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Abstract

The polynomial differential equation

(⇤) dy

dx

+
nX

i=0

ai(x)y
i+1 = 0, 0  x  1

with phase space R/Z ⇥ R is said to have a center, if all solutions

close to y = 0 are closed. The set of equations with a center form an

algebraic set Cn in the space of all equations (⇤). We are interested in

the classification of irreducible components of Cn.
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1 The center-focus problem

The plane differential system

ẋ = P (x, y), ẏ = Q(x, y) (1)

is said to have a center at the singular point (0, 0), if in a sufficiently small
neighbourhood of this point all orbits are closed. Consider the scalar differ-
ential equation

dy

dx
+ f(x, y) = 0, x 2 [0, 1] (2)

in which f(x, 0) = 0, 8x 2 [0, 1]. The equation (2) is said to have a center
at y = 0, if all solutions y(x) starting near the origin, satisfy y(0) = y(1)
(the interval [0, 1] can be replaced by any closed interval).

The two definitions are closely related. First, a polar change of variables
transforms a plane system (1) with a center to equivalent equation of the form
(2) with a center along the interval [0, 2⇡]. Second, if the family of functions
f(., y)), x 2 [0, 1] is replaced by its Fourier series ˆf(., y) (so ˆf(x + 1, y) =

ˆf(x, y) ) and the equation (2) has a center at y = 0, then the new system

dy

dx
+

ˆf(x, y) = 0, (x, y) 2 R/Z⇥ R (3)

will have all its orbits starting near the periodic solution y = 0 on the cylinder
R/Z⇥R, periodic too. Of course, if f is smooth, then the function ˆf is only
piece-wise smooth. The transport map of (2) along ([0, 1] becomes a return
map for (3) and the definition of a limit cycle for (2) is straightforward too.
Actually, the scalar equation (2) in which f is a regular function, should be
considered as a simplified model of the eventually singular equation

dy

dx
=

P (x, y)

Q(x, y)
.

We resume the above considerations in the following definitions, which
make sense both on R or on C:

Definition 1. Let ' = '(.; x0, y0) be the general solution of the equation
dy + f(x, y)dx = 0 on the interval [x0, x1].

(i) The solution ' = '(.; x0, y0) is said to be periodic iff '(x1; x0, y0) = x0

(ii) The solution ' = '(.; x0, y0) is said to be a limit cycle, provided that it
is periodic and isolated, that is to say there is a neighbourhood of its
orbit on S1 ⇥ R free of periodic solutions.
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(iii) the map y 7! '(x1; x0, y) is the first return map of (2) in a neighbour-
hood of (x0, y = y0).

(iv) The equation (2) defines a center in a neighbourhood of the periodic
solution ' provided that the first return map is the identity map in a
neighbourhood of y0. If the return map is not the identity map, then we
say that (2) defines a focus at the periodic solution '.

The center focus-problem for the equation (2) is, roughly speaking, to
distinguish between a center and a focus. The algebro-geometric content of
the problem (for (1) is as follows. Suppose, that (2) is polynomial, more
precisely

dy

dx
+

nX

i=1

ai(x)y
i, ai 2 C[x], deg ai  n (4)

so that y = 0 is a periodic solution. As we shall see in the next section, the
first return map y 7! '(y) is analytic near y = 0 and moreover

'(y) = y +
1X

n=1

cn(a)y
n+1.

where the coefficients cn = cn(a) are polynomials in the coefficients of aj =
aj(x), j  n. The condition ' = id determines an infinite number of poly-
nomial relations on the coefficients of aj. By the Hilbert basis theorem, only
a finite number of them are relevant, and they define an algebraic variety
- the so called central variety Cn - in the vector space of all coefficients of
the polynomials aj. The problem is therefore, as formulated by Lins Neto [20]

Describe the irreducible components of Cn.

The content of the lectures is as follows. In section 2 we give a self-
contained proof of an explicit formula, due to Brudnyi, for the solutions of
the equation

dy

dx
+

nX

i=1

ai(x)y
i
= 0, 0  x  1

in terms of iterated path integrals.
In section 3 we show how the perturbation theory of the Abel equation

dy
dx

= a(x)y2 leads to the problem of vanishing of a suitable Abelian integral.
The conditions for vanishing of this Abelian integral give rise to a "moment
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problem" which has an elegant solution, due to Christopher. The solution is
based on the well known Lüroth theorem.

Our main results concern the irreducible components of the center set of
the scalar Abel equation and are formulated in section 4. In section 4.1 we
prove, that the set of scalar Abel equation with universal center (in the sense
of Brudnuyi) provide irreducible components of the Center set. In section
4.3 we show that there are scalar Abel equations with a non-universal center.
These equations have a Darboux type first integral, and among them we find
the recent counter-example to the Composition Conjecture, found by Giné,
Grau and Santallusia [16].

This is an extended version of two lectures given during the Zagreb Dy-
namical Systems Workshop, October 22-26, 2018.

2 The first return map and the Brudnyi for-

mula

In this section we shall describe the return map of (4) as a power series
involving iterated path integrals. We give an explicit formula due to Brudnyi
[4], which amounts to solve the differential equation. The classical approach
to do this is by the Picard iteration method. If y0 is the initial condition at
x0 of the differential equation

dy = f(x, y)dx

then the Picard iteration is

yn+1(x) = y0 +

Z x

x0

yn(t)dt

where yn tends to the solution of the equation as n ! 1. We illustrate this
on the example dy = ydx. If y0 is the initial condition at x = 0 then

y1(x) = y0 +

Z x

0

y0dt

y2(x) = y0 +

Z x

0

y1(t)dt = y0 +

Z x

0

y0dt+

ZZ

0t2t1x

y0dt1dt2

As Z
· · ·

Z

0tn···t1x

y0dt1 . . . dtn = y0
xn

n!

we get y(x) = y0ex as expected. The multiple (or iterated) integrals above
appear in a similar way in the non-autonomous linear dy = a(x)ydx, or even
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non-linear case dy = f(x, y)dx. The non-linear case is more involved, it is
reduced to the linear one, but after introducing infinitely many new variables
y, y2, y3, . . . . To get around this reduction we shall use a simple Ansatz, for
which we need a formal definition of iterated integral.

Let Ass! be the graded free associative algebra generated by the infinite
dimensional vector space of differential one-forms ! = a(x, y)dx, a 2 C{x, y}.
Its elements are non-commutative polynomials in such one-forms. The dif-
ferential operator

D : Ass1! ! Ass1!

D(a(x, y)dx) =
@

@y
a(x, y)dx

induces a differential operator on Ass! which acts by the Leibnitz rule.
The readers familiar with the Picard-Lefschetz theory will regognize in D
an avatar of the covariant derivative of an Abelian integral along the level
sets {y = const}.

To save brackets, it is convenient to introduce the following notation

D!1!2 . . .!n = D(!1!2 . . .!n) (5)

so that (using brackets)

D!1!2 = D(!1!2) = (D!1)!2 + !1(D!2).

and
D!1D!2 = D(!1D!2) = (D!1)(D!2) + !1(D

2!2).

If we use the notation
Dk! = !(k)

then
D!1!2 = !0

1!2 + !1!
0
2

and
D!1D!2 = (!1!

0
2)

0
= !0

1!
0
2 + !1!

00
2 .

For !1!2 . . .!n 2 Assn!, !k = 'k(x, y)dx, define the iterated integral
R x

x0
!1!2 . . .!n

of length n, as equal to
Z
· · ·

Z

x0tn···t1x

'1(t1, y) . . .'n(tn, y)dt1 . . . dtn. (6)

The iterated integral allows also a recursive definition (hence the name) :
Z x

x0

!n!n�1 . . .!1 =

Z x

x0

('n(t)

Z t

x0

!n�1 . . .!1)dt (7)
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where in the case n = 1 we have the Riemann integral
R x

x0
!1. We note,

that the usual notation for the multiple integral (6) is
R x

x0
!n!n�1 . . .!1 on

the place of
R x

x0
!1!2 . . .!n, see [6, Chen] or [17, Hain]. The reason to prefer

the definition (7) is that it is better adapted to applications in differential
equation, e.g. [13]. Recall in this context, that

Z x

x0

!n!n�1 . . .!1 = (�1)

n

Z x0

x

!1!2 . . .!n.

