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Abstract

Near a regular point of a complex, scalar and �rst-order ODE, a local system of solutions de�nes
a trivial �bration disk × disk. The holomorphic foliation associated to the ODE is obtained by
patching up all these local systems, giving a partition of the ambient space into connected Riemann
surfaces called leaves (maximal solutions) and singularities of the ODE. There is no reason why
this object should continue to be a locally trivial �bration near a singular point, because nothing
guarantees that neighboring leaves all have the same topology.

Of course in the simplest example, where the foliation is de�ned by the level sets of a holomor-
phic submersion H :

(
C2, 0

)
→ (C, 0), the theorem of J. Milnor ensures that H is a holomorphic

�bration with total space a well-chosen complement U of the singular �ber H−1 (0). In that case
the topology of the other leaves is constant, and the natural morphism π1

(
H−1 (cst)

)
→ π1 (U)

is injective: the �holes� in the leaves can only be caused by a set of �nitely many �special� leaves
(separatrices). Any foliation satisfying this property is deemed incompressible.

D. Marín and J.F. Mattei have generalized Milnor theorem to most singular planar holomor-
phic foliations: under generic assumptions a germ of a foliation is incompressible. We will explain
the principle of their proof and how to weaken their assumptions down to an almost sharp char-
acterization of incompressible foliations, then use this study to exhibit examples of compressible
foliations.

While we understand how to guarantee incompressibility, it is not clear how the extra topol-
ogy can be accounted for in case of compressibility. We will observe on some examples that it
is produced by so-called movable singularities (poles of the solutions which do not come from
singularities of the ODE). This explanation is satisfying only in a global context, for what does
it mean for a solution to �tend to ∞� when the ODE is only de�ned in a polydisk? In this talk
we propose to use compressibility failures to represent persistent movable singularities in a local
context, and we will present some (hopefully) convincing arguments in favor of such a de�nition.

1 Context and �rst examples

Everything takes place in
(
C2, 0

)
in the holomorphic category. The �rst part of this course, regarding

Marín�Mattei theorem, is a survey of the paper [Tey15] (in French).

1.1 Milnor's theorem

1.1.1 Statement

Consider a holomorphic submersion

f : B −→ C

with a singular �ber (maybe not irreducible) S = f−1 (0). Here f is holomorphic on a (neighborhood)
of the Euclidean closed ball cl (B) ⊂ C2 with radius so small that the �bers of f are transverse to ∂B.

Theorem (Milnor, [Mil68]). There exists a family of Milnor tubes (Tη)η>0 around S, that we can
take as inverse images Tη := f−1 (ηD) for small η > 0, such that for all z 6= 0 in ηD:

π1

(
f−1 (z) ∩ Tη

)
↪→ π1 (Tη\S) ' π1 (B\S) .
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1.1.2 Monodromy

Here we discuss brie�y the example

f (x, y) = xpyq

for coprime positive integers p, q. In that situation the singular �ber is the union S = {x = 0}∪{y = 0}
of two lines.

1.2 Holomorphic foliations

We use the duality between vector �elds and 1-form �elds in the planar situation. (It is customary to
also identify vector �elds with derivations.)

X =

[
A
B

]
! A

∂

∂x
+B

∂

∂y
! ω = Ady −Bdx

The identity ω (X) = 0 means that the integral curves ofX, which are the range of maximal trajectories
solving {

ẋ (t) = A (x (t) , y (t))

ẏ (t) = B (x (t) , y (t))
, t ∈ (C, 0) ,

coincides with the graph of a solution to the di�erential equation

A (x, y)
dy

dx
= B (x, y) .

The geometric object obtained by partitioning the space into such integral curves γ is called a holo-
morphic foliation. For convenience we write FX or Fω the induced foliation.

• Either γ = {pt} is a stationary point of X: a singularity of FX . Their set is written Sing (FX).

• Either γ is non-constant, it is a Riemann surface: a leaf of FX .

In the holomorphic world we can always assume that codim Sing (FX) = 2, so that Sing (FX) is
discrete for planar foliations.

1.2.1 Local structure near a regular point

Because of the theorem of vector �eld recti�cation, if X (p) 6= 0 then there exists a holomorphic change
of coordinates

Ψ :
(
C2, 0

)
−→

(
C2, p

)
conjugating X to, say, ∂

∂x :

Ψ∗X := DΨ−1 (X ◦Ψ) =
∂

∂x
.

What it means is that the leaves of the foliation Ψ∗FX are given by the discs

{x ∈ εD, y = cst}

or, in other words, that the function

f : (x, y) 7−→ y

is a �rst-integral of Ψ∗X. Therefore, near a regular point the leaves of FX are given by the level sets
of the holomorphic submersion Ψ∗f .
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1.2.2 Elementary singular points

Take a stationary point p of X, say p = (0, 0). The linear part of X can be identi�ed with a matrix

(ax+ by + . . .)
∂

∂x
+ (cx+ dy + . . .)

∂

∂y
!

[
a b
c d

]
=: D0X.

