamics of (5) near infinity on the
Poincaré-Lyapunov disc of type (2,5).

@ Due to the presence of the small parameter ¢ > 0, an
additional family blow-up in the positive and negative
X-direction is necessary to completely desingularize (5) at
infinity.
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Step 2-Slow-fast Liénard systems (5) at infinity in the phase space

@ We can study the dynamics of (5) near infinity on the
Poincaré-Lyapunov disc of type (2,5).

@ Due to the presence of the small parameter ¢ > 0, an
additional family blow-up in the positive and negative
X-direction is necessary to completely desingularize (5) at
infinity.

7
N

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2,5).
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Step 2—Transformation of (5) in the negative x-direction

@ We define the coordinate change

_ - -1Y
(va) - (?7 E)v

where p >0, p ~ 0 and Y is kept in a large compact set. In
the coordinates (p, Y), after multiplication by the positive

factor p3, system (5) can be written as:
.
Y = 3Y?2+pY —¢(Bop® — Bip® + Bap* — B3p® +1).
(6)
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Step 2—Transformation of (5) in the negative x-direction

@ We define the coordinate change

_ - -1Y
(va) - (?7 E)v

where p >0, p ~ 0 and Y is kept in a large compact set. In
the coordinates (p, Y), after multiplication by the positive

factor p3, system (5) can be written as:
.
Y = 32Y24pY —€(Bop® — Bip® + Bop* — Bsp? + 1().)
6

@ When p =€ =0, the singularity at Y = 0 of (6) is linearly
zero. We blow up the origin (p, Y, €) = (0,0,0) using
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Step 2—Transformation of (5) in the negative x-direction

@ The family chart {€ = 1}. System (6) changes, after dividing

by v, into
.p* =
Y —

where 5 > 0 and (7, Y) is kept in a large compact set. When
v =0, system (7) has one hyperbolic and attracting node at

Y
Y2 +5Y —1+0(v?)

I

(7)

NICT N|=

(5, Y) = (0, —\/g) and one hyperbolic and repelling node at

(7, ¥) = (0,4/2)
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Step 2-Transformation of (5) in the negative X-direction

@ The phase directional chart {p = 1}. In the chart {p =1}
system (6) becomes, after dividing by v,

< an. <
<
L
N
~<
N
|
M|
=
e
pS)
<
>

where (v,€) ~ (0,0), v >0, €>0and Y is kept in a large
compact set. If v = € =0, then system (8) has a hyperbolic
saddle at Y = —3 with eigenvalues (— 13- 1) and a
semi-hyperbolic smgularlty at Y = 0 with the Y-axis as the
unstable manifold and a two dimensional center manifold
transverse to the unstable manifold. Center manifolds can be
written as Y = &(1 + O(v,€)), with the following dynamics
{Vv=3vE(l+ O(v,8)),e=—&(1+ O(v,e))}.
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Step 2-Transformation of (5) in the negative x-direction

o The phase directional chart {Y = 1}. System (6) changes,
after dividing by v, into

v = v(3+p—¢1+0(v )))
E = —2e(3+p—&1+0(v?)) (9)
p = p(-2-p+e1+0(v?)),

where (v,€) ~ (0,0), v>0, €>0and p > 0 is kept in a large
compact set. System (9) has a hyperbolic saddle at
(v,€ p) = (0,0,0) with eigenvalues (3, -5, —2).
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Step 2—Transformation of (5) in the negative x-direction

o The phase directional chart {Y = —1}. System (6) changes,
after dividing by v, into

v v(—32+p+ &1+ 0(v?)))
E = —28(—2+p+&1+0(v?)) (10)
p = p2-p—&1+0(v?)),

where (v,€) ~ (0,0), v >0, €>0and p > 0 is kept in a large
compact set. Besides the hyperbolic saddle found in the chart
{p =1}, we find an extra hyperbolic saddle at

(v,€ p) = (0,0,0) of (10) with eigenvalues (—3,5,2).
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Step 2-Transformation of (5) in the negative X-direction

M

fy

NIASS

Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2,5).
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Step 2—Transformation of (5) in the positive X-direction

@ We introduce the coordinate change

1y
7;)

i)

where p > 0, p ~ 0 and Y is kept in a large compact set.
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Step 2-Transformation of (5) in the positive x-direction

@ We introduce the coordinate change
1
"o

Y
()_(7)7) = ( 7)7
p?’ p°
where p > 0, p ~ 0 and Y is kept in a large compact set. In
the coordinates (p, Y), after multiplication by the positive

factor p3, system (5) can be written as:

)= <oy
Y = —%YZ —pY — G(B()p8 + Blp6 + sz4 + B3p2 + 1).
(11)
@ When p =0 and € > 0, system (11) has no singularities.
When p = € = 0, the singularity at Y = 0 of (11) is linearly
zero.
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Step 2-Transformation of (5) in the positive x-direction

@ We introduce the coordinate change
1
"o

Y
()_(7)7) = ( 7)7
p?’ p°
where p > 0, p ~ 0 and Y is kept in a large compact set. In
the coordinates (p, Y), after multiplication by the positive

factor p3, system (5) can be written as:

