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Local normal form at each saddle point

x
@
@x
¡ y(r+ :::)

@
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r2R>0

Dulac map

D(x)=xr(1+ :::)



Breaking parameter for saddle connections

p
q

a



The essential part of the �rst return map is given by

P (a; r; x)= (((xr1+ a1)
r2+ a2)

r3+ ���)rn+ an

This is a real analytic function in the domain a2Rn; r 2R>0
n and

x2 I(a; r)

where I(a; r)�R is an open interval of the form (b;+1) de�ned by the conditions

x> 0

xr1+ a1> 0

(xr1+ a1)
r2+ a2> 0; ::::



Fixed point counting problem (Roussarie's question)

Given n> 1, we consider the function

P (a; r; x)= (((xr1+ a1)
r2+ a2)

r3+ ���)rn+ an

with parameters a2Rn; r 2R>0
n .

We want to estimate the number of isolated real solutions x2 I(a; r) of

F (a; r; x)=P (a; r; x)¡x=0

UNIFORMLY on the parameters a; r.

Let

Fix(n)= sup
a;r

fisolated solutionsx2 I(a; r) of F (a; r; x)= 0g



Easy cases

Fix(1)=2

r > 1

Fix(2)=3

¡0.01516+(0.0042592+x2)1/3¡x=0 (has three solutions)



For n=3:

Fix(3) = 5 (This is quite hard to obtain..)

Upper bound for Fix(n):

Khovanskii Fewnomials Theory:

Fix(n)6 2n(2n¡1)(n+1)2n (Gabrielov)

Quite �unrealistic�: It gives Fix(3)6 1.3� 107

The function F (x; a; r) lies on the o-minimal structure Ran;exp



Derivation-division algorithm

A variant of Descartes' rule of signs (based on Rolle's theorem)

for n=1

a+xr¡x

+@

rxr¡1¡ 1

+@

r(r¡ 1)xr¡2 )div r(r¡ 1) is non¡ vanishing if r=/ 1

There can be an in�nite number of solutions, precisely when a=0 and r=1 (Center conditions)



Derivation-division algorithm for n=3 (5 steps)



Quite good results for n6 4....

n dd(n) Fewnom(n) Exact value of Fix(n)
1 2 8 2
2 3 5184 3
3 5 �1.3� 107 5

4 13 �1.0� 1014 ?

5 �65000 �2.0� 1021 ?

Unfortunately.....

the derivation-division algorithm gives a bound that grows like....

TheAckermannFunction !!!

(thanks to the Online Encyclopedia of integer sequences) dd(n)=A(n+1; 1)

dd(6)� 222
2
���

(65000 times)



In fact, it would be interesting to obtain good

Lower bounds

for Fix(n).

Why? This �toy models� lie very far from the �algebraic world� (zeros of Abelian integrals,
perturbation of centers, etc), and perhaps they can give better lower bounds for Hilb(n).

(Using a very easy inductive argment, we can show that Fix(n) grows at least linearly with n)



Application: A generalized Chebishev system whose span contains F (a; r; x) :

F (a; r; x) is a solution of a Lu=0

L=
d
dx

1
�s

d
dx
��� d
dx

1
�1

where �1; :::; �r are positive functions on the appropriate interval I .

A basis of solutions is given by �xing an x02 I (say x0=1) and inverting L

m1= �1; m2= �2

Z
x0

�2; ::::; ms= �1

Z
x0

�2

Z
x0

���
Z
x0

�s

For instance, for F = axr+ bx we obtain

m1=x; m2=x

Z
xr¡2=

8>><>>:
x (xr¡1¡ 1)/(r¡ 1) ; r=/ 1

x ln(x) ; r=1

And F = c1m1+ c2m2, where c1=F (1)= a+ b, c2=
1

xr¡2
d

dx

1

x
F (1)= a(r¡ 1)



axr+ bx=(a+ b) x||{z}}
m1

+(r¡ 1)a x
xr¡1¡ 1
r¡ 1||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
m2

We can compute the bifurcation diagram for small values of n (Mardesic: topologically the same
as the usual catastrophes).

