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Strongly dissipative diffeomorphisms
f : a C 2 diffeomorphism D→ f (D ⊂ int(D).

Definition. f is strongly dissipative if it is dissipative and for any ergodic

µ ( 6= sink) and µ-ae x , both branches of W s(x) meet ∂D.

Property 1 (one-dimensional reduction)
There exists a semi-conjugacy π : (D, f )→ (X , h)
to an endomorphism on a compact real tree.
And π∗(µ) 6= π∗(ν) if µ, ν are distinct non-atomic measures.
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Property 2 (closing lemma). The support of any ergodic prob-
ability is contained in the closure of the set of periodic points.



Renormalization

Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeo-
morphism f of the disc whose topological entropy vanishes,

a- either any forward orbit of f converges to a fixed point,

b- or f is renormalizable: there exists a topological disc U and

m ≥ 2 such that f m(U) ⊂ U and f i (U) ∩ U = ∅ when 0 < i < m.

More precisely: there are finitely any renormalization domains U1, . . . ,U`

with periods m1, . . . ,m` such that in D \ (∪i,j f i (Uj)), the dynamics is
(generalized) Morse-Smale:

- any forward orbit of f in D \W converges to a periodic point,

- the periodic points in D \W have uniformly bounded periods.
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Periods of renormalization

Period 2. Period 5.

(decoration)

Theorem B. For strongly dissipative diffeomorphisms f of the disc
whose topological entropy vanishes, after a large number of renor-
malizations, the only possible renormalization period is 2.

⇒ Gambaudo-Tresser conjecture on the periods of the periodic points holds.
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Zero entropy ⇒ no cycle

Assume (to simplify) that all periodic points are hyperbolic.

Each fixed point is: – either a sink (index 1),

– or a saddle with reflexion (index 1),

– or a saddle with no reflexion (index −1).

Property. If h(f ) = 0, there is no cycle of periodic points:
There is no sequence of saddles p0, p1, . . . , pn−1, pn = p0 such that

for each i , W u(pi ) accumulates on pi+1.



Zero entropy ⇒ no cycle

Assume (to simplify) that all periodic points are hyperbolic.

Each fixed point is: – either a sink (index 1),

– or a saddle with reflexion (index 1),

– or a saddle with no reflexion (index −1).

Property. If h(f ) = 0, there is no cycle of periodic points:
There is no sequence of saddles p0, p1, . . . , pn−1, pn = p0 such that

for each i , W u(pi ) accumulates on pi+1.



Zero entropy ⇒ no cycle

Assume (to simplify) that all periodic points are hyperbolic.

Each fixed point is: – either a sink (index 1),

– or a saddle with reflexion (index 1),

– or a saddle with no reflexion (index −1).

Property. If h(f ) = 0, there is no cycle of periodic points:
There is no sequence of saddles p0, p1, . . . , pn−1, pn = p0 such that

for each i , W u(pi ) accumulates on pi+1.



The set of fixed points is connected

Property. Consider D \
⋃

p fixed of index−1

W s(p).

Each component V contains exactly one fixed point q of index 1.
For any p ∈ ∂V fixed, W u(p) accumulates on q.

Indeed:

(1) For p fixed, the closure
of each unstable branches
contains a fixed point of index 1.

(2) Lefschetz formula:∑
x fixed

Ind(x) = 1.
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Structure of the periodic set

A periodic saddle q is stabilized if:
– either per(q) ≥ 2 and W u(q) contains

a fixed point s of index 1,

– or q is a fixed saddle with reflexion.

Property. Any periodic point p is either fixed, or stabilized, or
attached to a stabilized point q (by a chain of periodic points
in the decorated region of q).

p

qs
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Trapping discs

Property. If Γ is an unstable branch of p, there exists a disc U which
– is trapped: f (U) ⊂ U,
– is disjoint from W s(p),
– contains the accumulation set of Γ.

Theorem A follows:
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Pixton discs

p: fixed saddle of index −1.

Definition. A disc U is Pixton if ∂U is Jordan curve γs ∪ γu st:
– γs is closed and f n(γs) ⊂ U for n large,

– γu ⊂W u(p).

Remark. stable under iterations, and under unions.

. Periodic points in W u(p)
belong to Pixton discs.

. A maximal Pixton disc
is trapped.
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