For a short summary of properties of iterated integrals which we use see [13,
Appendix], [12, section 2].

Theorem 1. With the notation (5), a first integral of the differential equation
dy + f(x, y)dx = 0 is given by the following recursively defined convergent
series

'(x0; x, y) = y +

Z x

x0

! +

Z x

x0

!D! +

Z x

x0

!D!D! + . . . (8)

where
! = f(x, y)dx.

The general solution of (2) with initial condition (x0, y0) is given by

y = '(x; x0, y0).

Example 1. In the linear case

y0 + ↵y = 0 () dy + ↵ydx = 0

we obtain

'(x0; x, y) =y(1 + ↵

Z x

x0

dx+ ↵2

Z x

x0

dx.dx+ . . . )

=y(1 + ↵(x� x0) + ↵2 (x� x0)
2

2

+ · · · = ye↵(x�x0)

and the general solution is

y = '(x; x0, y0) =y0e
↵(x0�x).

In the quadratic case

dy + 2xy2dx = 0,! = 2xy2dx
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we compute recurisvely
Z x

x0

! =

Z x

x0

2xy2dx = x2 � x2
0

Z x

x0

!D! =

Z x

x0

2xy2dx.4xydx = y3(x2 � x2
0)

2

Z x

x0

!D! . . . D! = (x2 � x2
0)

n

Therefore we get the first integral

'(x0; x, y) =y + y2(x2 � x2
0) + y3(x2 � x2

0)
2
+ . . .

and the corresponding general solution is

y = '(x; x0, y0) = y0 + y20(x
2
0 � x2

) + y3(x2
0 � x2

)

2
+ . . .

=

y0
1� y0(x2

0 � x2
)

.

Proof of Theorem 1. We first verify, that for every fixed x0, the function
'(x0; x, y) is a first integral :

d'(x0; x, y) =
@

@x
'(x0; x, y)dx+

@

@y
'(x0; x, y)dy

= ! + !

Z x

x0

D! + !

Z x

x0

D!D! + !

Z x

x0

D!D!D! + . . .

+ (1 +

Z x

x0

D! +

Z x

x0

D!D! +

Z x

x0

D!D!D! + . . . )dy

= (! + dy)
@

@y
'(x0; x, y)dy = 0.

As '(x0; x0, y0) = y0 then the level set {(x, y) : '(x0; x, y) = y0} contains
both (x0, y0) and (x, y). By symmetry

y = '(x; x0, y0)

is the solution of (2) with initial condition y(x0) = y0. The convergency proof
is by standard a priori estimates (omitted)

Note that for fixed x0, x1 the two return maps

y 7! '(x1; x0, y), y 7! '(x0; x1, y)
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are mutually inverse. Therefore '(x1; x0, .) = id if and only if '(x0; x1, .) =
id. Using Theorem 1 we can give explicit center conditions. Assume that

f(x, y) =
1X

i=1

ai(x)y
i+1.

and develop the return map '(x0; x1, y) as a power series in y

'(x0; x1, y) = y +
1X

n=1

cn(a)y
n+1. (9)

If we denote, by abuse of notations, ai = ai(x)dx then we get for the first
few coefficients cn(a)

c1(a) =

Z x1

x0

a1

c2(a) =

Z x1

x0

a2 + 2a1a1

c3(a) =

Z x1

x0

a3 + 2a2a1 + 3a1a2 + 6a31

c4(a) =

Z x1

x0

a4 + 2a3a1 + 3a22 + 4a1a3 + 6a2a
2
1 + 8a1a2a1 + 12a21a2 + 24a41

and so on. The general form of the coefficients cn(a) is found immediately
from Theorem 1. We resume this in the following

Theorem 2 (Brudnyi’s formula). The coefficients cn(a) of the first return
map (9) for the differential equation

dy

dx
+

1X

i=1

ai(x)y
i+1

= 0, x 2 [x0, x1]

are given by the formulae

cn(a) =
X

i1+···+ik=n

ci1,...,ik

Z x1

x0

ai1 · · · aik

where

ci1 = 1

ci1,i2 = i2 + 1

ci1,i2,i3 = (i3 + 1)(i2 + 1)

... =
...

ci1,...,ik = (ik + 1)(ik + ik�1 + 1) . . . (ik + · · · i2 + 1)
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The above formula was deduced first by Brudnyi [4, p.422] under equiv-
alent form, see also [3, Proposition 2.4] in the case (10).

Corollary 1. The equation (2) has a center on the interval [x0, x1] if and
only if cn(a) = 0, for all integer n � 1.

Example 2. Suppose that the equation

dy

dx
+ a1(x)y

2
+ a2(x)y

3
+ · · · = 0

has a center on the interval [x0, x1]. Then, using as above the notation ai =
ai(x)dx we have

c1 =

Z x1

x0

a1 = 0

c2 =

Z x1

x0

a2 + 2

Z x1

x0

a21 = 0.

The identity

2

Z x1

x0

a21 = (

Z x1

x0

a1)
2

implies then, that
R x1

x0
a2 = 0. If we consider more specifically the Abel equa-

tion
dy

dx
+ a1(x)y

2
+ a2(x)y

3
= 0 (10)

then taking into consideration that
R x1

x0
a31 = 0 and

Z x1

x0

a2a1 + 3a1a2 =

Z x1

x0

a1a2 = 0

we obtain c3 =
R x1

x0
a1a2. Therefore a necessary condition for (10) to have a

center on [x0, x1] is
Z x1

x0

a1 = 0,

Z x1

x0

a2 = 0,

Z x1

x0

a1a2 = 0 (11)

If we suppose that a1, a2 are polynomials of degree at most two, these condi-
tions are also sufficient [1]. The case deg a1, a2 = 3 can be studied similarly,
see [2].

In general, an obvious sufficient condition to have a center is therefore
Z x1

x0

ai1 · · · aik = 0, 8ij, k � 1. (12)
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Centers with the property (12) were called universal in [4].
Consider, more specifically, the following equation with polynomial coef-

ficients ai

dy +
nX

i=1

yi+1ai(x)dx = 0, ai(x) 2 K[x]. (13)

Theorem 3 (Brudny, [4], Corollary 1.20). The polynomial equation (13) has
an universal center on the interval [x0, x1], if and only if, it is a pull back of
some polynomial equation

dy = (

nX

i=1

bi(⇠)y
i+1

)d⇠, bi(⇠) 2 K[⇠]. (14)

via a suitable polynomial map ⇠ = ⇠(x) having the property ⇠(x0) = ⇠(x1).

Not all centers of (13) are universal, as discovered recently in [16].
For a further use, note that an obvious consequence from F (x, y) ⌘ y is

that Z x1

x0

a1(x)dx =

Z x1

x0

a2(x)dx = 0.

This will be used when studying the center problem for the so called degen-
erate Abel equation of first kind

dy

dx
= a1(x)y

2
+ a2(x)y

3.

3 Bifurcation functions and a Theorem of Christo-

pher

In this section we study the following perturbed Abel differential equation
on the interval [0, 1]

y0 = a(x)y2 �
1X

j=1

"j(y2pj(x) + y3qj(x))

or equivalently

dy

y2
= a(x)dx� "!1 � "2!2 � . . . (15)

where
!j = (pj(x) + yqj(x))dx
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and a = a(x), pj = pj(x), qj = qj(x) are polynomials of degree

deg a = n, deg pj  n, deg qj  n

and " is a small parameter. For " = 0 (15) has a first integral

H(x, y) =
1

y
+ A(x), A(x) =

Z
a(x)dx.

How many limit cycles has the perturbed system (15) on the interval
[0, 1]?

Recall from the preceding section that a solution y(x) such that y(0) =
y(1)) is called periodic on [0, 1]. A limit cycle of (15) on [0, 1] is therefore an
isolated periodic solution on [0, 1].