Interesting: For n> 3, there is not enough freedom to get the full catastrophe .

(The ciclicity of the origin is 3 (Mourtada), which smaller than the maximal number of possible
global �xed points Fix(3)= 5).



axr+ bx=(a+ b) x||{z}}
m1

+(r¡ 1)a x
xr¡1¡ 1
r¡ 1||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
m2

Center conditions: (a+ b)= 0 and (r¡ 1)a=0 () (r=1^ a=¡b)_(a=0; b=0)

More generally, if we expand

F =(((xr1+ a1)
r2+ a2)

r3+ ���)rn+ an¡x

as F =
P
ckmk, the coe�cients c1; :::; cs are polynomials in Z[a; r] which give

the center conditions.

P

P = id

Center problem: �Compute� the algebraic variety Vn=V(c1; :::; cs)�Ra;r
2n



Structure for the (pseudo) group of power-translations

(Harvey Friedman question - 70')

Consider the following subgroups of Homeo(R;+1)

TR= fta:x!x+ a; a2Rg

PQ>0= fpr:x! xr; r 2Q>0g (positive rational exponents )

and let G= hTR; PQ>0i be the group generated by �nite compositions of elements of T and P

w= tan prn���ta2 pr2 ta1 pr1|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
basicword

: x! (���(xr1+ a1)
r2+ a2)

r3���)rn+ an

Basic simpli�cations rules: prps= prs, ta tb= ta+b p1= t0= id

Is it G isomorphic to the free product TR ?PQ>0 ?

In other words, if r1; ::::; rn=/ 1 and a1; :::; an=/ 0 then w is not the identity homeomorphism.



This is much harder than it seems.... (some incomplete proofs where published)

(The original question of Friedman was for P3Z = fx!x3; x!x1/3; :::g)

White (1988)

Yes for integer powers of a �xed prime number p> 2.

Adeleke, Glass, Morley (1992)

Yes for T and Podd;>0= fx!xp/q; p and q odd positive coprime integersg

The case of power maps with even exponents x! x2 turns out to be much harder...

Cohen (1994)

Yes! G= hTR; PQ>0i is isomorphic to the free product TR?PQ>0.

(45 pages of di�cult Galois' theory).



Higman question

The same question for positive real powers

PR>0= fx!xr; r 2R>0g

Do TR and PR>0 generate their free product?

Motivation for group theorists: It not so easy to obtain �natural� explicit examples of free
groups.

Nice application (for holomorphic foliations):

For any positive integers p=/ q, the subgroup of Di�(C; 0) generated by

z! z

(1¡ zp)1/p
and z! z

(1¡ zq)1/q

is free. This is used to generate wild centers for analytic vector �elds

(no �reasonable� �rst integral can exist).



(Very) basic idea of the proof for hPQ>0; TRi:

Is there two di�erent to express a rami�ed covering using powers and translations?

Assume r1; :::; rn; s1; :::; sm are positive integers

pr1ta1:::prntan

P1

ps1tb1:::psmtbm



(Very) basic idea of the proof for :Compare the rami�cation points

Is there two di�erent to express a rami�ed covering using powers and translations?

Assume are positive integers

pr1ta1:::prntan

P1

ps1tb1:::psmtbm

critical points



The procedure is similar to a classical Theorem of Ritt ¡!

The structure of the monoid de�ned by univariate polynomial maps, where the operation is the
composition.

A polynomial P is indecomposable if deg(P )> 2 and P cannot be written

P =R �S

with deg(R);deg(S)> 2.

Ritt: Given indecomposable polynomials Pi; Qj, suppose that the identity

P1 � ��� �Pk=Q1 � ��� �Ql

holds. Then k= l and we can go from one decomposition to the other through a sequence of
identities

zn � zrg(zn)= zrg(z)n � zn; Tm �Tn=Tn �Tm

Tn is the nth Tchebyshev polynomial T ((z+1/z)/2)= (zn+1/zn)/2.