(/2%
Y = —%YZ —pY — G(B()p8 + Blp6 + sz4 + B3p2 + 1).
(11)
@ When p =0 and € > 0, system (11) has no singularities.
When p = € = 0, the singularity at Y = 0 of (11) is linearly
zero. To desingularize (11) we use the following blow-up at
the origin in (p, Y, €)-space:
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Step 2-Transformation of (5) in the positive x-direction

@ The family chart {€ = 1}. System (11) changes, after dividing
by v, into

(12)

where p > 0 and (p, Y) is kept in a large compact set.
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Step 2-Transformation of (5) in the positive x-direction

@ The family chart {€ = 1}. System (11) changes, after dividing
by v, into

= 1

p = —3p

: _ _ 12
{Y = —3Y2-pY -1+ 0(v?) (12)

where 5 > 0 and (7, Y) is kept in a large compact set. When
v = 0, system (12) has no singularities.
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Step 2-Transformation of (5) in the positive x-direction

@ The family chart {€ = 1}. System (11) changes, after dividing
by v, into

= 1
P = —3P (
4 A 12)
{ Y = —3Y2-pY -1+ 0(v?)
where 5 > 0 and (7, Y) is kept in a large compact set. When
v = 0, system (12) has no singularities.
The phase directional chart {p = 1}. In the chart {p =1}
system (11) becomes, after dividing by v,

vY

Il
M
<hoj—

(13)

<" - <t

—Y —2Y2 - &(1+ 0(v?)),

where (v,&) ~ (0,0), v >0, €>0and Y is kept in a large
combact set.




Quartic Liénard equations with linear damping

Step 2-Transformation of (5) in the positive x-direction

o When v = &= 0, system (13) has a hyperbolic saddle at
y=-1 W|th eigenvalues (1, —%, 1) and a semi-hyperbolic
smgularlty at Y = 0 with the stable manifold {v = € = 0} and
a two dimensional center manifold transverse to the stable
manifold. Center manifolds are given by Y = —&(1 + O(v, €))
and the dynamics inside the center manifolds is given by
{v=23vE(l + O(v,9),e = —&(1+ O(v,e)) }.

o The phase directional chart {Y = 1}. In this chart, system
(11) changes, after dividing by v, into

v o= v(=3-p-&1+0(?)
¢ = —28(-3-p—&1+0(v?)) (14)
p= p2+p+EL+0O(v?)),

where (v,€) ~ (0,0), v >0, €>0and p > 0 is kept in a large
compact set. When v = € = 0, system (14) has a hyperbolic
saddle at 5 = 0 with eigenvalues (—2.5.2).
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Step 2—Transformation of (5) in the positive X-direction

o The phase directional chart {Y = —1}. In this phase

directional chart, system (11) changes, after dividing by v,
into

v = v(3-p+el+0(v?)
= (G- pra1+0()  (15)
p = p(=2+p-e1+0(v?)),

~(0,0), v>0,E>0and p>0is kept in a large

where (v, €)
compact set.
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Step 2—Transformation of (5) in the positive X-direction

o The phase directional chart {Y = —1}. In this phase

directional chart, system (11) changes, after dividing by v,
into

= v(3—pta1+0(v))

= —2¢(3 -+ 1+ O(v?))) (15)
= p(—=2+p—-&1+0(v?)),

where (v,€) ~ (0,0), v >0, €>0and p > 0 is kept in a large
compact set. Besides the hyperbolic saddle found in the chart
{p = 1}, system (15) has an extra hyperbolic saddle at
(v,€p) =(0,0,0) with eigenvalues (g, —5,-2).

D A <t
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Step 2-Transformation of (5) in the positive X-direction

M
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Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2,5).
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Step 2—Transformation of (5) in the positive and negative

y-direction
o We have
po= 20X+ £(Bop® + BiXp” + BoX2p° + B3X3p® + X*p)
X = 2X (pX + €(Bop® + B1Xp® + B X?p*
+B3X3p? + X4)> +1.
(16)
and
po= 507X = §(Bop® + BiXp' + Bo2X?p® + B3X3p® + X*p)
X = 2X <pX — ¢(Bop® + BiXp® + BoX?p*
+B3X3p% + x4)> -1,
(17) |
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Step 2-Transformation of (5) in the positive X-direction

M

fy
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Figure: Dynamics of (5) near infinity on the Poincaré-Lyapunov disc of
type (2,5).
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Step 3-Slow-fast Liénard systems (5) in compact sets in the phase
space

@ Suppose that K is any compact set in the (X, y)-plane and fix
it. We prove that system (5) has at most two limit cycles in
K, for each fixed ¢ > 0, e ~ 0 and (By, By, Bz, B3) € S3.
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@ When e = 0:

72
/N
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Step 3-Slow-fast Liénard systems (5) in compact sets in the phase
space

@ Suppose that K is any compact set in the (X, y)-plane and fix
it. We prove that system (5) has at most two limit cycles in
K, for each fixed ¢ > 0, e ~ 0 and (By, By, Bz, B3) € S3.

