Mild dissipative diffeomorphisms of the disc with zero entropy (part 2)

Sylvain Crovisier

Joint work with Enrique Pujals and Charles Tresser.

・ロト・日本・モート モー うへぐ

Zagreb dynamical systems workshop October 22-26th 2018

f: a C^2 diffeomorphism $\mathbb{D} \to f(\mathbb{D} \subset int(\mathbb{D}))$.

Definition. f is strongly dissipative if it is dissipative and for any ergodic $\mu \ (\neq \text{sink})$ and μ -ae x, both branches of $W^s(x)$ meet $\partial \mathbb{D}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

f: a C^2 diffeomorphism $\mathbb{D} \to f(\mathbb{D} \subset int(\mathbb{D}))$.

Definition. f is strongly dissipative if it is dissipative and for any ergodic $\mu \ (\neq \text{sink})$ and μ -ae x, both branches of $W^s(x)$ meet $\partial \mathbb{D}$.

Property 1 (one-dimensional reduction) There exists a semi-conjugacy π : $(\mathbb{D}, f) \rightarrow (X, h)$ to an endomorphism on a compact real tree. And $\pi_*(\mu) \neq \pi_*(\nu)$ if μ, ν are distinct non-atomic measures.

f: a C^2 diffeomorphism $\mathbb{D} \to f(\mathbb{D} \subset int(\mathbb{D}))$.

Definition. f is strongly dissipative if it is dissipative and for any ergodic $\mu \ (\neq \text{sink})$ and μ -ae x, both branches of $W^s(x)$ meet $\partial \mathbb{D}$.

Property 1 (one-dimensional reduction) There exists a semi-conjugacy π : $(\mathbb{D}, f) \rightarrow (X, h)$ to an endomorphism on a compact real tree. And $\pi_*(\mu) \neq \pi_*(\nu)$ if μ, ν are distinct non-atomic measures.

f: a C^2 diffeomorphism $\mathbb{D} \to f(\mathbb{D} \subset int(\mathbb{D}))$.

Definition. f is strongly dissipative if it is dissipative and for any ergodic μ (\neq sink) and μ -ae x, both branches of $W^{s}(x)$ meet $\partial \mathbb{D}$.

Property 1 (one-dimensional reduction) There exists a semi-conjugacy π : $(\mathbb{D}, f) \rightarrow (X, h)$ to an endomorphism on a compact real tree. And $\pi_*(\mu) \neq \pi_*(\nu)$ if μ, ν are distinct non-atomic measures.

f: a C^2 diffeomorphism $\mathbb{D} \to f(\mathbb{D} \subset int(\mathbb{D}))$.

Definition. f is strongly dissipative if it is dissipative and for any ergodic $\mu \ (\neq \text{sink})$ and μ -ae x, both branches of $W^s(x)$ meet $\partial \mathbb{D}$.

Property 1 (one-dimensional reduction) There exists a semi-conjugacy π : $(\mathbb{D}, f) \rightarrow (X, h)$ to an endomorphism on a compact real tree. And $\pi_*(\mu) \neq \pi_*(\nu)$ if μ, ν are distinct non-atomic measures.

Property 2 (closing lemma). The support of any ergodic probability is contained in the closure of the set of periodic points.

Renormalization

Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeomorphism f of the disc whose topological entropy vanishes, a- either any forward orbit of f converges to a fixed point, b- or f is renormalizable: there exists a topological disc U and $m \ge 2$ such that $f^m(U) \subset U$ and $f^i(U) \cap U = \emptyset$ when 0 < i < m.

Renormalization

Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeomorphism f of the disc whose topological entropy vanishes, a- either any forward orbit of f converges to a fixed point, b- or f is renormalizable: there exists a topological disc U and $m \ge 2$ such that $f^m(U) \subset U$ and $f^i(U) \cap U = \emptyset$ when 0 < i < m.

More precisely: there are finitely any renormalization domains U_1, \ldots, U_ℓ with periods m_1, \ldots, m_ℓ such that in $\mathbb{D} \setminus (\bigcup_{i,j} f^i(U_j))$, the dynamics is (generalized) Morse-Smale:

- any forward orbit of f in $\mathbb{D} \setminus W$ converges to a periodic point,
- the periodic points in $\mathbb{D} \setminus W$ have uniformly bounded periods.

Periods of renormalization

Periods of renormalization

Theorem B. For strongly dissipative diffeomorphisms f of the disc whose topological entropy vanishes, after a large number of renormalizations, the only possible renormalization period is 2.

Periods of renormalization

Theorem B. For strongly dissipative diffeomorphisms f of the disc whose topological entropy vanishes, after a large number of renormalizations, the only possible renormalization period is 2.

 \Rightarrow Gambaudo-Tresser conjecture on the periods of the periodic points holds.

Zero entropy \Rightarrow no cycle

Assume (to simplify) that all periodic points are hyperbolic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Zero entropy \Rightarrow no cycle

Assume (to simplify) that all periodic points are hyperbolic.