The number of the limit cycles in a compact set are bounded by the
number of the zeros of the so called bifurcation function, which we define
bellow. A limit cycle which remains bounded when " ! 0, tends to a periodic
solution of the non perturbed system. If the non-perturbed system (" = 0)
has a periodic solution, then necessarily A(0) = A(1), which already implies
that it has a center. For this reason we assume from now on that A(0) =

A(1) = 0, so that
dy = a(x)y2dx , dH = 0

has a center along 0  x  1. The perturbed equation can be written

dH � "!1 � "2!2 � · · · = 0. (16)

For a solution y(x), let P" be the first return map which sends the initial
condition y0 = y(0) to y1 = y(1). We parameterise P" by h =

1
y
= H(0, y) =

H(1, y) and note that P" is analytic both in h and " (close to zero). We have
therefore for the first return map

P"(h)� h = "kMk(h) +O("k+1
), Mk 6= 0 (17)

The function Mk is the bifurcation function, associated to the equation (15).
It is also known as "first non-zero Melnikov function". The reader may com-
pare this to (8) which is another representation of the first return map, de-
fined for small y. As we shall see, the bifurcation function is globally defined.
Therefore for every compact set K, [0, 1] ⇢ K ⇢ R2 and all sufficiently small
|"|, the number of the limit cycles of (15) in K is bounded by the number of
the zeros of the bifurcation function Mk (counted with multiplicity).

Mk allows an integral representation

Mk(h) =

Z

{H=h}
⌦k
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where the integration is along the level set

{H = h} = {(x, y) : 1/y + A(x) = h, 0  x  1}.

The differential form ⌦k is computed by the classical Françoise’s recursion
formula [11, 19, 24] as follows:

If k = 1 then ⌦1 = !1, otherwise

⌦m = !m +

X

i+j=m

ri!j, 2  m  k (18)

and the functions ri, 1  i  k � 1 are determined successively
from the identities ⌦i = dRi + ridH.

The first order Melnikov function M1 is computed in [2], and probably
yerlier, e.g. Lins Neto [21, section 3]. We have

M1(h) =

Z

{H=h}
!1

=

Z

{H=h}
p1(x)dx+ yq1(x)dx

=

Z 1

0

p1(x)dx+

Z 1

0

q1(x)

h� A(x)
dx

=

Z 1

0

p1(x)dx+

1X

k=0

h�k�1

Z 1

0

q1(x)A
k
(x)dx.

M1 vanishes identically if and only if
Z 1

0

p1(x)dx = 0,

Z 1

0

q1(x)A
k
(x)dx = 0, k = 0, 1, 2, . . .

which is the content of the polynomial moment problem for q1 and A. If
M1 = 0 by the above formula we get

M2(h) =

Z

{H=h}
r1!1 +

Z

{H=h}
!2

where r1 is computed from the identity !1 = dR1+r1dH. As d!1 = dr1^dH
then dr1 = !0

1 =

d!1
dH

is the Gelfand-Leray form of !1. From the identity
H(x, y(x, h)) ⌘ h we have @y

@h
= �y2 and hence

r(x, y) =

Z x

0

!0
1 = �

Z x

0

y2q(x).

We conclude
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Proposition 1 (formula (2.8) in [13]). Under the hypothesis M1 = 0 the
second Melnikov function reads

M2(h) =

Z

{H=h}
!1!

0
1 +

Z

{H=h}
!2 (19)

where

!1 = p1(x)dx+ yq1(x), !
0
1 = �y2q1(x)dx, !2 = p2(x)dx+ yq1(x).

The hypothesis M1 = 0 is of interest for us, as it will allow to compute the
tangent space to the center set at the point (a, 0), see the next section. In full
generality this vanishing problem is solved by Pakovich and Muzychuk [23].
For our purposes however, the polynomial a(x) can be taken in a general
position, as in the following

Theorem 4 (Christopher [7]). Assume that a(0) 6= 0 and a(1) 6= 0. The
multivalued transcendental function

I(h) =

Z 1

0

q(x)

h� A(x)
dx

vanishes identically, if and only if the polynomials Q =

R
q and A satisfy the

following "Polynomial Composition Condition" (PCC) :

There exist polynomials ˜Q, ˜A,W , such that

A =

˜A �W,Q =

˜Q �W,W (0) = W (1).

Before recalling the elegant proof of Christopher, we put I in the broader
context of the Picard-Lefschetz theory.

The function I(h) is well defined for sufficiently big h, and has an analytic
continuation in a complex domain to certain multivalued function. It is in
fact an Abelian integral depending on a parameter. More precisely, consider
the genus zero affine curve

�h = {(x, y) 2 C2
:

1

y
+ A(x) = h}.

It is a Riemann sphere with n+2 removed points, provided that h 6= 0. The
removed points correspond to (x = xi(h), y = 0), where A(xi(h)) ⌘ h, and
to (x = 1, y = 0). Given a divisor m = P0 + P1 on �h, where

P0 = (0, h), P1 = (1, h)
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we define a singular algebraic curve �

0
h. As a topological space it is just

the curve �h with the two points P0 and P1 identified to a point m. The
structural sheaf of �

0
h is the same as the structural sheaf of �h, except at

the point m 2 �

0
h. At this point a function f is said to be regular, if it is

is regular on �h, and moreover f(P0) = f(P1). The curves �h, and �

0
h are

shown on fig.??. The path [0, 1] connecting the points x = 0 and x = 1 closes
on the singular algebraic curve �

0
h. The function I(h) is an Abelian integral

on �

0
h. We note that the above procedure is easily generalized to arbitrary

divisor m on �h, which fits the generalized moment problem, as defined in
[1, Conjecture 1.7].

The homology group H1(�
0
h,Z) is of dimension n + 2. It is generated

by n + 1 simple closed loops �i = �i(h) which make one turn around the
n + 1 punctures xi(h) on �h, A(xi(h)) � h = 0, as well the loop connecting
0 and 1 on the singularized curve �

0
h. The monodromy of the loop [0, 1] is

shown on the figure. It follows that the orbit of [0, 1] 2 H1(�
0
h,Z) under

the action of the fundamental group of C \ � contains the �i � �j, where
A(xi(0)) = A(xj(0)) = 0. The Abelian integral I(h) on the Riemann sphere
�h, can be presented as a zero-dimensional Abelian integral as follows

Z

�i(h)��j(h)

yq(x)dx =

Z

�i(h)��j(h)

q(x)

h� A(x)
dx

= �2⇡i(
q(xi(h))

A0
(xi(h))

� q(xj(h))

A0
(xj(h))

)

= �2⇡i
d

dh
[

q

A0 (xi(h))�
q

A0 (xj(h))

= �2⇡i
d

dh
[Q(xi(h))�Q(xj(h))]

where
Q(x) =

Z
q(x)dx

is a primitive of q, and xi(h) are the roots of the polynomial A(x)�h (there-
fore A0

(xi(h)).x0
i(h) ⌘ 1).