@ When e = 0:

72
/N

@ Our problem is equivalent with the following problem:
Prove that slow-fast and regular codimension 4 saddle-node
bifurcations can produce at most 2 small-amplitude limit
cycles.
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Regular and slow-fast codimension 4 saddle-node bifurcations

@ We consider:

X=y
Xebn : }'/:7X_y+€(bo+b1X+b2X2+b3X3+X4+XSG(X,)\)
+y2H(x, v, A) )
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Regular and slow-fast codimension 4 saddle-node bifurcations

@ We consider:

X=y
DA }'/:7X_y+€(bo+b1X+b2X2+b3X3+X4+XSG(X,)\)
+y2H(X,y,>\))~

@ When b =0 and € > 0, then the origin (x,y) = (0,0) is a
nilpotent singularity of saddle-node type.
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Regular and slow-fast codimension 4 saddle-node bifurcations

@ We consider:

X=y
DA j/:fxy+e(bo+b1x+bzx2+b3x3+x4+x5G(x,)\)
+y2H(X,y,>\))~

@ When b =0 and € > 0, then the origin (x,y) = (0,0) is a
nilpotent singularity of saddle-node type.

Blow-up in the parameter space
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Regular and slow-fast codimension 4 saddle-node bifurcations

@ We consider:

X=y
DA j/:fxy+e(bo+b1x+bzx2+b3x3+x4+x5G(x,)\)
+y2H(X,y,>\))~

@ When b =0 and € > 0, then the origin (x,y) = (0,0) is a
nilpotent singularity of saddle-node type.

Blow-up in the parameter space

@ We first reparametrize the b-parameters, by introducing
weighted spherical coordinates: (b, by, by, b3) =
(r*Bo, r*By1,r?By, rB3), r >0, B=(By,Bi, B, B3) € S3.
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Regular and slow-fast codimension 4 saddle-node bifurcations

@ We consider:
X=y
Xebx: }7:*Xerﬁ(bo+b1X+b2X2+b3X3+X4+x5G(x,)\)
+y2H(x,y, /\)>.

@ When b =0 and € > 0, then the origin (x,y) = (0,0) is a
nilpotent singularity of saddle-node type.

Blow-up in the parameter space

@ We first reparametrize the b-parameters, by introducing
weighted spherical coordinates: (b, by, by, b3) =
(r*Bo, 3By, r?By, rB3), r >0, B = (Bo, B, B, B3) € S3.
@ Instead of coordinates on the sphere, we use one of the 8
charts of the sphere:
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Regular and slow-fast codimension 4 saddle-node bifurcations

@ We consider:
X=y
Xebx: }7:*Xerﬁ(bo+b1X+b2X2+b3X3+X4+x5G(x,)\)
+y2H(x,y, /\)>.

@ When b =0 and € > 0, then the origin (x,y) = (0,0) is a
nilpotent singularity of saddle-node type.

Blow-up in the parameter space

@ We first reparametrize the b-parameters, by introducing
weighted spherical coordinates: (b, by, by, b3) =
(r*Bo, r*By1,r?By, rB3), r >0, B=(By,Bi, B, B3) € S3.
@ Instead of coordinates on the sphere, we use one of the 8
charts of the sphere:
(bo, b1, by, b3) = (j:r4, r331, rng, rB3)
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Blow-up in the parameter space

(bo, b1, bo, b3) = (r*Bo, —r3, r?Bs, rB3)
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Blow-up in the parameter space

(bo, b1, bo, b3) = (r*Bo, —r3, r?Bs, rB3)
(bo, b1, ba, b3) = (r*Bo, r3, r’Ba, rBs)
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Blow-up in the parameter space

(bo, b1, bo, b3) = (r*Bo, —r3, r?Bs, rB3)
(bo, b1, ba, b3) = (r*Bo, r3, r’Ba, rBs)

(bo, b1, bo, b3) = (r*Bo, r* By, £r?, rB3)
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Blow-up in the parameter space

(bo, b1, bo, b3) = (r*Bo, —r3, r?Bs, rB3)
(bo, b1, ba, b3) = (r*Bo, r3, r’Ba, rBs)

(bo, b1, bo, b3) = (r*Bo, r* By, £r?, rB3)

(bo, b1, bo, b3) = (r*Bo, r3By, 2By, r).
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Blow-up in the parameter space

(bo, b1, bo, b3) = (r*Bo, —r3, r?Bs, rB3)
(bo, b1, ba, b3) = (r*Bo, r3, r’Ba, rBs)

(bo, b1, bo, b3) = (r*Bo, r* By, £r?, rB3)
(bo, b1, bo, b3) = (r*Bo, r3By, 2By, r).

(bo, b1, bo, b3) = (r*Bo, r*By, r?Ba, —r).
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Blow-up in the parameter space

(bo, b1, bo, b3) = (r*Bo, —r3, r?Bs, rB3)
(bo, b1, ba, b3) = (r*Bo, r3, r’Ba, rBs)

(bo, b1, bo, b3) = (r*Bo, r* By, £r?, rB3)
(bo, b1, bo, b3) = (r*Bo, r3By, 2By, r).

(bo, b1, ba, b3) = (r*Bo, r*By, r?By, —r).
@ We obtain
x=y
y =—xy+ e(r4Bo + rPBix + r’Box® + rBsx® + x* +X5G(X, A
+y2H(X,y,/\)).