For n=2: T2(z)= 2z2¡ 1 is �expressible� in hPQ>0; TRi and we have

T2

�
z+

1

z

�
= z2+

1

z2

i.e. there are two di�erent ways to express the same degree 4 covering P1!P1.

(This is one of the subtle parts in the Cohen's proof).

Both Ritt's and Cohen's proofs use the imprimitivity structure of the monodromy group of these
coverings.



P =R �S

S

R
P

mon(P )�mon(R) omon(S)

the monodromy of P is a subgroup of the wreath product of the monodromy of R and S



In general, the monodromy of the covering map associated to a word

pr1ta1:::prntan

with r1; :::; rn2Z>0 is a subgroup of the wreath product CnoCn¡1o���oC1, where each Ci is a
cyclic subgroup.

It is better to see this as the group of automorphisms of a rooted tree.

¡1 0

1

¡1

1

t21

t22 t32

t31

t21

t22

T2 �T2 �T2T2 �T2

t11 t11

1 1

¡1

D4 D8

T2(z)= 2z2¡ 1

Group:C2

In the above drawing, one realizes D2, D4 and D8 as subgroups of C2, C2 oC2 and C2oC2oC2,
respectively, using the monodromy of the Chebyshev polynomials





De la Harpe book's problem: Proof Cohen's theorem using some �Ping-Pong� type argument

In fact, we can see Cohen's proof as a sort of Ping-Pong in �eld extensions:

Consider an �irreducible� word:

w= pr1ta1:::prntan

We want to show that w(x) is not the identity. This is obvious if all ri are integers.

Assume that at least one of the ri is not an integer.

Then, Cohen proves that the algebraic �eld extension

F0=C(x)�C(x;w(x))=Fw

is strict. (very ingenious inductive argument on the length of w)

We call Fw the Cohen extension de�ned by w.



Naïve approach using asymptotic developpements....

citation from Ritt's 1922 paper



What about allowing negative exponents?

D
PQ; TC

E

Has no-longer a free product structure.

For instance, the following identity holds:

i+(i+(i+x¡1)¡1)¡1�x

If we want to add the inversion z! 1/z, it is more natural to work with PSL(2;C).



A normal form result for the groupoid G of germs generated by

PSL(2;C) and Exp

(we need to consider groupoids since the normal form depends on the choice of branch of the
logarithm)

Exp is generated by {e; l} (with its multiple branches)

PSL(2;C) is generated by the subgroups

W=fw: z 7! 1/zg; (inversion)
T=fta: z! z+ a : a2Cg (translations)
S=fs�: z!�z : �2C?g (scalings)

We consider the subgroups

H0=T o fs¡1g; H1=S o fwg

and choose right transversals T0; T1 for H0; H1, respectively (i.e. a collection of unique repre-
sentants for the right cosets which contains the identity).



For instance.....

we use the (well-known) presentation of PSL(2;C), with relations such as

1

a+
1

z

=¡ 1

a2

 
¡a+ 1

z+
1

a

!
; 8a2C n f0g; z 2C;



Normal forms: Think that we have a HUGE alphabet where each letter corresponds to a germ
of the exponential, log, translation, scaling or inversion....

DEFINITION: A (T0; T1) normal form in G is a word (more precisely, a path) of the form

g= g0 h1 g1 ���hn gn; n> 0

where

i. g0 lies in PSL(2;C)

ii. each hi is either e (exponential) or l (logarithm)

iii. if hi= e then gi2T0

iv. if hi= l then gi2T1

v. There are no subwords of the form el or le

NF(T0;T1) is the set of such normal forms.

There is an obvious map

':NF(T0;T1)¡!G

(realization of a path as a germ in the groupoid)



It is easy to prove that this map is surjective, using the obvious relations in G

For example: for � 2PSL(2;C), if we write �=H0h, with h2T0 (right transversal)

e ta= sexp(a)e

es¡1=we

���eH0h���= ���H1eh���

(we notice that this is very similar to the normal form for the HNN extensions...)