We denote,

J(h) =

Z

xi(h)�xj(h)

Q = Q(xi(h))�Q(xj(h)) (20)

and call J an Abelian integral of dimension zero along the zero-cycle

xi(h)� xj(h) 2 H0({A(x) = h},Z)
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([15], Definition 1 ). If the Abelian integral I(h) vanishes identically, then
the same holds true for J 0

(h), hence J(h) = const. and it is easy to check
that the constant is zero, J(h) ⌘ 0. The set of rational functions Q such
that Q(xi(h)) ⌘ Q(xj(h) is a subfield of the field of all rational functions
C(x). By the Lüroth theorem this subfield is of the form C(W ) for suitable
rational function W . It follows that Q =

˜Q � W,A =

˜A � W and it is
easily seen in this case that W is a polynomial. We may also assume that
W (xi(h)) ⌘ W (xj(h)), as in the opposite case we may replace the variable x
by W and reason by induction on the polynomials Q =

˜Q�W, and A =

˜A�W .
We have proved that if the Abelian integral I(h) vanishes identically, then

A and A satisfy the PCC, and the opposite claim is obvious. This completes
the proof of Theorem 4

4 Irreducible components of the Center set

An affine algebraic variety V in Cn is the common zero locus of a finite
collection of polynomials fi 2 C[z1, . . . , zn]. The variety V is said to be
irreducible, if for any pair of closed varieties V1, V2 such that V = V1 [ V2,
either V1 = V or V2 = V . Of course, it might happen that a variety V is
reducible V = V1 [ V2, where V1, V2 6= V . In this case we may ask whether
V1 and V2 are further reducible and so on. It is a basic fact of commutative
algebra that in this way only a finitely many irreducible subvarieties Vi ⇢ V
can be found, and more precisely

Any variety V can be uniquely expressed as a finite union of irreducible
varieties Vi with Vi $ Vj for i 6= j. [18]

The varieties Vi which appear in the finite decomposition

V = [iVi

are the irreducible components of V .
Let W ⇢ V be another algebraic variety. Is W an irreducible component

of V ? It is usually easy to verify, whether W is irreducible. It is much harder
to check that W is an irreducible component of V . Indeed, it might happen
that W $ Vi where Vi is an irreducible component of V . To verify this, one
may compare the dimensions of the tangent spaces TxW and TxV at some
smooth point x 2 V \ W (one point x is enough!). Then W $ Vi if and
only if TxW $ TxV . Of course, there might be no way to know that x is
a smooth point, in which case we use the tangent cones TCxW and TCxV .
For every x 2 W on an irreducible variety W holds dimTCxW = dimW .
Thus, for irreducible varieties W ⇢ V holds

dimTCxW < dimTCx , W $ V.

15



The choice of x 2 W is irrelevant, which allows a great flexibility.
The above approach will be applied in the case when V si the center set

of the equation (2), and W is a subset of equations with a center. In the
planar case (1) this approach was developped by Movasati [22]. He observed
that the vanishing of the first Melnikov function, related to one-parameter
deformations (arcs) of systems (1) with a center, provides equations for the
tangent cspace TxW , while the vanishing of the second Melnikov function
provides equations for the tangent cone TCxW . This remarkable connection
between algebraic geometry and dynamics will allow us to go farther in the
description of irreducible components of the center set. We adapt the ap-
proach of Movasati to (2) in the context of the set An of Abel differential
equations

dy

dx
= a(x)y2 + b(x)y3 (21)

parameterised by the polynomials a(x), b(x) of degree at most n. They form
therefore a vector space of dimension 2n+2 and consider the subset Cn ⇢ An

of Abel differential equations having a center on the interval 0  x  1. As
we saw in the preceding section, Cn is defined by finitely many polynomial
relations cn(a, b) = 0 and therefore is an algebraic set.

4.1 Universal centers define irreducible components of

the center set

If the integer k > 1 divides n + 1, then we denote by Un/k ⇢ Cn ⇢ An the
algebraic closure of the set of pairs of polynomials (a, b) (or Abel equations
(37)), such that the following Polynomial Composition Condition (PCC) is
satisfied

There exist polynomials ˜A, ˜B,W of degrees (n+ 1)/k, (n+ 1)/k, k, such
that

A =

˜A �W,B =

˜B �W,W (0) = W (1). (PPC)
The differential form associated to (37)

dy � (a(x)y2 + b(x)y3)dx = dy � y2dA(x)� y3dB(x)

is a pull back of the differential form

dy � (

˜A0
(w)y2 + ˜B0

(w)y3)dw = dy � y2d ˜A(w)� y3d ˜B(w) (22)

under the map (x, y) ! (w, y), where w = W (x). In other words the equation
(37) is obtained from

dy

dw
=

˜A0
(w)y2 + ˜B0

(w)y3
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via the substitution w = W (x). This, combined to W (0) = W (1) implies
that the set of Abel equations Un/k have a center at y = 0 along [0, 1]. Of
course one could check directly that the center conditions cn(a) = 0 are
satisfied for all n (Theorem 2). Indeed, the iterated integrals

R x1

x0
ai1 · · · aik

vanish, because they are pull backs under W of iterated integrals along an
interval, contractible to the point W (x0) = W (x1). Following Brudnuyi [4],
we say that (37) determines an universal center if and only if

Z x1

x0

ai1 · · · aik = 0, 8ij 2 N.

It is shown then that a center is universal, if and only if the corresponding
equation (37) is a pull back under an appropriate polynomial as above, see
Brudnyi [4, Corollary 1.20]. Thus, the universal centers are exactly those,
obtained by a polynomial pull back in the sense (22), see the Polynomial
Composition Condition (PPC).

Note that the universal center set Un/k is an irreducible algebraic variety,
as a Zariski open subset of it is parametrized by the polynomials ˜A, ˜B,W of
degrees respectively (n+1)/k, (n+1)/k, k. The main result of the section is

Theorem 5. The algebraic sets Un/k are irreducible components of the center
set Cn of the Abel equation

dy

dx
= a(x)y2 + b(x)y3, deg a, deg b  n.

We shall illustrate first the idea of the proof of Theorem 5 on the rather
elementary case k = n. The closure of the universal center set Un/n+1 consists
of Abel equations (37) such that

deg a, deg b  n,

Z 1

0

a(x)dx =

Z 1

0

b(x)dx = 0

and moreover the polynomials a(x), b(x) are co-linear. Thus, Un/n+1 is iden-
tified to the vector space of pairs of polynomials (a(x), b(x)) with the above
properties, and is therefore of dimension n + 1. Consider now the point
(a(x), 0) 2 Un/n+1 where a(x) is a degree n polynomial.

Proposition 2. The tangent space T(a,0)Un/n+1 is a vector space of dimension
n+ 1, which consists of pairs of polynomials (p, q) of degree at most n, such
that q and a are co-linear polynomials, and

R 1

0 p(x)dx = 0

The proof is left to the reader. Next, we compute the tangent cone
TC(a,0)Cn at (a, 0) to the center set Cn. To avoid complications, we choose a
to be a non-composite polynomial.

17



Proposition 3. Lat a be a non-composite polynomial of degree n. Then

TC(a,0)Cn = T(a,0)Un/n+1

The above implies that the algebraic set Un/n+1 is an irreducible compo-
nent of the center set Cn.
Proof of Proposition 3. Consider a one-parameter deformation

" ! (a� "p+ . . . ,�"q + . . . ) (23)

of (37) at the point (a, 0). For " = 0 the equation is

dy

y2
= a(x)dx

and has a first integral H(x, y) =

1
y
+ A(x) where A is a primitive of a,

A(0) = A(1). The perturbed equation is

dH � "(p(x) + yq(x)dx+ · · · = 0.

For sufficiently small y, " instead of y we can use h = H(x, 0) as a variable
and write for the return map '"

'"(h) = h+ "M1(h) + . . .

The Melnikov function M1 is computed to be

M1(h) =

Z

H=h

p(x)dx+ yq(x)dx =

Z 1

0

p(x)dx+

Z 1

0

q(x)

h� A(x)
dx

see for instance [2]. Assuming that for all sufficiently small " the deformed
Abel equation belongs to the center set Cn, implies M1 = 0, which on its turn
imposes rather severe conditions on the polynomials p, q. First,

R 1

0 p(x)dx = 0

as follows already from (11). The second condition
Z 1

0

q(x)

h� A(x)
dx ⌘ 0

is well studied in a number of articles, and is known as the polynomial moment
problem, e.g. [3] and the references there. For the case of a general A, see
the Addendum by Pakovich in [25]. For instance, if a(0) 6= 0, a(1) 6= 0 (that
is to say 0 and 1 are not critical points of the polynomial A, an elegant
argument of Colin Christopher [7] based on the Lüroth theorem, shows thatR 1

0
q(x)

h�A(x)dx ⌘ 0 if and only if the composition condition holds true. As A
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is supposed to be prime, this means that A and q are co-linear polynomials.
This completes the proof of Proposition 3 and Theorem 5 in the case k = n.