~—

Xe,B,r,/\ :
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Blow-up of the origin (x, y, r) = (0,0,0) (primary blow-up)

@ We blow up the origin using the blow up transformation
(x,y,r) = (ux, u’y,uf), u>0, F>0, (%,7,7) € S%. (18)

The study of the dynamics in the blown-up coordinates will be
done in different charts:

X1
Il

4L
—

Figure: Different charts.
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The family chart ¥ = +1

@ In this family chart, the vector field X, g r » yields, after
division by the positive factor u,

X=y
XFpor: d V=-%7+ eu(Bo + BiX + Boi® + Bs®® + %% + ux® G(uR, \)
+y?H(ux, u2)7,)\)).
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The family chart ¥ = +1

@ In this family chart, the vector field X, g r » yields, after
division by the positive factor u,

x=y
Xpun: d 7= 57+ cu(Bo+ BiX + BoR® + BaX* + % + us*G(ux, )
+y?H(ux, u2)7,)\)).

o We write € =€eu~ 0 (e € [0, M], u ~ 0):

x=y
Xgur: { V=—%7+ E(Bo + BiX + Box® + Bsx® + % + ux®G(ux, \)
+y?H(ux, u2)7,)\))

where € ~ 0 is a singular perturbation parameter.
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The family chart ¥ = +1

@ In this family chart, the vector field X, g r » yields, after
division by the positive factor u,

x=y
Xpun: d 7= 57+ cu(Bo+ BiX + BoR® + BaX* + % + us*G(ux, )
+y?H(ux, u2)7,)\)).

o We write € =€eu~ 0 (e € [0, M], u ~ 0):

x=y
Xgur: { V=—%7+ E(Bo + BiX + Box® + Bsx® + % + ux®G(ux, \)
+y?H(ux, u2)7,)\))

where € ~ 0 is a singular perturbation parameter.
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The phase-directional charts {x = £1,y = £1}
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The slow-fast Hopf region

@ We consider

X=y
y=—xy+ e(r4Bo — x4+ rPBox? + rBsx® + x* + XSG(X, A)

+y2H(x,y, ).
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The slow-fast Hopf region

@ We consider

X=y
y=—xy+ e(r4Bo — x4+ rPBox? + rBsx® + x* + XSG(X, A)
+y2H(x,y, ).

Theorem

Let By = —1. Given any B,-1 > 0, i = 2,3. There exist a
neighborhood V' of (x,y) = (0,0), ro > 0 and B} > 0 such that
Xe,B,r.x has at most 2 limit cycles in V for each

(6, By, B>, Bs, r, )\) S

(0. M] x [ B, B3] x [~B3, B3] x [~BL, B x [0, ro] x A.
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The slow-fast Hopf region

o It is sufficient to consider the following singular perturbation
system:

y
7= —xy + &2 (6l§o %+ BoR® + B3R + & + uxG(uR, \)

+72H(u%, 17,2 ),

X

where (€, By) = (62,6Bp), with § ~ 0 and By ~ 0 (By is the
regular breaking parameter).
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The slow-fast Hopf region

o It is sufficient to consider the following singular perturbation
system:

y
7= —xy + &2 (6l§o %+ BoR® + B3R + & + uxG(uR, \)

+72H(u%, 17,2 ),

X

where (€, By) = (62,6Bp), with § ~ 0 and By ~ 0 (By is the
regular breaking parameter).

e When (¢, By) = (6%E, +6), we have no limit cycles (a jump
case).
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The slow-fast Hopf region

o It is sufficient to consider the following singular perturbation
system:

y
7= —xy + &2 (6Bo %+ BoR® + B3R + & + uxG(uR, \)

+72H(u%, 17,2 ),

X

where (€, By) = (62,6Bp), with § ~ 0 and By ~ 0 (By is the
regular breaking parameter).

e When (¢, By) = (6%E, +6), we have no limit cycles (a jump
case).

@ "“D. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996" .
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The slow-fast Hopf region

o It is sufficient to consider the following singular perturbation
system:

X=y
7= —xy + &2 (6Bo %+ BoR® + B3R + & + uxG(uR, \)

+72H(u%, 27, A)),
where (€, By) = (62,6Bp), with § ~ 0 and By ~ 0 (By is the
regular breaking parameter).
e When (¢, By) = (6%E, +6), we have no limit cycles (a jump
case).

@ "“D. Dumortier, R. Roussarie, Canard cycles and center
manifolds, 1996" .

@ We have two types of limit periodic sets: the contact point
and detectable canard limit periodic sets
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The slow-fast Hopf region

@ From the following theorem it follows that the limit cycles
may bifurcate from the (x,y7) =(0,0).
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The slow-fast Hopf region

@ From the following theorem it follows that the limit cycles
may bifurcate from the (x,7) = (0,0).In other
words, at By =0, a takes place.
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The slow-fast Hopf region

@ From the following theorem it follows that the limit cycles
may bifurcate from the (x,7) = (0,0).In other
words, at By =0, a takes place.

(i) Let BY > 0 be any arbitrarily small fixed number and let
K :=Bn{|By| > BY}. There exist small 5o >0, BY >0, up >0
and a neighborhood U of (x,y) = (0,0) such that the following
Statements are true.