Further relation: le= t2�ik

(k depends on the choice of branch of logarithm)



Unfortunately, ' is not injective

For instance, recall that the following identity holds

T2

 
z+

1

z

2

!
=
z2+

1

z2

2

where T2(z)= 2z2¡ 1 is the second Chebyshev polynomial.

This implies that the following normal form

s¡1 t2wt¡1/4p2 t¡1/2wt1p2t¡1wt1/2p1/2t1/4wt¡2p1/2t2

is mapped to the identity germ by '. (but perhaps this is the only type of counterexamples...)

We use the notation:

p�= es�l; �2C?

which represents the power map z! z�



Two ways of writing the second Chebyshev polynomial

z! z+1/z

2

z! z2

z! 2z2+1

z! z+1/z

2

A relation involving double coverings P1!P1



Theorem (Normal Form): ' is injective when restricted to TAME normal
forms.

What is TAME?

A NF is algebraic if it has the form

g= �0p1�1p1����npn

where pi are power maps with rational exponents (lying in 
\Q) and �i2T1 (transversal toH1)

Further, g is a�ne if each �i is an map

Algebro-transcendental decomposition

Now, each normal form g can be uniquely decomposed as

g= a0 
1 a1 ��� 
m am

where: the ai are algebraic subpaths and 
i= e; l or p� with �2
 nQ.

(to guarantee uniqueness, we require that there are no subpaths of the form es� l...)



m is called the height of g.

Def. g is tame if either height(g)=0 and g is a�ne or else for each algebraic subpath bounded by

[e; l]; [l; e]; [l; p]; [p; e]; [p; p]

is of a�ne type.

Main theorem: if g is tame (and not the identity normal form) then '(g) is not the identity
germ.

Idea of the proof of the main theorem: For height(g)=0 this is Cohen's theorem.

For m = height(g) > 1, we consider the chain of �eld extensions (starting from F0 = C(x))
obtained by adding successive germs

g= a0
Cohentype


1
transcendentaltype

a1
Cohentype

��� 
m
transcendentaltype

am
Cohentype

And we prove (inductively) that trans:degFg/F0=m

For this last part, we use in an essential way Ax's theorem:



Let k�K be �elds of char 0:

Theorem(Ax)

Suppose that K0 is a �eld such that k�K0�K and trans:degk(K0)=n for some n� 1. Let
� 2Derk(K) be a derivation such that Const(�)= k, and suppose that

!1; :::; !n2
k1(K)

are closed 1-forms de�ned over K0 satisfying !i(�) = 0, for i = 1; :::; n. Then !1; :::; !n are
linearly dependent over k.

We apply this result in the case where the 1-forms are

!=
dx
x
¡ dy (x= ey) or !=

dx
x
¡�dy

y
(x= y�); �2/Q

Geometric interpretation: The germ of associated to g is is a local leaf of a 1-foliation in some
(P1)m, de�ned by some derivation @ in the kernel of these !. We compute the dimension of
the Zariski closure of such a leaf.



Assume that k is algebraically closed.

Theorem(Ax) Suppose that there exists nonzero x1; :::; xm2K and elements e1; :::; em2 k not
all zero such that the di�erential form X

i=1

m

ei
d xi
xi

is exact. Then, x1; :::; xm satisfy a power resonance relation over k.

i.e. there exists integers (not all zero) k1; :::; km such that

x1
k1::::xm

km= c; for some c2 k

Geometrically, this means that the leaf of the foliation (de�ned by g) lies in this monomial
hypersurface. This contradicts some inductive hypothesis based on the Cohen extensions...



In fact, we can consider more general foliations...

log¡Lambert function

z! z+ ln(z)

corresponds to a leaf of �
1+

1

z

�
dz= dw

For instance, this allows us to include the �ow map of one-dimensional the one-vector �elds

wk;�=
xk+1

1+�xk
@
@x

; k 2Z; �2C

Consequence: Suppose that a di�eo tangent to the identity is expressed as

x! exp(t1wk1;�1)���exp(tnwkn;�n)(x) (�nite composition of time t�owmaps)

then it cannot be the identity except if there some obvious inner simpli�cations (e.g. ti=0)



General formulation (?) Compare the automorphism group of certain foliations with the
automorphism group of one of its (transcendental) leafs.