Its spectrum {λ1, λ2} ⊂ C contains dominant data about the dynamics of X near p.

De�nition.

1. When D0X is not nilpotent, say λ2 6= 0, we de�ne the eigenratio of X at p as the quotient

λ :=
λ1

λ2
.

2. In that case, we say that p is an elementary singularity of X if λ /∈ Q>0. This covers the following
cases:

(a) hyperbolic singularity: λ /∈ R;
(b) node singularity: λ > 0;

(c) saddle singularity: λ < 0 (quasi-resonant when λ /∈ Q);
(d) saddle-node singularity: λ = 0. The λ2-eigenspace is called the strong eigendirection.

1.2.3 Reduction

Every singularity p ∈ C2 of a holomorphic foliation F can be �reduced� through a proper rational map
(see e.g. A. Seidenberg algorithm [Sei68])

E : M→
(
C2, p

)
where M is a conformal neighborhood of a tree E−1 (0) of divisors P1 (C) with normal crossings (at
points called corners). The pull-back E∗F only possesses reduced singularity. It may also happen
that E∗F admit dicritic components: the foliation is regular and transverse to some divisor.

An important ingredient to anything pertaining to foliations F with an invariant curve S is the
Camacho-Sad index of an elementary singular point p. Generically speaking, the index CS (F, S, p) is
given by the eigenratio λ1

λ2
of F at p if S is the eigendirection of λ2.

Theorem (Camacho-Sad index formula [CS82]). If F is a reduced foliation on a neighborhood V of a
compact invariant curve S, then ∑

p∈Sing(F)

CS (F, S, p) = chern (S ↪→ V) .

1.2.4 Movable singularities in polynomial foliations: Painlevé property

Take two polynomials P, Q and consider the 1-form ω := Pdy −Qdx.

Example. Saddle-nodes xdy
dx = yk+1.

De�nition. We say that the polynomial di�erential equation ω = 0 has the Painlevé property if
the analytic continuation (along some path) of any solution x 7→ y (x) may only have singularities of
the following type:

• either the singularity (x∗, y (x∗)) is a singularity of Fω (a �xed singularity);

• or locally y (x) = a
x−x∗ + holomorphic (a movable singularity which is moreover a pole of order

1).

More generally we may speak of a rami�ed movable pole or essential movable singularity etc.
by providing corresponding local expressions for the analytic continuation near x∗.
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Remark. Such singularities are deemed movable because the location of x∗ is a non-constant function
of the leaf.

Theorem. [Lor05, Pai73]

1. If all solutions to ω = 0 have no movable singularity then the equation is a�ne, i.e. degQ ≤ 1.

2. If ω = 0 has the Painlevé property then it is (at most) a Riccati equation, i.e. degQ ≤ 2.

3. There are no essential movable singularities.

1.3 Why go to complex domain?

The topology of leaves is richer: it encodes more information. Such as:

1. the monodromy of linear systems: Galoisian considerations;

2. periods of 1-forms: isosynchronicity problem for centers;

3. obstructions to solve (co)homological equations;

4. ...

2 Marín�Mattei's theorem: incompressible foliations

In [MM08, MM14], D. Marín and J.�F. Mattei have found su�cient conditions for a foliation to
be incompressible.

De�nition. F stands for a germ of a holomorphic foliation near a singular point (0, 0), say on a small
Euclidean ball B. We say that F is incompressible if there exists:

• a �nite union S ⊂ B of F-invariant, analytic curves containing the singularity, say S = {f = 0}
for some analytic f , called distinguished separatrices;

• a family of Milnor tubes (Tη)0<η≤η0 for S (as before: Tη = f−1 (ηD)), on which F is holomorphic;

• a neighborhood U of (0, 0);

such that:

1. U ⊂ Tη0 and the inclusion induces an isomorphism between fundamental groups π1 (U\S) '
π1 (T \S);

2. Tη ⊂ U for all η small enough;

3. for every leaf L of F|U\S the canonical morphism induced by ι : L ↪→ U\S

ι∗ : π1 (L) −→ π1 (U\S)

is injective.

Remark. Condition (1) means that the topology of the ambient space must be �as simple as possible�:
one is not allowed to take complicated neighborhoods to compensate for the potential complicated
topology of the leaves.
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2.1 Motivations: nonlinear monodromy

Incompressibility ensures the existence of a foliated universal covering: the universal covering

πU : Ũ\S → U\S

is also (by restriction) a universal covering for each leaf of F. The automorphisms group of this covering
then consists in symmetries of the foliation π∗UF, and therefore naturally acts on its leaves space Ω̃U :

mU : Aut (πU ) −→ Aut
(

Ω̃U

)
which is called the monodromy of (F,U ,S). The quotient ΩU := Ω̃U/mU can be canonically identi�ed
with the leaves space of F.

Heuristically, the analytic structure of the space of leaves up to di�eomorphism is in bijection with
the local analytic class of the singularity. D. Marín and J.-F. Mattei proved that the �germi�cation�
of (F,U ,S) as η0 → 0 is a complete modulus of local classi�cation for generic foliations [MM14].