1 The family X;’(ééo,_LBz,Bﬂ’u’)\ has at most
le in U for each L
(0, Bo, B>, B3, u, \) € [0, 6] x [-B5, BY] x K x [0, ug] x A.
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The slow-fast Hopf region

@ From the following theorem it follows that the limit cycles
may bifurcate from the (x,7) = (0,0).In other
words, at By =0, a takes place.

(i) Let BY > 0 be any arbitrarily small fixed number and let
K :=Bn{|By| > BY}. There exist small 5o >0, BY >0, up >0
and a neighborhood U of (x,y) = (0,0) such that the following
Statements are true.

1 The family X;’(ééo,_LBz,Bﬂ’u’)\ has at most
in U for each
(0, Bo, B>, B3, u, \) € [0, 6] x [-B5, BY] x K x [0, ug] x A.
2 When we fix (8, Ba, B3, u, \) €]0, 0] x K x [0, uo] x A, the Bo-family

X;,(6§0,71,32,83),u,)\ undergoes, in U and at By = 0, a Hopf
bifurcation of . Assume (B>, B3) € K and B> > 0.

When By increases there is in U an attracting hyperbolic focus and
no limit cycle; when By decreases there is in U a repelling

hyperbolic focus and an of which the size
I T M D o o AN o D DN o~ W med
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The slow-fast Hopf region

Theorem

(i)

2 Assume (B, B3) € K and B, < 0. When By decreases therg is
in U a repelling hyperbolic focus and no limit cycle; when By
increases there is in U an attracting hyperbolic focus and a

of which the size monotonically grows as
By increases.

N
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The slow-fast Hopf region

(i) 2 Assume (By, Bs) € K and B, < 0. When By decreases there is
in U a repelling hyperbolic focus and no limit cycle; when By
increases there is in U an attracting hyperbolic focus and a

of which the size monotonically grows as

By increases.

(i) There exist small 6o >0, BY >0, BS >0 and up > 0 and a
neighborhood U of (x,y) = (0,0) such that the family

F .
52,(6Bo,—1,B.B3).u\ has at most in U for each

((5, Bo, B>, Bs, u, )\) S [0,50] X [—ég,ég] x BN {’82‘ <
B8} x [0, ug] x A.

N
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The slow-fast Hopf region

(i) 2 Assume (By, Bs) € K and B, < 0. When By decreases there is
in U a repelling hyperbolic focus and no limit cycle; when By
increases there is in U an attracting hyperbolic focus and a

of which the size monotonically grows as

By increases.

(i) There exist small 6o >0, BY >0, BS >0 and up > 0 and a
neighborhood U of (x,y) = (0,0) such that the family

F .
52,(6Bo,—1,B.B3).u\ has at most in U for each

((5, Bo, B>, Bs, u, )\) S [0,50] X [—ég,ég] x BN {’82‘ <
B8} x [0, ug] x A.

N
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The slow-fast Hopf region

(i) 2 Assume (By, Bs) € K and B, < 0. When By decreases there is
in U a repelling hyperbolic focus and no limit cycle; when By
increases there is in U an attracting hyperbolic focus and a

of which the size monotonically grows as
By increases.

(i) There exist small 6o >0, BY >0, BS >0 and up > 0 and a

neighborhood U of (x,y) = (0,0) such that the family

F .
X§2’£550771,52’B3),u7)\ has at most in U for each

((5, Bo, B>, Bs, u, )\) S [0,50] X [—ég,ég] x BN {’82‘ <
B8} x [0, ug] x A.

N

e R. Huzak, Canard Explosion Near Non-Liénard Type
Slow-Fast Hopf Point, 2018
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The slow-fast Hopf region

@ On the other hand, the of our system, which is
given by

X =—-1+ Box + B3)_(2 + %3 + U)_<4G(U)_<7 )‘)7 (19)

points from the right to the left at least near X = 0.
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The slow-fast Hopf region

@ On the other hand, the of our system, which is
given by

X =—-1+ Box + B3)_(2 + %3 + U)_<4G(U)_<7 )‘)7 (19)

points from the right to the left at least near X = 0.Thus,
can also arise in the (X, y)-plane.
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The slow-fast Hopf region

@ On the other hand, the of our system, which is
given by

X = —1+ Box + Bsx® + 2 + ux*G(ux,)),  (19)

points from the right to the left at least near X = 0.Thus,
can also arise in the (X, y)-plane.

