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Strongly dissipative diffeomorphisms
f: a C? diffeomorphism D — f(D C int(D).

Definition. f is strongly dissipative if it is dissipative and for any ergodic
w (# sink) and p-ae x, both branches of W*(x) meet 9D.

Property 1 (one-dimensional reduction)

There exists a semi-conjugacy w: (D, f) — (X, h)

to an endomorphism on a compact real tree.

And 7, (p) # m.(v) if u, v are distinct non-atomic measures.

Property 2 (closing lemma). The support of any ergodic prob-
ability is contained in the closure of the set of periodic points.




Renormalization

Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeo-
morphism f of the disc whose topological entropy vanishes,

a- either any forward orbit of f converges to a fixed point,

b- or fis renormalizable: there exists a topological disc U and
m > 2 such that f™(U) C U and f{(U)N U =0 when0 < i < m.
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Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeo-
morphism f of the disc whose topological entropy vanishes,

a- either any forward orbit of f converges to a fixed point,

b- or fis renormalizable: there exists a topological disc U and
m > 2 such that f™(U) C U and f{(U)N U =0 when0 < i < m.

More precisely: there are finitely any renormalization domains Uy, ..., Uy
with periods my, ..., my such that in D\ (U; ;f'(U;)), the dynamics is
(generalized) Morse-Smale:

- any forward orbit of f in D\ W converges to a periodic point,

- the periodic points in D\ W have uniformly bounded periods.
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Theorem B. For strongly dissipative diffeomorphisms f of the disc
whose topological entropy vanishes, after a large number of renor-
malizations, the only possible renormalization period is 2.
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Theorem B. For strongly dissipative diffeomorphisms f of the disc
whose topological entropy vanishes, after a large number of renor-
malizations, the only possible renormalization period is 2.

= Gambaudo-Tresser conjecture on the periods of the periodic points holds.
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Zero entropy = no cycle

Assume (to simplify) that all periodic points are hyperbolic.

Each fixed point is: — either a sink (index 1),
— or a saddle with reflexion (index 1),

— or a saddle with no reflexion  (index —1).

Property. If h(f) =0, there is no cycle of periodic points:
There is no sequence of saddles pg, p1,...,Pn—1,Pn = Po Such that
for each i, WU"(p;) accumulates on p;1.
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Each component V' contains exactly one fixed point q of index 1.
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The set of fixed points is connected

Property. Consider D \ U We(p).
p fixed of index—1

Each component V' contains exactly one fixed point q of index 1.
For any p € 0V fixed, W"(p) accumulates on q.

Indeed:

(1) For p fixed, the closure
of each unstable branches
contains a fixed point of index 1.

(2) Lefschetz formula:

S Ind(x) = 1.

x fixed
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A periodic saddle q is stabilized if:
— either per(q) > 2 and W!(q) contains
a fixed point s of index 1,
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Structure of the periodic set

A periodic saddle q is stabilized if:
— either per(q) > 2 and W!(q) contains
a fixed point s of index 1,

—or q is a fixed saddle with reflexion.

Property. Any periodic point p is either fixed, or stabilized, or
attached to a stabilized point g (by a chain of periodic points
in the decorated region of q).
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Pixton discs

p: fixed saddle of index —1.

Definition. A disc U is Pixton if QU is Jordan curve v° U ~Y st:
— 7% is closed and f"(~v®) C U for n large,
-7 C Wi (p).

Remark. stable under iterations, and under unions.

> Periodic points in W!(p)
belong to Pixton discs.

> A maximal Pixton disc
is trapped.