If one wishes to endow ΩU with a structure of a (non Hausdor�) analytic variety, then one needs
the existence of a curve C (not necessarily irreducible) which ful�lls the following de�nition.

De�nition. A germ of analytic curve C (not necessarily irreducible) is a completely connected
transverse of F if there exists a pair (U ,S) in which F is incompressible and such that:

1. C\S is a smooth analytic curve transverse to the leaves of F;

2. SatF (U ∩ C\S) = U\S,

3. each leaf of π∗F intersects at most once each connected component of π−1 (C).

Observe that there always exists a curve C satisfying (1) and (2) [Lor10, p161]. A corollary of the
theorem of Marín�Mattei is the existence of such a curve C [MM08, Théorème 6.1.1, p900]

Remark. As for the linear context, it is expected that the non-linear monodromy carries Galoisian
information about solvability by quadratures of the underlying ODE.

2.2 Statement

Theorem (Marín�Mattei). [MM08, MM14] Every foliation whose singular reduction does not con-
tain any saddle-node or quasi-resonant, non-linearizable saddle [+ technical assumption about �dead
branches�] is incompressible.

Remark.

1. It is possible to describe explicitly a set S: it is the union of the closure of the separatrices of E∗F
crossing non-dicritic components of the exceptional divisor, plus a leaf per dicritic component.

2. The hypothesis about the local type of singularities is generic once the combinatorial data of the
reduction tree and the number of �nal elementary singularities is �xed.

End of �rst course

The principal aim of this course is to establish the following three theorems.

Theorem A. A germ of a saddle-node or a quasi-resonant saddle is incompressible.

One may then hope that Marín�Mattei theorem holds true in all generality. Unfortunately this is
not the case.

Theorem B. There exists singular, non-dicritic foliations which are compressible.

It is possible, though, to weaken the assumptions in Marín�Mattei theorem: incompressibility and
existence of a completely connected transverse will depend crucially on how the saddle-nodes are placed
and oriented in the reduction.
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Figure 1: A saddle-node in a corner: not strongly presentable

De�nition.

1. A foliation F is presentable if it is incompressible and admits a completely connected transverse.

2. F is strongly presentable if the strong eigendirection of any saddle-node in a (minimal) re-
duction of F never coincides with a divisor.

Theorem C. Every germ of a strongly presentable foliation is presentable.

Although this is not a criterion, failure to be strongly presentable should bring suspicion about
presentability. Completely characterizing presentable foliations seems to be a hard task, for these are
global constraints although strongly presentability only deals with local properties of the singularities.

2.3 Proof

We work in the reduced foliation E∗F which, for simplicity reasons, we just write F.
The construction consists in gluing together �nitely many pairwise distinct local blocks (Bα)α∈A,

each one containing an elementary singularity, with blocks covering the regular part. A result à la Van
Kampen allows to localize in the blocks Bα all the di�culty.

These blocks cannot be arbitrary: they must comply with the requirements we give below. Ad-
ditionally, they must possess one degree of freedom, related to their �size�, allowing to control the
resulting neighborhood of the special set S.

Blocks assembly is done by induction, by picking a component of the exceptional divisor then by
browsing through the reduction tree. We get to another component Dj+1 by passing through a corner,
and we arrive there with a outbound size speci�ed by the component Dj , and we assemble the blocks
living on Dj+1 to this one by adjusting their size.

All this is only partially correct, since some special regular blocks (those containing the so-called
�dead branches�, see below) do not possess a degree of freedom. A technical obstruction therefore
appears when Dj+1 is attached to at least two dead branches and does not have any other singularity
save for those shared with Dj . Therefore, the construction must start from Dj+1. Obviously, we
should not want more than one such component.

In the following sections we sketch the ingredients that ensures that Theorems A and C are true.

2.3.1 1-connectedness and localization of the proof

De�nition. [MM08, Dé�nition 1.2.2, p861]Let a foliation F be given on a domain U and let A ⊂ B
be subsets of U . We say that A is 1�connected in B (relatively to F) if for each leaf L of F and
all paths α from A and β of B ∩ L which are homotopic in B, there exists a path in A ∩ L which is
homotopic to both α in A and β in B ∩ L.

De�nition. [MM08, De�nition 2.1.1, p864]The notation ∂A stands for the closed set cl (A\int (A)).

1. We say that Bα is an adapted foliated block if:

(FB1) each connected component of ∂Bα is incompressible in Bα;
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(FB2) F is transverse to ∂Bα;
(FB3) F is incompressible in Bα;
(FB4) each connected component of ∂Bα is 1�connected in Bα.

2. We will say that the collection of adapted foliated blocks (Bα)α∈A is an adjusted assembly if:

• for every α, β ∈ A the intersection Bα ∩ Bβ is either empty or a connected component of
∂Bα and of ∂Bβ ;

• E
(⋃

α∈A Bα
)
is a neighborhood U of the singularity with a deleted special set S.