@ The discriminant
J=B3BZ — 4B3 + 4B3 — 18B,B3 — 27

of the cubic X-polynomial —1 + BoX + B3x? + X3 can be used
to find out how many real zeros the slow dynamics has.
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The slow-fast Hopf region

o We study zeros of the along the slow
curve if the slow dynamics is

BB \ V2y Xdx
(v, B2, Bs, u, )—/\@_1+32>—<+B3>‘<2+>'<3+u>_<46(u)_<,

ped
~—
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The slow-fast Hopf region

o We study zeros of the along the slow
curve if the slow dynamics is

BB \ V2y Xdx
(v, B2, Bs, u, )—/\@_1+52>—<+B3>‘<2+>'<3+u>_<46(u)_<,

ped
~—

@ The slow divergence integral along a slow curve between two
points p1 and ps is the integral of the divergence of the vector
field, with 6 = 0, along the slow curve from p; to p> w.r.t.
the slow time.
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The slow-fast Hopf region

o We study zeros of the along the slow
curve if the slow dynamics is

BB \ V2y Xdx
(v, B2, Bs, u, )—/\@_1+52>—<+B3>‘<2+>'<3+u>_<46(u)_<,

ped
~—

@ The slow divergence integral along a slow curve between two
points p1 and ps is the integral of the divergence of the vector
field, with 6 = 0, along the slow curve from p; to p> w.r.t.
the slow time.

@ The of the vector field along the slow curve,
away from the contact point, is given by
dx

=1+ B+ B3x* + 3 + ux*G(ux, \), X # 0.
-
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The slow-fast Hopf region

o We study zeros of the along the slow
curve if the slow dynamics is

BB \ V2y Xdx
(v, B2, Bs, u, )—/\@_1+52>—<+B3>‘<2+>'<3+u>_<46(u)_<,

ped
~—

@ The slow divergence integral along a slow curve between two
points p1 and ps is the integral of the divergence of the vector
field, with 6 = 0, along the slow curve from p; to p> w.r.t.
the slow time.

@ The of the vector field along the slow curve,
away from the contact point, is given by
dx

=1+ B+ B3x* + 3 + ux*G(ux, \), X # 0.
-
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The slow-fast Hopf region

o If we write 7 = (6, By, Bz, B3, u, \), then we have

/A 1 _ _
87)7(}/’7) = —57L+(Y>T) expZ(¥,7)

—(= %L_(y, T)expZ_(y,7))

where L4 are strictly positive functions
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The slow-fast Hopf region

o If we write 7 = (6, By, Bz, B3, u, \), then we have

/A 1 _ _
87)7(}/’7) = —57L+(Y>T) expZ(¥,7)

—(= %L_(y, T)expZ_(y,7))

where Ly are strictly positive functions and where

T (v _ di :|:XF _ dt.
+(y,7) /(93‘:()7,7') iv ( 52,(580,—1,82,33),u,x)




Quartic Liénard equations with linear damping

The slow-fast Hopf region

o If we write 7 = (6, By, Bz, B3, u, \), then we have

oA  _ 1 _ _
o (7, 7) = —Z L (¥, 7)exp I (y, 7)
oy )
1, _
_( B 57L—(y7 T) eXpI—(y7T))

where Ly are strictly positive functions and where
IZi(y,7) = div (X5 .= dt.
+(y,7) /(’)i(y,r) ( 527(5307_1732733)7,,’)\)

o If we introduce the analytic function A(«, 8) = w >0
if « # 5 and A(a, ) = expa, and if we write Z =7, —7_,

then we have:
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The slow-fast Hopf region

f}é(y, 7) = —%A(a, 5) (521(% 7)+ 0(52)>

with o = Z, (y,7) +In(L(7,7)) and 8 =Z_(7,7) + In(L_(¥, 7))
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The slow-fast Hopf region

Zé(y, 7) = —%A(a, 5) (621(% 7)+ 0(52)>

with o = I—I—()_/? T) + ln(L+(}77 T)) and 3 = I—(Yv T) + In(L—(Y7 T))
o We don't specify the O(§2)-term since it is not the leading
order part in the expression 62Z + O(62).
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The slow-fast Hopf region

Zé(y, 7) = —%A(a, 5) (621(% 7)+ 0(52)>

with o = I—I—()_/? T) + ln(L+()77 T)) and 3 = I—(Yv T) + In(L—(Y7 T))
o We don't specify the O(§2)-term since it is not the leading
order part in the expression 62Z + O(62).

@ Using Rolle’s theorem, it can be shown that the number of

o g . F -
periodic orbits of X52,(51§0,—1,Bz,83),u,/\ near the set Ugcp, Iy,

at the 7-level, is bounded by 1+ the number of zeros
(counting multiplicity) of 0°Z w.r.t. ¥ € [u,7].
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The slow-fast Hopf region

e For u=0and (B, B3) = (—1,1), the slow dynamics has a
singularity of multiplicity 1 at X = 1 and a singularity of
multiplicity 2 at X = —1.
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The slow-fast Hopf region

e For u=0and (B, B3) = (—1,1), the slow dynamics has a
singularity of multiplicity 1 at X = 1 and a singularity of
multiplicity 2 at X = —1.

@ At X = 1 and near the parameter value
(Bo, Bz, B3, u) = (0,—1,1,0) we use a CX-normal form (see
Takens or Bonckaert):

vi = 6w (20)
V.2 = —W,

where —6211, v1 > 0, is ratio of eigenvalues of a persistent

hyperbolic saddle of X;7(6§07_17827B3)7u,)\ near (x,y) = (1,0).
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The slow-fast Hopf region

e For u=0and (B, B3) = (—1,1), the slow dynamics has a
singularity of multiplicity 1 at X = 1 and a singularity of
multiplicity 2 at X = —1.