Each fixed point is: - either a *sink* (index 1), - or a *saddle with reflexion* (index 1), - or a *saddle with no reflexion* (index -1).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Zero entropy \Rightarrow no cycle

Assume (to simplify) that all periodic points are hyperbolic.

Each fixed point is: - either a *sink* (index 1), - or a *saddle with reflexion* (index 1), - or a *saddle with no reflexion* (index -1).

Property. If h(f) = 0, there is no cycle of periodic points: There is no sequence of saddles $p_0, p_1, \ldots, p_{n-1}, p_n = p_0$ such that for each *i*, $W^u(p_i)$ accumulates on p_{i+1} .

The set of fixed points is connected

Property. Consider $\mathbb{D} \setminus \bigcup_{\substack{p \text{ fixed of index}-1}} W^{s}(p)$. Each component V contains exactly one fixed point q of index 1. For any $p \in \partial V$ fixed, $W^{u}(p)$ accumulates on q.

The set of fixed points is connected

Property. Consider $\mathbb{D} \setminus \bigcup_{\substack{p \text{ fixed of index}-1}} W^{s}(p)$. Each component V contains exactly one fixed point q of index 1. For any $p \in \partial V$ fixed, $W^{u}(p)$ accumulates on q.

Indeed:

(1) For *p* fixed, the closure of each unstable branches contains a fixed point of index 1.

(2) Lefschetz formula:

$$\sum_{x \text{ fixed}} \operatorname{Ind}(x) = 1.$$

Structure of the periodic set

A periodic saddle *q* is *stabilized* if:

- either $per(q) \ge 2$ and $\overline{W^u(q)}$ contains a fixed point s of index 1,
- or q is a fixed saddle with reflexion.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Structure of the periodic set

A periodic saddle *q* is *stabilized* if:

- either $per(q) \ge 2$ and $\overline{W^u(q)}$ contains a fixed point s of index 1,
- or q is a fixed saddle with reflexion.

Property. Any periodic point p is either fixed, or stabilized, or attached to a stabilized point q (by a chain of periodic points in the decorated region of q).

Trapping discs

Property. If Γ is an unstable branch of p, there exists a disc U which – is trapped: $f(\overline{U}) \subset U$, – is disjoint from $W^{s}(p)$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

– contains the accumulation set of Γ .

Trapping discs

Property. If Γ is an unstable branch of p, there exists a disc U which – is trapped: $f(\overline{U}) \subset U$, – is disjoint from $W^s(p)$, – contains the accumulation set of Γ .

Theorem A follows:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Trapping discs

Property. If Γ is an unstable branch of p, there exists a disc U which – is trapped: $f(\overline{U}) \subset U$, – is disjoint from $W^{s}(p)$, – contains the accumulation set of Γ .

Theorem A follows:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

p: fixed saddle of index -1.

Definition. A disc U is *Pixton* if ∂U is Jordan curve $\gamma^s \cup \gamma^u$ st: $-\gamma^s$ is closed and $f^n(\gamma^s) \subset U$ for n large, $-\gamma^u \subset W^u(p)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

p: fixed saddle of index -1.

Definition. A disc U is *Pixton* if ∂U is Jordan curve $\gamma^s \cup \gamma^u$ st: $-\gamma^s$ is closed and $f^n(\gamma^s) \subset U$ for n large, $-\gamma^u \subset W^u(p)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Remark. stable under iterations, and under unions.

p: fixed saddle of index -1.

Definition. A disc U is *Pixton* if ∂U is Jordan curve $\gamma^s \cup \gamma^u$ st: $-\gamma^s$ is closed and $f^n(\gamma^s) \subset U$ for n large, $-\gamma^u \subset W^u(p)$.

Remark. stable under iterations, and under unions.

▷ Periodic points in $\overline{W^u(p)}$ belong to Pixton discs.

p: fixed saddle of index -1.

Definition. A disc U is *Pixton* if ∂U is Jordan curve $\gamma^s \cup \gamma^u$ st: $-\gamma^s$ is closed and $f^n(\gamma^s) \subset U$ for n large, $-\gamma^u \subset W^u(p)$.

Remark. stable under iterations, and under unions.

▷ Periodic points in $\overline{W^u(p)}$ belong to Pixton discs.

p: fixed saddle of index -1.

Definition. A disc U is *Pixton* if ∂U is Jordan curve $\gamma^s \cup \gamma^u$ st: $-\gamma^s$ is closed and $f^n(\gamma^s) \subset U$ for n large, $-\gamma^u \subset W^u(p)$.

Remark. stable under iterations, and under unions.

▷ Periodic points in $\overline{W^u(p)}$ belong to Pixton discs.

p: fixed saddle of index -1.

Definition. A disc U is *Pixton* if ∂U is Jordan curve $\gamma^s \cup \gamma^u$ st: $-\gamma^s$ is closed and $f^n(\gamma^s) \subset U$ for n large, $-\gamma^u \subset W^u(p)$.

Remark. stable under iterations, and under unions.

 \triangleright Periodic points in $\overline{W^u(p)}$ belong to Pixton discs.

▷ A maximal Pixton disc is trapped.