E.g. The function x= ey is a leaf E of

!=
dx
x
¡ dy

and the only relations (in G)

es¡1=we and etb= seb e

correponds to maps from E to E which comes from automorphisms of F!.



First application

Consider the following subgroups of Homeo(R;+1)

T = fx!x+ a; a2Rg

S+= fx!�x; �2R>0g

Exp= fx! exp(x); x! ln(x)g

Let A�+=T oS+ be the subgroup of positive a�ne maps. Let GA�+;Exp be the subgroup

generated by A�+ and Exp.

The conjugation by the exponential de�nes an isomorphism

�:T ¡!S+

(as subgroups of A�+)...



HNN extensions

Given a group G and an isomorphism �:H!K between two subgroups H;K�G which is not
inner.

there exists a group G0 containing G and an element s2G0 such that

�(a)= sas¡1; 8a2H

(i.e. the homomorphism � becomes inner in G0). s is the stable letter.

Notation: G?�

In our case: There is a surjective morphism

�:A�+?�!GA�+;Exp

mapping the stable letter to the exponential map.

Theorem: � is an isomorphism.



Graph of groups:



Second application

A ��nitary� version of Lemme 1:

We consider the following groups

G~ =

(
f(x)=x+

X
k>1

akx
¡k: ak2C

)

(formal di�eomorphisms tangent to identity at 1 with no translation term), and

H~ = expG~ exp¡1 (exp¡1= log)

(this makes sense as a transseries e.g. for f(x)=x+ ax¡k we have

exp f log (x)= exp(ln(x)) exp(1+ a ln(x)¡k)

We can see G~ and H~ as subgroups of the group T>1 of in�nite large transseries (Ecalle)

(we have the right to compose such transseries, take inverses, etc).



Question: Consider the subgroup

hG~ ; H~ i�T>1

Is it isomorphic to the free product G~?H~ ?

Equivalently, for arbitraryf1; ::::; fn2G~ n fidg,

f1 (exp f2 exp¡1) f3 (exp f4 exp¡1):::(exp fnexp¡1)=/ id

Special case: G�nit�G~ (�nitary subgroup)

G�nit=

�
f(x)=Exp

�
a1x

¡k1x
@
@x

�
:::Exp

�
anx

¡knx
@
@x

�
(x): ki2Z>2; ai2C

�

(Exp
�
tx¡kx

@

@x

�
(x)=x(1+ tx¡k)1/k - tangent to identity to order ¡k+1). We de�ne

H�nit= expG�nit exp¡1

Theorem:


G~�nit; H~�nit

�
is isomorphic to their product

We can ask similar questions replacing exp by x!x� or Lambert maps....



Testing for freenes in PSL(2;C): The �particular case� of 2-parabolic subgroups

Any (non-commutative) subgroup with two parabolic generators is conjugated to

Pa=
D
z! z+ a; z! z

1+ az

E
; a2C?

We say that a is a free point if Pa is a free group.

Set of free points in the C� plane, �= a2/2 (dark colored) (picture by J. Gilman)



Unifying setting (Lattes maps and more...)

Finite quotient of a�ne maps (Milnor)

C/� C/�

P1 n E

� �

f

� �nite covering

'(x)= ax+ b

P1 n E

Example: �=2�Z, '(x)=nx, �(x)= exp(ix), and f(z)= zn (power maps)

�=2�iZ, '(x)=nx, �(x)= 2 cos(x), and f(x)=Tn(x) (Chebyshev pols)

Example: �=Z+ iZ, '(x)= (1+ i)z, �= }� and f = �'�¡1(z)=
(z+1/z)

2i

(� of rank 2 ¡! Lattes maps)



A new relation involving }-function

z! z+1/z

2

z! z+1

z¡ 1z! z+1

z¡ 1

z! z2

z! }(z)

z!¡iz

z! }(z)

z! (1+ i)z