Note that in full generality, a vector (p, q) which belongs to the tangent
cone is a vector, such that there is a one-parameter deformation

" ! (a+ "kp+ . . . , "kq + . . . )

at the point (a, 0) which belongs to the center set Cn. The same arguments
give the same constraints to the vector (p, q).

Proof of Theorem 5 in the general case. Assume that the integer k > 1 di-
vides n+1 and consider the algebraic set Un/k of Abel differential equations,
at y = 0 along [0, 1]. The proof follows the same lines as the case k = n, with
the notable difference that the second Melnikov function M2 will be needed.

We compute first the tangent space to Un/k at a general point (a, 0).
Consider for this purpose the one-parameter deformation

F" :
dy

y2
= a(x)dx� "!1 � "!2 � . . . (24)

where
!i = pi(x)dx+ yqi(x)dx

are polynomial one-forms, deg pi  n, deg qi  n. As before we denote

A =

Z
a, Pi =

Z
pi, Qi =

Z
qi

where

A(x) = ˜A(W (x)),W (0) = W (1), Pi(0) = Pi(1), Qi(0) = Qi(1).

The point (a, 0) belongs to Un/k if and only if A =

˜A �W for some degree
k polynomial W .

Proposition 4. The tangent space T(a,0)Un/k is the vector space of polyno-
mials (p1, q1) such that

P1(x) = ˜P1 �W (x) +R(x). ˜A0
(W (x)), Q1(x) = ˜Q1(W (x))

where ˜P1, ˜Q1 are arbitrary polynomials of degree at most (n+ 1)/k and R =

R(x) is any degree k polynomial, such that R(0) = R(1).
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The proof is straightforward, it suffices to consider the first order approx-
imation in " of the general deformation

!"
1 = d[( ˜A+ " ˜P ) � (W + "R)(x)] + "yd[ ˜Q � (W + "R)(x)]

of !0
1 = adx.
Next, we study the tangent cone TC(a,0)Cn. We need to compare the affine

varieties T(a,0)Un/k ⇢ TC(a,0)Cn.
Proposition 5. In a sufficiently small neighbourhood of every general point
(p, q) 2 T(a,0)Un/k the tangent cones TC(a,0)Cn and T(a,0)Un/k coincide.

The above Proposition shows that there is no irreducible component of
TC(a,0)Cn which contains an irreducible component of T(a,0)Un/k of strictly
smaller dimension. This would imply Theorem 5.

The first Melnikov function, as in the case k = n, is M1 =
R 1

0 p1dx+yq1dy.
By Christopher’s theorem M1 = 0 implies that q1 satisfies the composition
condition

Q1(x) = ˜Q1(W (x)).

Additional obstructions on the form of p1 will be found by inspecting the
second Melnikov function M2. Under the condition that M1 = 0 we find [13,
formula (2.8)]

M2 =

Z 1

0

!1!
0
1 +

Z 1

0

!2

where the derivative 0 is with respect to the parameter h. The identity
h = A(x) + 1

y
shows that y0 = �y2 and !0

1 = �y2dx, it is clearly a co-
variant derivative in a cohomology bundle (although we do not need this
interpretation here). Therefore, for the iterated integral of leght two we find

Z 1

0

!!0
= �

Z

{H=h}
(p1dx+ q1ydx)(y

2q1dx)

= �
Z

{H=h}
(p1dx)(y

2q1dx)

=

Z

{H=h}
y2q1P1dx

where P1 is a primitive of p1. Indeed, M1 = 0 implies the composition con-
dition for Q1 =

R
q1 and A, that is to say the integral

R
{H=h} yq1dx vanishes

as a pull back. The same then holds true for its derivative
R
{H=h} y

2q1dx as
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well for the iterated integral
R
{H=h}(yq1dx))(y

2q1dx) . Further, the shuffle
relation for iterated integrals

Z

{H=h}
(p1dx)(y

2q1dx) +

Z

{H=h}
(y2q1dx)(p1dx)

=

Z

{H=h}
p1dx

Z

{H=h}
y2q1dx = 0

Further, for
R 1

0 !2 we find
Z 1

0

!2 =

Z 1

0

(p2 + yq2)dx =

Z 1

0

dQ2

h� A(x)

= �
Z 1

0

Q2dA

(h� A)2
+

Q2

h� A
|10

= �
Z 1

0

y2Q2adx.

so that under the condition M1 = 0 implies

M2(h) =

Z

{H=h}
y2q1P1dx� y2Q2adx =

Z 1

0

q1(x)P1(x)�Q2(x)a(x)

(h� A(x))2
dx.

We apply Christopher’s theorem to M2 and conclude that the primitive of
the polynomial q1(x)P1(x)�Q2(x)a(x) is a composite polynomial, it can be
expressed as a polynomial function in W (x), and therefore

q1(x)P1(x)�Q2(x)a(x) = P (W (x))W 0
(x)

or equivalently

˜Q0
1(W (x))P1(x)�Q2(x) ˜A

0
(W (x)) = R1(W (x))

for certain polynomial R1. Assuming that ˜Q0
1 and ˜A0 are mutually prime,

there exist polynomials R2, R3 such that

˜Q0
1(W )R2(W )� ˜A0

(W )R3(W ) = R1(W )

so

˜Q0
1(W (x))(P1(x)�R2(W (x)))� (Q2(x)�R3(W (x))) ˜A0

(W (x)) = 0.

This implies finally that ˜A0
(W (x)) divides P1(x)�R2(W (x)) and

P1(x) = R2(W (x)) +R(x) ˜A0
(W (x)).

Proposition 4, and hence Theorem 5 is proved.
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4.2 An example : the central set of plane quadratic

vector fields

The only (non-trivial) case in which the center set Cn ⇢ An is completely
known is the quadratic one, n = 2. For comprehensive description and
historical comments concerning the center-focus problem in the quadratic
case see Zoladek [26]. To the plane quadratic vector field (1) we associate a
foliation F! = {! = 0} on C2, defined by the polynomial one-form

! = P (x, y)dy �Q(x, y)dx.

The leaves of the foliation are the orbits of the plane vector field (1), and the
restriction of the one-form ! on the leaves of F! vanishes identically.

In this section we assume that the polynomials P,Q are of degree at most
two, and the system has a center. As the foliation is over C we must be more
careful in the definition. We shall say that a singular point is a center, if
the point is non-generate, and has a local holomorphic first integral with a
Morse critical point. Thus, i a neighbourhood of such a point, and up to a
complex affine change of the variables, the system can be written in the form

ẋ = x+ P2(x, y), ẏ = �y +Q2(x, y)

for some homogeneous polynomials P2, Q2. The following classical result is
implicit in Zoladek [26, Theorem 1], and explicit in Lins Neto [20, Theorem
1.1].

Theorem 6. The center set C2 of plane polynomial quadratic systems with
a Morse center has four irreducible components.

The result follows essentially from the Dulac’s classification [9] of such
Morse centers in a complex domain. We sketch a proof.

Proof. The foliation F!, respectively the vector field (1), is said to be loga-
rithmic, if

P (x, y)dy �Q(x, y)dx = f1 . . . fk

kX

i=1

�i
dfi
fi

, fi 2 K[x, y],�i 2 K (25)

for suitable polynomials fi and exponents �i. As

kX

i=1

�i
dfi
fi

= d log⇧k
i=1f

�i
i
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then the logarithmic foliation F! has a first integral of Darboux type

⇧

k
i=1f

�i
i .

Let L(d1, d2, . . . , dk) denotes the set of such logarithmic foliations (or plane
vector fields) with

deg f1  d1, deg f2  d2, . . . , deg fk  dk.

For generic polynomials fi of degree di the degree of the associated vector field
is
P

di � 1. Therefore L(d1, d2, . . . , dk) is quadratic, provided that d1 = 3 or
d1 = 1, d2 = 2 or d1 = d2 = d3 = 1. This defines three large irreducible sets
of quadratic systems with a Morse center, L(3),L(1, 2),L(1, 1) respectively.
The irreducibility of these algebraic sets follows from the fact that they are
parameterised by the coefficients of the polynomials fi and by the exponents
�i. We have one more exceptional irreducible set of systems with a Morse
center which is

Q4 = L(2, 3) [A2.