Here is the localization theorem.

Theorem. [MM08, Théorème 2.1.2, p864] If (Bα)α∈A is an adjusted assembly relatively to F then F
is incompressible in (U ,S).

2.3.2 Dead branches and initial component

De�nition.

1. A dead branch B of F is a maximal union of neighboring components of the exceptional divisor,
each one being of one the following types:

• there are at most two corners and no other singularity of F (a link of B);

• there is exactly one corner and no other singularity of F (the end of B),

• there is exactly one corner and one singularity of F (the anchoring component of B),

in such a way that B has exactly one end and one anchoring component. The incidence graph
of B is therefore a tree having the combinatorial structure of a chain.

2. An initial component of F is a non-dicritic component C of E−1 (0) to which is anchored at
least two dead branches and having a single additional singularity of F.

It is well-known [MM08, p866] that for a non-dicritic generalized curve (a foliation reduced by
the desingularization morphism of its separatrix set) there is at most a single initial component, which
allows for the inductive proof to work. Moreover this initial component has exactly two dead branches
anchored to it, one of which has an end which is the divisor being created by the �rst blow-up.

This property can be restated word for word in the case of strongly presentable foliations, which
allows to get rid of the [technical assumption about �dead branches�] in Marín�Mattei theorem.

Theorem. Let F be a germ of strongly presentable foliation, reduced by a minimal morphism E :
M→

(
C2, 0

)
. Then E−1 (0) contains at most one initial component.

When it exists, this component has exactly two dead branches anchored to it. Each corner singularity
are linearizable rational saddles. The end of one of these branches is the �rst divisor created by the
reduction.

Let us present examples of non-strongly presentable foliations having a lot of dead branches.

Example. Let us start with Fω1
(a resonant node):

ω1 (x, y) := (x− y) dx+ xdy .

The foliation is reduced after one blow-up and its reduction contains a single singularity: a saddle-node
in formal normal form t2dy − y (1− t) dt.

More generally one easily checks that for every n ∈ N>0 the 1�form

ωn (x, y) :=
(x
n
− yn

)
dx+ nxyn−1dy

is reduced after n blow-ups and its reduction is a dead branch with n components. When n > 1, the
last blow-up creates a divisor having a corner and a saddle-node in normal form

ω̂n (t, y) := t2dy + y

(
1− 1

n
t

)
dt

through which passes the strict transform of the unique separatrix {x = 0} of Fωn .
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B1

· · ·

· · ·

−1

−2 −2
−2

−2
−2

−2

−2

−j − 1

B2

Figure 2: An initial component. Numbers indicate the Chern class of the components.

−2 −2

−2

−1

S

Ŝ

· · ·

Figure 3: A dead branch obtained by reducing a single curve (bold).
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Example. Let us now explain brie�y how to build a foliation F having an initial component with
as many dead branches as we wish. We consider a neighborhood of a divisor D with Chern class −1
containing m ∈ N>0 singularities (pj)1≤j≤m, each one of which is locally conjugate to Fωj (given in
the previous example) and a resonant-saddle p0 which we describe below in more details. The divisor
D will be the �rst one created when reducing the foliation F.

After reduction of each pj , exactly m dead branches are anchored to D and its Chern class has
become

c := −1−
m∑
j=1

nj ∈ Z<−1 .

The resulting anchoring singularity of the dead branch at pj is a saddle-node whose strong direction
coincides with D: its Camacho-Sad index with respect to D is 0. Let us write ∆j its strong holonomy
(tangent-to-identity).

At p0 we put a resonant-saddle with linear part cxdy − ydx in a local chart where D = {x = 0},
whose holonomy along D

∆0 (h) = exp (2iπc)h+ · · · = h+ · · ·

is the inverse of ©m
j=1∆j . It is possible to �nd such a foliation near p0 because of the realization part

of Martinet�Ramis theorem [MR83].
The fact that all these local ingredients can be glued together to form the reduction of a foliation

in
(
C2, 0

)
follows from a slightly more general discussion than the one presented further down in

Section 2.4, but is nonetheless folklorally true (we refer to [Lor10] for details).

2.3.3 Adapted foliated block for non-degenerate elementary singularities

We will not go into full details, and content ourselves with proving that a solitary non-degenerate
elementary singularity is incompressible. The construction of a full-�edged foliated adapted block
containing this singular point can become technical, and can be safely ignored for these singularities.
The main point is that for any leaf L the trace of cl (L) on the boundary of a block is connected, which
guarantees 1-connectedness (FB4).

Up to change the local variables, we may assume that a foliation F with non-zero eigenratio λ is
induced by

ωR := λxdy − y (1 +R) dx

where R ∈ xC {x, y}. Let V be a polydisk ρ0D× r0D so small that:

• R is holomorphic on a neighborhood of cl (V);

• ||R||V < 1.