° A’E X = 1 and near the parameter value
(Bo, Bz, B3, u) = (0,—1,1,0) we use a CX-normal form (see
Takens or Bonckaert):

{ vi = 6w

V.2 = —V, (20)

where —6211, v1 > 0, is ratio of eigenvalues of a persistent

hyperbolic saddle of X;7(6§07_17827B3)7u,)\ near (x,y) = (1,0).

e Following [De Maesschalck,Dumortier,2008] or [De
Maesschalck, Dumortier, Huzak,2013], we have:
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The slow-fast Hopf region

1 o 2
82T, (7, 7) = / “Lrund 4 oq),

at(y,7) nvi

near y = %

o The integral in the expression for 627 is the divergence
integral (multiplied by 62) calculated in the normal form
coordinates from {v, = 1} to {v; = 1} where we assume that
the orbit O (y, ) intersects the plane {v» = 1} in a point
with vi = a (7, 7). Clearly, oy is a Ck-diffeomorphism with

0‘+(%=0707 —1,1,0,A) =0 and Bg‘}_j < 0.
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The slow-fast Hopf region

1 _ 2
82T, (7, 7) = / “Lrund 4 oq),

o (}_/77—) ivi

near y = %

o The integral in the expression for 627 is the divergence
integral (multiplied by 62) calculated in the normal form
coordinates from {v, = 1} to {v; = 1} where we assume that
the orbit O (y, ) intersects the plane {v» = 1} in a point
with vi = a (7, 7). Clearly, oy is a Ck-diffeomorphism with

0‘+(%=0707 —1,1,0,A) =0 and ag‘}_j < 0.

@ The O(1)-term is d-regularly CX in (¥, By, Bz, B3, u, \), i.e.
O(1) and all its derivatives up to order k w.r.t.
(¥, Bo, Bz, B3, u, \) are continuous including at 6 = 0.
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The slow-fast Hopf region

° A’E X = —1 and near the parameter value
(Bo, Ba, B3, u) = (0,—1,1,0) we have a C*-normal form (see
Takens or Bonckaert):

Vi —62h(vy,7) (21)
Vo = W,

where h(v1,0,0,—1,1,0,\) has a zero of multiplicity 2 at
Vi = 0.
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The slow-fast Hopf region

° A’E X = —1 and near the parameter value
(Bo, Ba, B3, u) = (0,—1,1,0) we have a C*-normal form (see
Takens or Bonckaert):

Vi —62h(vy,7) (21)
Vo = W,

where h(v1,0,0,—1,1,0,\) has a zero of multiplicity 2 at
vi = 0. Similarly, we find that

1 —1+62@(v1,7)
8T (7,7 :/ on dvi + O(1),
.7) o (7 h(v1,7) (1)

near ¥ = 3. The orbit O~ (7, 7) intersects the plane {v> = 1}
in a point with vi = a_(y, 7). The function a_ and the
O(1)-term have the same properties like .y and the
O(1)-term in the expression for 627 .
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The slow-fast Hopf region

@ Thus, we get

0, (1—nd)%(y,7)
g 0_( 7 viay(y, )
(1- 82 (a(7,7),7) %= (7. 7)
- WMo (,7),7) o).

near y = % Using the above expression and the properties of
a+ and h, we finally get

_ Bo+Bi(y — 3)+ O((7 — 3)%)
via (v, 7)h(a-(y,7),7)
where 5o = O(0, By, B +1, B3 — 1, u) and

20T

ay(
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The slow-fast Hopf region

@ and

Oa_ 1

0 1
o (57 07 Oa _17 17 07 )‘)67)—/(57 07 Oa _17 17 07 )‘)

dy
aF 0(5, éo, B, +1,B;—1, u).

Br=—11
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The slow-fast Hopf region

@ and

Oa_ 1

0 1
o (57 07 Oa _17 17 07 )‘)67)—/(57 07 Oa _17 17 07 )‘)

dy
aF 0(5, éo, B, +1,B;—1, u).

Br=—11

@ Clearly, the coefficient f; is strictly negative. From this
together with (22) and Rolle’s theorem we conclude that %

has at most 1 zero (counting multiplicity) near y = %
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The slow-fast codimension 3 saddle/elliptic region

@ We consider

X=y
y=—xy+ e(r4Bo +PBix + rPBox® &+ r® 4+ x* + x*G(x, \)
+y?H(x, y, /\))'
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The slow-fast codimension 3 saddle/elliptic region

@ We consider

X=y
y=—xy+ e(r4Bo +PBix + rPBox® &+ r® 4+ x* + x*G(x, \)
+y?H(x, y, /\))-

Theorem

Let B3 = +1 or B3 = —1. There exist a neighborhood V of
(x,y) =1(0,0), ro > 0 and a (By, B1, Bz)-neighborhood Us of the
origin such that X, g, » has at most in V for each
(6, By, B1, B, r, )\) € [0, M] x Uz x [0, ro] x A.