Here L(2, 3) is the set of polynomial foliations as above, with a first integral
f 3
2 /f

2
3 where deg f2 = 2, deg f3 = 3. Generically such a foliation is of degree

four, but it happens that its intersection Q4 with the space A2 of quadratic
foliations is non empty and it is an irreducible algebraic set. The notation
Q4 is introduced by Zoladek [26], the index 4 indicates the co-dimension of
the set in A2. To complete the proof we carefully investigate all cases of the
Diulac’s classification as reproduced in [5, Theorem 7]. It is seen there that
in all ten cases found by Dulac, the corresponding quadratic system with a
Morse center is either in one of the four cases above, or in their closures

L(3),L(2, 1),L(1, 1, 1),L(3, 2) \A2.

To illustrate the last claim, consider a quadratic foliation defined by the
closed one form

!0 = p1p2 · ⌘0, ⌘0 = �1
dp1
p1

+ �2
dp2
p2

+ dq

where p1, p2, q are linear functions. The system has a first integral p�1
1 p�2

2 eq,
and hence generically a Morse center, although it does not belong to any
L(d1, d2, . . . , dk).

However, the one-parameter family of one-forms

!" = p1p2(1 + "q)(�1
dp1
p1

+ �2
dp2
p2

+

1

"

d(1 + "q)

1 + "q
) 2 L(1, 1, 1)

tends to !0 , when the parameter " tends to 0. This shows that !0 2 L(1, 1, 1).
The missing details can be found in [10, Appendix].
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The exceptional set Q4 might look not quite explicit, we investigate it in
details bellow.

The space An of polynomial vector fields of degree at most n are identified
to a vector space of dimension (n + 1)(n + 2). On An acts the affine group
Aff2 of affine transformations of K2 (as usual K = R or K = C), as well the
multiplicative groupe K⇤ corresponding to "change of time", dimAff2⇥K⇤

=

7. Therefore the minimal dimension of a component of the central set Cn is
7. Such components, if exist, will be in a sense exceptional.

In the quadratic case n = 2 the dimension of the for components of C2

are easily found. For instance, in the case L(1, 1, 1) ⇢ A2, and up to an affine
changes of variables and time, one may suppose that the first integral is in the
form xy�(1�x�y)µ. Therefore the dimension of L(1, 1, 1) is 2+7 = 9 and the
codimension is 3 = 12�9. We find similarly that dimL(2, 1) = dimL(3) = 9.

We describe now the last component Q4. Let [x : y : z] be homogeneous
coordinates in P2

P2(x, y, z) = a2(x, y) + a1(x, y)z + a0(x, y)z
2 (26)

P3(x, y, z) = b3(x, y) + b2(x, y)z + b1(x, y)z
2
+ b0(x, y)z

3 (27)

be homogeneous polynomials in x, y, z of degree 2 and 3. The function

H = P 3
2 /P

2
3

is therefore rational on P2 and induces a foliation on P2

3P3(x, y, z)dP2(x, y, z)� 2P2(x, y, z)dP3(x, y, z) = 0. (28)

The corresponding affine foliation on the chart C2 defined by z = 1

3P3(x, y, 1)dP2(x, y, 1)� 2P2(x, y, 1)dP3(x, y, 1) = 0 (29)

is of degree 4. We may obtain a plane polynomial foliation of degree 2 by
imposing the following additional conditions.

Suppose first, that the infinite line {z = 0} is invariant, that is to say (up
to affine change)

H(x : y : 1) =

a2(x, y)3

b3(x, y)2
= 1. (30)

This condition can be written as

P2(x, y, z)
3
= P3(x, y, z)

2
+O(z).

The foliation (28) takes the form

z[P (x, y, z)dx+Q(x, y, z)dy] +R(x, y, z)dz
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where degP, degQ  3, so (29) is of degree 3. If we further suppose that z
divides the homogeneous one form 3P3dP2�2P2dP3 then (28) takes the form

z2[P (x, y, z)dx+Q(x, y, z)dy] + zR(x, y, z)dz

where degP, degQ  2, so (29) is a plane quadratic foliation. The condition
that z2 divides 2P3dP2 � 3P2dP3 can be written as

P2(x, y, z)
3
= P3(x, y, z)

2
+O(z2)

or equivalently

a2(x, y)
3
= b3(x, y)

2 (31)
3a2(x, y)

2a1(x, y) = 2b3(x, y)b2(x, y). (32)

These polynomial relations can be further simplified by affine changes of the
variables x, y. First, (31) implies that a2 is a square of a linear function in
x, y which we may supose equal to x, that is to say

a2(x, y) = x2, b3(x, y) = x3.

The second condition (32) becomes 3xa1 = 2b2 where we may put a1 = 2y,
and hence

a1(x, y) = 2y, b2(x, y) = 3xy.

It is seen that the polynomial P3(x, y, 1) has a real critical point which we
can put at the origin, so we shall also suppose that b1 = 0. Using finally a
"change of time" (the action of K⇤) we assume that b0 = 1 while a0 = ↵ 2 K
is a free parameter (modulus). The first integral takes therefore the form

H↵(x, y) =
(x2

+ 2y + ↵)3

(x3
+ 3xy + 1)

2
(33)

with induced quadratic foliation

(�↵x2 � 2y2 � ↵y + x)dx+ (xy � ↵x+ 1)dy. (34)

This is the exceptional co-dimension four component of Q4.
The reader may check that the corresponding vector field

x0
= xy � ↵x+ 1, y0 = ↵x2

+ 2y2 + ↵y � x

has a Morse center at x = 1/↵, y = 0 which is moreover a usual real center
for ↵ 2 (1, 0). The above computation is suggested by [20] where, however,
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the modulus ↵ is wrongly fixed equal to ↵ = 1). The foliation on P2

corresponding to

H1(x, y) =
(x2

+ 2y + 1)

3

(x3
+ 3xy)2

has two invariant lines {x = 0} and {z = 0}, in contrast to the general
foliation defined by dH↵(x, y) = 0 which has only one invariant line {z = 0}.
We resume the above as follows

Proposition 6. Every polynomial vector field having a rational first integral
of the form

H(x, y) =
(a0(x, y) + a1(x, y) + a2(x, y))3

(b0(x, y) + b1(x, y) + b2(x, y) + b3(x, y))2

where the homogeneous polynomials ai, bj of degrees 0  i  2, 0  j  3 are
subject to the relations

a2(x, y)
3
= b3(x, y)

2

3a2(x, y)
2a1(x, y) = 2b3(x, y)b2(x, y)

is of degree two. The set of such quadratic vector fields form the irreducible
component Q4 of the center set C2. Up to an affine change of the variables
x, y the polynomial H can be assumed in the form H(x, y) = (x2+2y+↵)3

(x3+3xy+1)2 where
↵ is a parameter.

We conclude this section with the following remarkable property of Q4.
One may check that general rational function of the form H(x, y) = P 3

2 /P
2
3 ,

where P2, P3 are bi-variate polynomials of degree two and three, defines a
pencil of genus four curves �t = {(x, y) : H(x, y) = t} on C2. However, the
special rational function H↵ (33) defines an elliptic pencil, that is to say the
level sets �t = {(x, y) : H↵(x, y) = t} on C2

{(x, y) 2 C2
: H↵(x, y) = const}

are genus one curves, see [14].

4.3 Abel equations with Darboux type first integral

The polynomial Liénard equation

ẋ = y, ẏ = �q(x)� yp(x) (35)

defines a foliation on C2

ydy + (q(x) + yp(x))dx = 0, (36)
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which becomes the Abel equation, after the substitution y ! 1/y

dy = (y2p(x) + y3q(x))dx. (37)

Assume that the Liénard equation (35) is a polynomial pull back, that is to
say

q(x)dx+ yp(x)dx = d ˜Q+ yd ˜P .