We consider the domain

V∗ := V\ {x = 0} ,

on which F is everywhere transverse to the �bers of Π : (x, y) 7−→ x, and go the universal covering

E : Ṽ −→ V∗

(z, y) 7−→ (exp z, y) .

Objects hatted with a �~� will indicate pulled-back objects in the universal covering, in particular we
use the projection

Π̃ : (z, y) 7−→ z .
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f<(z) = ln ρg

z∗

z∗ � θ
λ
jλj

2δ

Sλ(z∗; δ)

Figure 4: A stability beam (grayed-out region).

−
λ
jλj

fjy∗ exp
z−z∗

λ
j = rg

z∗

δ

f<(z) = ln ρg

Figure 5: The universal covering of a leaf passing through p∗ = (z∗, y∗) ∈ Ũ (complement of hatched

regions). The real line
{∣∣y∗ exp z−z∗

λ

∣∣ = r
}
stands for the trace on the boundary Π̃

(
Ũ
)
× rS1 of the

corresponding leaf for the linear foliation ω̃0.

Proposition. For each 0 < ρ ≤ ρ0 and 0 < r ≤ r0 we set U (ρ, r) := ρD × rD. Every leaf of
F̃ := E∗F|U(ρ,r) is simply connected.

Here the local separatrix set S of F coincides with B ∩ {xy = 0}, so that the Milnor tubes Tη are
simple to describe and they obviously satisfy the properties required by the incompressibility de�nition.
Therefore it only remains to prove the proposition for V := U (ρ, r).

De�nition. Being given z∗ ∈ Π̃
(
Ṽ
)
we call stability beam of vertex z∗ and opening π

2 > δ > 0 the

region of Ṽ given by

Sλ (z∗, δ) :=
{
z∗ − tθ λ

|λ| : |arg θ| < δ , t ≥ 0
}
∩ Π̃

(
Ṽ
)
3 z∗ .

The name of �stability beam� is justi�ed by the following lemma.

Lemma. Take ρ > 0 and r > 0 such that

M := sup
(x,y)∈U(ρ,r)

|R (x, y)| < 1

and let δ := arccos (M). Then for all p∗ = (z∗, y∗) ∈ Ũ , every path γ based at z∗ and included in
Sλ (z∗, δ) lifts through Π̃ in the leaf of F̃ containing p∗.

Proof. It is a simple variational argument: because of the transversality between Π̃ and F̃, it is su�cient
to ensure that a local solution z 7→ y (z) never escapes rD. But this is clear since in a stability beam
the modulus of y decreases.

Remark. Existence of stability beams impose a really strong condition on the shape of the boundary
of a leaf: it cannot be too irregular (conic convexity). Therefore the universal covering of a typical leaf
is very much alike Figure 5.
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s

f<(z) = ln ρg

γ

f<(z) = ag f<(z) = bg
γ(t)

#

I

Figure 6: Homotopy within stability beams from γ to I.

Let us prove now the proposition (see Figure 6). For a loop γ̃ within a leaf L̃ of F̃ we set γ := Π̃◦ γ̃
its projection whose range is a compact contained in a strip {a ≤ < (z) ≤ b} for two real numbers
a ≤ b < ln ρ. Any stability beam Sλ (γ (t) , δ) intersects one or the other line bounding the strip,
say {< (z) = a} to �x ideas, by following a line of direction ϑ ∈ S1. For t ∈ [0, 1] we consider a
parameterization s ∈ [0, 1] 7→ hs (t) of the segment linking γ (t) to {< (z) = a} following the direction
ϑ ∈ S1. Then (hs)s∈[0,1] is a free homotopy between γ and a path whose image is a segment I. Since

the homotopy takes place in the union of stability beams it lifts in the leaf L̃ as an homotopy between
γ̃ and a path tangent to F̃|Π̃−1(I). But the latter is a smooth real 1-dimensional foliation, transverse

to the projection Π̃: since I is contractible its leaves also are, so that γ̃ is homotopically trivial in L̃.

2.3.4 Adapted foliated block for (convergent) saddle-nodes

We repeat the same procedure as before but for saddle-nodes. Up to change the local variables, we
may assume that the foliation F is induced by

ωR := xk+1dy − y (1 +R) dx

where R ∈ xC {x, y} (we do not consider the case of a divergent saddle-node here).
Fix a point p∗ := (z∗, y∗) ∈ Ṽ. For θ ∈ S1 we build the path zθ : t ≥ 0 7→ zθ (t) solution of

żθ (t) = −θ exp (kzθ (t))

with initial value zθ (0) = z∗. Implicitly:

exp (kzθ (t)) =
exp (kz∗)

1 + kθt exp (kz∗)
.

Also: {
< (zθ (t)) ∼t→+∞ − 1

k ln t

= (zθ (t)) ∼t→+∞ = (z∗)− 1
k arg θ

.

Yet it may happen that before going to −∞ the real part of zθ exceed ln ρ (it is particularly the case
when θ exp (kz∗) < 0 since then exp (kzθ) admits a pole).