N
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The slow-fast codimension 3 saddle/elliptic region

@ It is sufficient to consider the following singular perturbation

system:

x=jy
5= iy E(Bo T BiR+ B £ %+ 7+ ux®G(uR, \)

+72H(uR, 1?7, )
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The slow-fast codimension 3 saddle/elliptic region

@ It is sufficient to consider the following singular perturbation

system:

x=jy
5= iy E(Bo T BiR+ B £ %+ 7+ ux®G(uR, \)

+72H(uR, 1?7, )

@ The contact point (x,y) = (0,0) can produce at most 2 limit

).

cycles (
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The slow-fast codimension 3 saddle/elliptic region

@ It is sufficient to consider the following singular perturbation

system:
x=jy
5= iy E(Bo T BiR+ B £ %+ 7+ ux®G(uR, \)

+72H(uR, 1?7, )

@ The contact point (x,y) = (0,0) can produce at most 2 limit

cycles ( ).
@ In the saddle case, there are no detectable canard limit cycles
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The slow-fast codimension 3 saddle/elliptic region

@ It is sufficient to consider the following singular perturbation

system:
x=jy
5= iy E(Bo T BiR+ B £ %+ 7+ ux®G(uR, \)

+72H(uR, 1?7, )

@ The contact point (x,y) = (0,0) can produce at most 2 limit

cycles ( ).
@ In the saddle case, there are no detectable canard limit cycles

(' = x*(1+ O(x)))
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The slow-fast codimension 3 saddle/elliptic region

@ It is sufficient to consider the following singular perturbation
system:

y
5= iy E(Bo T BiR+ B £ %+ 7+ ux®G(uR, \)
+72H(uz, 27, )))

X

@ The contact point (x,y) = (0,0) can produce at most 2 limit
cycles ( ).

@ In the saddle case, there are no detectable canard limit cycles
(' = x*(1+ O(x)))

@ In the elliptic case, the slow dynamics is given by:

X' = By + Box + %*(—1 + X + ux>G(ux, \))
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The slow-fast codimension 3 elliptic region

@ There are 3 types of limit periodic sets:
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The slow-fast codimension 3 elliptic region

@ There are 3 types of limit periodic sets:

© the contact point: at most 2 limit cycles
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The slow-fast codimension 3 elliptic region

@ There are 3 types of limit periodic sets:

© the contact point: at most 2 limit cycles
Q Tz, x €]0,xg[: at most 2 limit cycles
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The slow-fast codimension 3 elliptic region

@ There are 3 types of limit periodic sets:
© the contact point: at most 2 limit cycles
Q Tz, x €]0,xg[: at most 2 limit cycles
© Tx.: at most 2 limit cycles




Quartic Liénard equations with linear damping

The slow-fast codimension 3 elliptic region

@ The slow divergence integral

v2y wdw

1
I(7, B1, Ba, u, A :/ , 7 €10, =3[,
(y 1 2 ) _\/27 d(W, B]_,Bz,u,)\) y ] 2 R[

becomes oo — oo as (Bi, B2) — (0,0). The function
d(x, By, By, u, \) is the right hand side of the slow dynamics.
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The slow-fast codimension 3 elliptic region

@ The slow divergence integral

wdw

I(y, B1, B A v
) ) 7u7 -
(y b ) /;\/27}7 d(W> B1, By, u, )‘)

_ 1_
y Y E]O’ EXI%[v
becomes oo — oo as (Bi, B2) — (0,0). The function
d(x, By, By, u, \) is the right hand side of the slow dynamics.

@ As shown in [De Maesschalck, Dumortier, 2010], it is better
to deal with 52% which is well approximated by the (well
defined) derivative of the slow divergence integral

O Br, By, \) ~2y27(B2 + 27 + u0((v25)?))

dy

N d(\/2_, Bl, BQ, u, )\).d(—\/2_, Bl, 52, u, \) '




Quartic Liénard equations with linear damping

The slow-fast codimension 3 elliptic region

° CIearIy for any fixed small > 0 we have that
(y, B, By, u, )\) is strictly negative for all y € [u, 1 sz ]
and A € A, by taking the parameter (B, B, u) sufficiently
small.
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The slow-fast codimension 3 elliptic region

° CIearIy for any fixed small > 0 we have that
(y, B, By, u, )\) is strictly negative for all y € [u, 1 sz ]
and A € A, by taking the parameter (B, B, u) sufficiently
small.
@ Thus (%L/ has no zeros on the interval [11, 3X3 — p] under the
given conditions on the parameters, and, we find that the set
I'; produces at most 2 limit cycles.
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Quartic Liénard equations with linear damping

The slow-fast codimension 3 elliptic region

° CIearIy for any fixed small > 0 we have that
(y, B, By, u, )\) is strictly negative for all y € [u, 1 sz ]
and A € A, by taking the parameter (B, B, u) sufficiently
small.

@ Thus (%L/ has no zeros on the interval [11, 3X3 — p] under the
given conditions on the parameters, and, we find that the set

U}_,G[# 152 4] I'; produces at most 2 limit cycles.

@ We have to study separately the cyclicity of r1 %2 (Takens

normal forms).




Future Research

Slow-fast and regular codimension ¢ bifurcations, £ > 5

@ Find the number of limit cycles in

X=y
{ y = —(ao + X)y + 6<b0 + bix + ...+ bg,lxefl =1 XZ>,

where (ao, bo, ..., br—1) ~ (0,0,...,0).
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