More precisely, suppose that the following Polynomial Composition Condi-
tion (PPC) is satisfied

There exist polynomials ˜P , ˜Q,W such that

P =

˜P �W, Q =

˜Q �W

where P 0
(x) = p(x), Q0

(x) = q(x)) and W has a Morse critical point at the
critical point. Then it is easy to see that the corresponding non-degenerate
critical point of the Liénard equation has a center.

The classification of the non generate real centers of the Liénard equation
(35) is due to Cherkas and Christopher. As shown in [8]

Theorem 7. The real polynomial Liénard equation (35) has a real non-
degenerate center at the origin, if and only if the primitives P =

R
p,Q =

R
q

satisfy the above Polynomial Composition Condition (PPC)

The above Theorem suggests that a similar claim would hold true for the
scalar Abel equation (37) which is the content of the following

Composition Conjecture [3, p.444]. The Abel equation (37) has a center
at the solution y = 0 along some fixed interval [a, b] if and only if the following
(PPC) condition holds true

P =

˜P �W, Q =

˜Q �W, W (a) = W (b).

Note that the Cherkas-Christopher theorem is for real non-degenerate cen-
ters. The Composition Conjecture missed the possibility for the Abel or
Liénard equations to have a Darboux type first integral, with resonant sad-
dle point and characteristic ratio p : �q (instead of a non-generate center
with 1 : �1 ratio). Incidentally, Liénard equations with a Darboux type
first integral will produce counter-examples to the Composition Conjecture,
which is the subject of the present section. We explain in this context the
recent counter-example of Giné, Grau and Santallusia [16].

The method of constructing such systems is based on the example of the
co-dimension four center set Q4 for quadratic system, as explained in the
preceding section. The general method is outlined in the Appendix.
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Let

P2 = a0(x) + a1(x)y + a2(x)y
2

Q2 = b0(x) + b1(x)y + b2(x)y
2

where ai, bj are polynomials, such that P p
2 = Qq

2 + O(y3), where p, q are
positiv relatively prime integers. This implies that the corresponding one-
form pQ2dP2 � qP2dQ2 is divisible by y2, and then the associated reduced
foliation (after division by y2) is of degree two in y, and moreover {y = 0} is
a leaf. Therefore the foliation is defined as

(r1y + r2)dy = y(r3y + r4)dx = 0, ri 2 C[x] (38)

where

r1 = 2(p� q)a2b2
r2 = (p� 2q)a1b2 � (q � 2p)b1a2
r3 = pa02b2 � qb02a2
r4 = pa01b2 � qb01a2

Note that if a2 = const. 6= 0, b2 = const. 6= 0 the foliation takes the
Liénard form

(r1y + r2)dy = yr4dx, r1 = const. (39)

Of course, it is not clear, whether such polynomials exist. To verify this we
have to solve the equation

(a0(x) + a1(x)y + a2(x)y
2
)

p
= (b0(x) + b1(x)y + b2(x)y

2
)

q
mod y3

assuming that ai(x), bj(x) are polynomials, and a2, b2 are constants. A first
condition is given by

ap0 = bq0

which implies

(1 +

a1(x)

a0(x)
y +

a2(x)

a0(x)
y2)p = (1 +

b1(x)

b0(x)
y +

b2(x)

b0(x)
y2)q mod y3

or equivalently

p
a1(x)

a0(x)
= q

b1(x)

b0(x)

p
a2(x)

a0(x)
+

p(p� 1)

2

(

a1(x)

a0(x)
)

2
= q

b2(x)

b0(x)
+

q(q � 1)

2

(

b1(x)

b0(x)
)

2.
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Thus ai, bj are polynomials which satisfy the following redundant system of
equations

a0(x)
p
= b0(x)

q

p
a1(x)

a0(x)
= q

b1(x)

b0(x)

p
a2(x)

a0(x)
� p

2

(

a1(x)

a0(x)
)

2
= q

b2(x)

b0(x)
� q

2

(

b1(x)

b0(x)
)

2.

It follows that for some polynomial R,

a0(x) = R(x)q, b0 = R(x)p

and moreover
pa2R(x)�q � qb2R(x)�p

is a square of a rational function, where we recall that a2 = const., b2 =

const.. It is easy to check that this is only possible if, say p < q, and
p = 2k � 1, q = 2k for an integer k � 1. With this observation the analysis
of the system is straightforward and is left to the reader. We formulate the
final result in the following

Theorem 8. For every integer k � 1 and polynomial r(x) the function

H(x, y) =
[(1� r(x)2)2k + 2kr(x)(1� r(x)2)ky + ky2]2k�1

[(1� r(x)2)2k�1
+ (2k � 1)r(x)(1� r(x)2)k�1y + 2k�1

2 y2]2k

is the first integral of a Liénard type equation of the form

dx

dt
= �y + r2(x),

dy

dt
= yr4(x),

for suitable polynomials r2, r4.

It is clear that the above Liénard system is a polynomial pull back under
x ! r(x) of a simpler master Liénard system with first integral

Hk(x, y) =
[(1� x2

)

2k
+ 2kx(1� x2

)

ky + ky2]2k�1

[(1� x2
)

2k�1
+ (2k � 1)x(1� x2

)

k�1y + 2k�1
2 y2]2k

(40)

which can not be further reduced.
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To the end of the section we consider in more detail the simplest cases
k = 1 and k = 2. For k = 1 we get

H1(x, y) =
(1� x2

)

2
+ 2x(1� x2

)y + y2

(1� x2
+ xy + 1

2y
2
)

2
.

which is the first integral of the following cubic Liénard equation :

dx
dt

= y + 3x(1� x2
)

dy
dt

= �y(1 + 3x2
)

(41)

The characteristic ratios of the singular points (0, 0), (±1, 0) are equal to 3 :

�1 and 3 : �4 and the characteristic values of (+ 1p
3
,� 1p

3
) and (� 1p

3
,+ 1p

3
)

equal �1 (so we have integrable cubic saddles, presumably new). The Liénard
transformation Y = 2y + 3x(1 � x2

) transforms the above to the standard
form

dx

dt
= Y,

dY

dt
= p(x) + q(x)Y , Y

dY

dx
= p(x) + q(x)Y.

or also to the Abel type equation

d

dx
(1/Y ) = �q(x)(

1

Y
)

2 � p(x)(
1

Y
)

3

with respect to the variable z = 1/Y .
Assume that k = 2, the first integrals takes the form

H2(x, y) =
(y2 � 2xy(1� x2

)

2
+

1
2(1� x2

)

4
)

3

(y2 � 2xy(1� x2
) +

2
3(1� x2

)

3
)

4

while the corresponding foliation of Liénard type is defined by

(15x4 � 6x2 � 1)ydx� ((5x2 � 3)(x2 � 1)x+ y)dy = 0. (42)

Namely, the Liénard transformation

y ! �y � (5x2 � 3)(x2 � 1)x

transforms the equation (42) to

(q(x) + p(x)y)dx+ ydy = 0 (43)

or equivalently to

dx

dt
= �y,

dy

dt
= q(x) + p(x)y,
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where

p(x) = 2(20x4 � 15x2
+ 1)

q(x) = x(x� 1)(x+ 1)(5x2 � 3)(15x4 � 6x2 � 1).

The first integral H2 takes the form
(y2 � 8x(1� x2

)(x2 � 1
2)y + (1� x2

)

2
(x2 � 1

2)(15x
4 � 6x2 � 1))

3

(y2 � 2x(1� x2
)(5x2 � 2)y + 1

3(1� x2
)

2
(5x2 � 2)(15x4 � 6x2 � 1))

4
.

However, after the substitution 1 ! 1/y, the above Liénard equation is
equivalent to the Abel equation

dy

dx
= p(x)y2 + q(x)y3 (44)

with Darboux type first integral

H =

y2[1� 8x(1� x2
)(x2 � 1

2)y + (1� x2
)

2
(x2 � 1

2)(15x
4 � 6x2 � 1)y2]3

[1� 2x(1� x2
)(5x2 � 2)y + 1

3(1� x2
)

2
(5x2 � 2)(15x4 � 6x2 � 1)y2]4

.