De�nition. We call stability beam of vertex z∗ and opening π
2 > δ > 0 the region of Ũ (ρ, r)

containing z∗ and given by

S0 (z∗, δ) :=
{
zθ (t) : |arg θ| < δ , t ≥ 0 , (∀τ ≤ t) zθ (τ) ∈ Ũ

}
.

As before we can lift in a leaf any path included in a stability beam.

Remark. Here again the boundary of a leaf has a conic convexity property. As a consequence the
universal covering of a typical leaf looks like what happens in Figure 9. The presence of �tongues� with
in�nite extent on the left comes from the �saddle� part. Indeed in the sectors

{∣∣arg
(
xk
)
− π

∣∣ < π
2

}
,

bounded by dashed lines in the �gure, the y-coordinate of the leaf is of order exp
( −1
kxk

)
and tends rapidly

to in�nity when x nears the singularity. On the contrary the leaves over node sectors
{∣∣arg

(
xk
)∣∣ < π

2

}
tend �atly to 0 (see e.g. [Tey04]).
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iπ

k

2iπ

k

−

iπ

k

3iπ

k

Figure 7: Integral curves z1. We obtain zθ by translating z1 by −i arg θ
k

z∗

S0(z∗; δ)

−

iπ

k

0

ln ρ

z∗ S0(z∗; δ)
−

iπ

k

ln ρ

z∗
S0(z∗; δ)

0

ln ρ

Figure 8: Some stability beams (uniformly grayed-out region).
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f<(z) = ln ρg

Figure 9: Universal covering of a typical leaf (complement of hatched regions).

We prove now that a leaf of FωR is simply connected. The strategy is similar to that of non-
degenerate singularities, but the fact that the �direction� of a stability beam is not constant brings in
more subtlety. It is su�cient to build a free homotopy (hs)s∈[0,1] between the projection γ := Π̃ ◦ γ̃ of
a tangent cycle γ̃ and a path bounding a region with empty interior, such that for all �xed t the path
s 7→ hs (t) lies in Sλ (h0 (t) , δ).

The process is depicted in Figure 10 and is done in two steps.

• Parts of the range of γ contained in the �saddle� strips {cos (k= (z)) ≤ 0} are sent within
{cos (kz) = 0} ∪ {< (z) = ln ρ} by following paths z1.

• Parts of the range of γ contained within the �node� strips {cos (k= (z)) ≥ 0} are sent within
{< (z) = a}∪Γ following paths z1, where Γ is the union of the ranges of trajectories z1 emanating
from the points ln ρ+ iπ/2k + iπ/kZ.

2.3.5 Stubborn paths

We explain now why a saddle-node cannot be oriented arbitrarily in the reduction tree in order to
invoke the localization theorem. It is because the �horizontal� component ∂U (ρ, r) ∩ {|y| = r} is not
1-connected in U (ρ, r).

De�nition. A tangent path Γ having endpoints in a single transverse {y = cst} and whose lift Γ̃ in

the universal covering links two distinct components of cl
(
L̃
)
∩ {|y| = r}, will be called a stubborn

path. Because it will not let itself be pushed out of the block.

2.4 An example of a compressible foliation

2.4.1 Local construction

This example is based on the model saddle-node

ω0 (x, y) := x2dy − ydx ,

but the construction generalizes straightforwardly for higher codimension xk+1dy − ydx. We exploit
the fact that there exists stubborn paths (see previous Section), that is, paths which cannot be pushed
to the boundary of leaves L because ∂L ∩ ∂B is not connected.

13



γ

f<(z) = ag f<(z) = ln ρg

�

Figure 10: Homotopy within stability beams from γ to Γ.

~Π(~p)

~Π(~q)

~Π( ~P )

~Π(~�)

~Π( g∆(P ))

~Π(~p)

~Π(~q)

Figure 11: Projection (in logarithmic coordinates) of a stubborn path Γ (bold path at the top of the
left-hand picture), to be compared with the projection of a tangent path carrying the strong holonomy
∆ (bottom). The gray curves correspond to iso�argument curves of the y-coordinate of the leaf, dashed
ones indicating di�erences of 2π. On the right-hand picture is depicted a path which is not stubborn:
for xk∗ > 0 small enough the boundary of the leaf is connected.
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0 1

0−c yc

Figure 12: Projection of Γc on {y = 0} (left-hand picture) and on {x = 0} (right-hand picture).

The foliation Fω0 admits a family (Γc)c∈]0,1[ of stubborn paths

Γc : [−π, π] −→ cl (D× D)

t 7−→
(
c exp (it) , exp

(
−1

c
(1 + exp (−it))

))
.

The endpoint (−c , 1) belongs to the same transverse disk {y = 1}. The geometrical explanation for
these stubborn paths is the presence in the equation

y
dx

dy
= x2

of a movable pole

x (y) =
−c

c log y + 1
.