Theorem 9 ([16]). The Abel equation (44) has a center at y = 0 along the
interval [�1, 1] but this center is not universal.

Proof. As y = 0 is a solution of (44) then for all sufficiently small |"| the
solution y = y(x) with initial condition y(�1) = " 6= 0 exists along the
compact interval [�1, 1]. The identity H(±1, y) = y2 shows that y(1) = " or
y(1) = �" and it is easy to check that in fact y(1) = ", Indeed, for real " the
solution y(x) does not vanish and hence it has the same sign as ". Therefore
the transport map along the interval [�1, 1] is the identity map, and the Abel
equation has a center at the solution y = 0.

The polynomials P =

R
p and Q =

R
q are of degrees 5 and 10. Therefore

if they had a common non-trivial composition factor, then the factor would
be P and Q =

˜Q � P for suitable quadratic polynomial ˜Q. It follows that
p = P 0 divides q = Q0 which is obviously not true. Thus P,Q can not have
a common composition factor, and (by the Brudnuy’s theorem) the center is
not universal.

5 Appendix

Let K be a field and A = K[[y]](x) be the K(x) algebra of formal power series
in y, with coefficients in the field of rational functions. To each fixed pair of
mutually prime positive integers p, q1 we associate the functional equation

P p
= Qq, P,Q 2 A. (45)

1the case when pq < 0 is treated in a similar way
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Proposition 7. Every solution of the functional equation (45) has the form
P = Rp, Q = Rq where

R(x, y) = a0(x)(1 +O(y))

a0(x) is a rational function in x, and O(y) 2 A is divisible by y.

The proof is straightforward. A allows an ascending filtration with respect
to the powers of y, K ⇢ · · · ⇢ An ⇢ An+1 ⇢ . . . where

An = {
nX

i=0

ai(x)y
i
: ai 2 K(x)}.

For P 2 A we denote Pn the projection of P on An, that is to say

P =

X

i�0

aiy
i, Pn =

nX

i=0

aiy
i.

Obviously An ⇢ K[y](x) and to the pair of polynomials Pn, Qn 2 K[x, y] we
associate the logarithmic polynomial differential one-form

! = PnQnd log
P p
n

Qq
n
= pQndPn � qPndQn.

If ! = ↵dx+ �dy, ↵, � 2 K[y](x), then the degree degy ! of ! (with respect
to y) is

max{degy ↵, degy � + 1}.
For general P,Q 2 A of degree the degree of the associated ! equals 2n,
however

Lemma 1. If the formal series P,Q satisfy the functional equation (45),
then the associated one-form ! = pQndPn � qPndQn is divisible by yn. The
resulting reduced rational differential one-form !red = !/yn is of degree n
with respect to y, and moreover vanishes along the line {y = 0}.

Proof. Assume that P p
= Qq. Without loss of generality we may suppose

that y does not divide P or Q. As P = Pn + O(yn+1
), Q = Qn + O(yn+1

)

then P p
n = Qq

n + O(yn+1
) and hence pP p�1

n dPn = qQq�1
n dQn + dO(yn+1

). It
follows that yn divides the differential form

d
P p
n

Qq
n
= d(

P p
n

Qq
n
� 1) = d

P p
n �Qq

n

Qq
n

and the reduced differential form d P p
n

ynQq
n

vanishes along y = 0. Therefore the
same holds true for the one-form pQndPn � qPndQn.

32



References

[1] M. Briskin, J.-P. Francoise, and Y. Yomdin. Center conditions, compo-
sitions of polynomials and moments on algebraic curves. Ergodic Theory
Dynam. Systems, 19(5):1201–1220, 1999.

[2] M. Briskin, J.-P. Francoise, and Y. Yomdin. Center conditions. II. Para-
metric and model center problems. Israel J. Math., 118:61–82, 2000.

[3] Miriam Briskin, Nina Roytvarf, and Yosef Yomdin. Center conditions at
infinity for Abel differential equations. Ann. of Math. (2), 172(1):437–
483, 2010.

[4] Alexander Brudnyi. On the center problem for ordinary differential
equations. Amer. J. Math., 128(2):419–451, 2006.

[5] D. Cerveau and A. Lins Neto. Irreducible components of the space of
holomorphic foliations of degree two in CP(n), n � 3. Ann. of Math.
(2), 143(3):577–612, 1996.

[6] Kuo Tsai Chen. Iterated path integrals. Bull. Amer. Math. Soc.,
83(5):831–879, 1977.

[7] Colin Christopher. Abel equations: composition conjectures and the
model problem. Bull. London Math. Soc., 32(3):332–338, 2000.

[8] Colin Christopher and Chengzhi Li. Limit cycles of differential equa-
tions. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser
Verlag, Basel, 2007.

[9] H. Dulac. Détermination et intégration d’une certaine classe d’équations
différentielles ayant pour point singulier un centre. Bull. Sci. Math., II.
Sér., 32:230–252, 1908.

[10] J.-P. Françoise, L. Gavrilov, and D. Xiao. Hilbert’s 16th problem on a
period annulus and Nash space of arcs. ArXiv e-prints, October 2016.

[11] J. P. Francoise. Successive derivatives of a first return map, application
to the study of quadratic vector fields. Ergodic Theory Dynam. Systems,
16(1):87–96, 1996.

[12] L. Gavrilov, H. Movasati, and I. Nakai. On the non-persistence of Hamil-
tonian identity cycles. J. Differential Equations, 246(7):2706–2723, 2009.

33



[13] Lubomir Gavrilov. Higher order Poincaré-Pontryagin functions and iter-
ated path integrals. Ann. Fac. Sci. Toulouse Math. (6), 14(4):663–682,
2005.

[14] Lubomir Gavrilov and Iliya D. Iliev. Quadratic perturbations of
quadratic codimension-four centers. J. Math. Anal. Appl., 357(1):69–
76, 2009.

[15] Lubomir Gavrilov and Hossein Movasati. The infinitesimal 16th Hilbert
problem in dimension zero. Bull. Sci. Math., 131(3):242–257, 2007.

[16] J. Giné, M. Grau, and X. Santallusia. A counterexample to the com-
position condition conjecture for polynomial Abel differential equations.
ArXiv e-prints, May 2017.

[17] Richard M. Hain. The geometry of the mixed Hodge structure on the
fundamental group. In Algebraic geometry, Bowdoin, 1985 (Brunswick,
Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pages 247–282.
Amer. Math. Soc., Providence, RI, 1987.

[18] Joe Harris. Algebraic geometry, volume 133 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1995. A first course, Corrected
reprint of the 1992 original.

[19] I. D. Iliev. On second order bifurcations of limit cycles. J. London Math.
Soc. (2), 58(2):353–366, 1998.

[20] A. Lins Neto. Foliations with a Morse center. J. Singul., 9:82–100, 2014.

[21] Alcides Lins Neto. On the number of solutions of the equation dx/dt =Pn
j=0 aj(t)xj, 0  t  1, for which x(0) = x(1). Invent. Math., 59(1):67–

76, 1980.

[22] Hossein Movasati. Center conditions: rigidity of logarithmic differential
equations. J. Differential Equations, 197(1):197–217, 2004.

[23] F. Pakovich and M. Muzychuk. Solution of the polynomial moment
problem. Proc. Lond. Math. Soc. (3), 99(3):633–657, 2009.

[24] Robert Roussarie. Bifurcation of planar vector fields and Hilbert’s six-
teenth problem, volume 164 of Progress in Mathematics. Birkhäuser
Verlag, Basel, 1998.

34



[25] Y. Yomdin. The center problem for the Abel equation, compositions
of functions, and moment conditions. Mosc. Math. J., 3(3):1167–1195,
2003. With an addendum by F. Pakovich, {Dedicated to Vladimir Ig-
orevich Arnold on the occasion of his 65th birthday}.

[26] Henryk Żoładek. Quadratic systems with center and their perturbations.
J. Differential Equations, 109(2):223–273, 1994.

35