Their projection on the {x = 0} line is shaped like a bean (say, if c > 1
π ), with 0 winding number

around {y = 0} but with winding number 1 around the movable pole yc := exp−1/c (see Figure 12).
These cycles do not o�er candidates for incompressibility failure since each Γc is not homotopically
trivial in cl (D× D) \ {x = 0}. By adjoining to them another singularity, though, we will be able to
produce the expected cycles.

Let us pull-back ω0 by the degree-2 mapping

ψ : (x, y) 7−→
(
x, 1− y2

)
which brings ω0 to

ψ∗ω0 =
(
y2 − 1

)
dx− 2yx2dy .

This foliation has three separatrices: {x = 0} and {y = ±1}. The path Γc lifts through ψ as the pair
of paths

Γ±c : [−π, π] −→ D× C

t 7−→

(
c exp (it) , ±

√
1− exp

(
−1

c
(1 + exp (−it))

))
.

Since the image of Γc is contained in cl (D× D) we can consider a �xed determination of the square-root
on the cut C\R<0. Consider next the loop

γc : [−2π, 2π] −→ D× C
t ≤ 0 7−→ Γ−c (π + t)

t ≥ 0 7−→ Γ+
c (π − t) .

By construction this loop does not wind around any branch of
{
x
(
y2 − 1

)
= 0
}
(see Figure 13). Being

the concatenation of two �distant� stubborn paths it cannot be trivial in the leaf of F. Since c can be
arbitrarily close to 0, the foliation Fψ∗ω0

is not incompressible in any neighborhood of S := {x = 0}.
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Figure 13: Projection of γc on {y = 0} (left) and on {x = 0} (right).

2.4.2 Embedding the local model into a singularity reduction

Let us explain now how to glue together these two blocks around p0 = (0,−1) and p1 = (0, 1) so that
Fψ∗ω0 embeds in the reduction of a germ of a singular foliation near (0, 0). Obviously we need to
conform to Camacho-Sad index formula, therefore we need a third singularity p2 since

CS
(
F̃, S, p0

)
= CS

(
F̃, S, p1

)
= 0 .

Besides, the holonomy of Fψ∗ω0
along the loop γ : t ∈ [0, 2π] 7→ (0, 2 exp (it)) is conjugate to ∆◦20 ,

where ∆0 is the strong holonomy of ω0, and this holonomy must be the inverse of that of p2 because
γ winds −1 times around {y = 0}. We may choose p2 to be a resonant-saddle tangent to xdy + ydx
with holonomy ∆◦−2

0 (see the realization part of [MR83]).
We invoke now an upgraded form of a realization theorem by A. Lins�Neto. This version has

been written by F. Loray in [Lor10]. Instead of giving a general statement we provide one which is
adapted to our framework.

Theorem. [Lor10, p159] Let G := 〈∆0, · · · ,∆n〉 < Diff (C, 0) be given with n ∈ N>0 and such that
©n
`=0∆` = Id. Let a collection of reduced singular foliations F`, each one with a distinguished separatrix

S`, so that in a convenient local coordinates the holonomy of F` along S` be precisely ∆`. Suppose
�nally that the identity

n∑
`=0

CS (F`, S`, p`) = −1

holds. Then there exists a germ of a holomorphic non-dicritic foliation F such that:

1. F is reduced after one blow-up and admits n+1 singular points (p`)`≤n on the exceptional divisor
D ' P1 (C);

2. there exists a germ of a transverse disk Σ attached to D at a regular point p such that the
projective holonomy representation

π1 (D\{p` : 0 ≤ ` ≤ n} , p)→ Diff (Σ, p)

coincides with G;

3. the local analytical type of E∗F near p` is F`;

4. each separatrix S` is included in D.

Remark. The above sum is nothing else but Camacho�Sad index formula. It is in general rather easy
to prove that it holds. Yet Y. Il'Yashenko [Il'97] described a subgroup 〈∆1,∆2,∆3〉 spanned by
non-linearizable quasi-resonant mappings, such that ∆1 ◦∆2 ◦∆3 = Id, but the sum of Camacho�Sad
indices of any local realization as the holonomy of a foliation F` is always less than −2.
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Figure 14: Basic piece of a Hector foliation

3 Movable singularities of regular foliations

3.1 Hector's example [Hec67]

It is a family of examples of a 2-dimensional, regular C∞ foliation of R3, everywhere transverse to
the �bers of the projection Π : (x, y, z) 7→ (x, y), where we can realize any C∞ holonomy mapping
h : R→ R on a transverse provided it coincides with Id on an open interval.

We refer to Figure 14. Start from a H-like partially hollowed-out in�nite vertical cylinder (it
contains disk × I for some open interval I) and send it in a C∞ fashion to a full in�nite vertical
cylinder C. Next, halve the cylinder to obtain two closed regions H± whose union is C. Each one
of these halves is naturally endowed with a C∞ foliation F± coming from the horizontal foliation by
planes in the H-like domain. This foliation is transverse to the �bers of Π.

If h is a C∞-di�eomorphism of R which is the identity on I then we can glue the two halves by
identifying a �ber R ' Σ ⊂ H− to h (Σ) = Σ ⊂ H+ and gluing together the corresponding leaves of
F±. We obtain a new C∞-cylinder in R3, endowed with a C∞ foliation whose holonomy is essentially
h.

This situation is morally wrong: one should expect non-trivial holonomy to be induced by some
kind of singularity. For instance, it cannot happen with locally trivial �brations over simply connected
bases. We show below that in the (planar) holomorphic world morality is preserved from this hea-
then behaviors: parts of the de�nition set of the holonomy which corresponds to di�erent holonomy
dynamics are topologically isolated (they belong to di�erent components).

3.2 Holonomy regions

We consider the following setting: a holomorphic foliation F on a product of analytic disks U × V,
which is transverse everywhere to the �bers of the projection

Π : U × V −→ U
(x, y) 7−→ x .

In particular F is regular. Up to uniformize the y-variable we may assume that V = D. In the following
we �x 0 < r < 1.

De�nition. Being given a loop γ with range in U and base-point x∗, we consider the holonomy
region Aγ ⊂ Π−1 (x∗) de�ned as the set of initial values y∗ ∈ rD such that the path γ lifts in the leaf
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hγ = Id

h
◦k
γ

= Id

s

hγ = Id

hγ = Id + 2iπ

Figure 15: Left: example 1. Right: example 2. The separating bold lines are the set of initial values
in Π−1 (1) for which a movable singularity is encountered when lifting γ in the foliation.

of F|U×rD passing through (x∗, y∗) as a path γ (y∗). It means that it is the maximal set on which the
holonomy map

hγ : Aγ −→ rD
y∗ 7−→ other endpoint of γ (y∗)

is well-de�ned.

Remark. For transversality reasons, this is equivalent to requiring that the lifted path does not reach
U × rS1.

Proposition. Aγ is open and simply connected.

Proof.

Example. For simplicity take r := +∞ (i.e. V := C). We refer to Figure 15.

1. xdy = yk+1dx yields the identity and rotations of period k.

2. dy = exp (y) dx yields the identity and translations by 2iπ.

3.3 Maximal �ow-box theorem

For any loop γ ⊂ U we de�ne the analytic closed disc Uγ as the simply connected compact region
bounded by γ. What we observed in the previous examples is that the di�erent connected components
of Aγ are separated by the trace in the transverse Π−1 (x∗) of the movable singularities crossing γ.
Let us make this statement more general.

Theorem. Take a leaf L0 of F and a loop Γ ⊂ L0 which is homotopically trivial in L0 (therefore so
is γ := Π ◦ Γ in Uγ). Let (x∗, y∗) be the base-point of Γ and consider the connected component A∗ of
Aγ containing y∗. Let Ω∗γ := SatF|Uγ×rD (A∗) ⊂ U × rD.

1. The projection

Π : Ω∗γ −→ Uγ

is a trivial �bration.

2. There exists a holomorphic mapping Ψ ∈ Diff
(
Ω∗γ → C2

)
, �bered in the x-variable, such that

Ψ∗F = F ∂
∂x
.

Proof. It uses the maximum modulus principle to discard Hector-like situations.
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3.4 Topological de�nition of a movable singularity

De�nition. Fix a loop γ ⊂ U .

1. We say that a leaf L of F contains a movable singularity within γ if:

• L ∩Aγ 6= ∅;
• no homotopy of γ to a point in Uγ lifts to L through Π.

2. If moreover hγ |L∩Aγ = Id we say that L contains an unrami�ed movable pole within γ.

3. We say that F has the local Painlevé property within γ if any leaf containing a movable
singularity withing γ actually contains an unrami�ed movable pole within γ.

Theorem. Assume that F has the local Painlevé property within γ. Then there exists a holomorphic
x-�bered mapping Ψ ∈ Diff

(
Uγ × rD→ C2

)
such that Ψ∗F is a Riccati foliation.

In particular there is no �movable pole� of order greater than 1.

3.5 Hopes and wishes

Conjecture (Ordered from almost proved to far-fetched). Let γ be a loop in U .

1. If L and L′ are two leaves of F|Π−1(Uγ) intersecting Aγ in the same connected component, then
they have same topology.

2. If hγ has a �xed-point y∗ ∈ Aγ then hγ is the identity on the component of Aγ containing it.

3. If hγ has a recurring point, i.e. h◦mγ (y) belongs to the same component of Aγ as y, then hγ is
m-periodic.

4. Any regular holomorphic foliation on U × V is conjugate on that domain to a y-polynomial
foliation.

Remark.

1. (1�3) of this conjecture would bolster the de�nition of a rami�ed movable pole within γ as a
movable singularity with holonomy hγ of period m ∈ N, which would then be the rami�cation
order of the singularity.

2. Claim (2) would imply that if a foliation has a non-identical holonomy hγ along a tangent loop
Γ then there is a �xed singularity of the foliation in Π−1 (UΠ◦Γ).

Question. What would be a decent (and local) de�nition of a movable essential singularity, so that
we can prove that none may exist in (local) planar foliations?
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