Mild dissipative diffeomorphisms of the disc with zero entropy (part 1)

Sylvain Crovisier

Joint work with Enrique Pujals and Charles Tresser.

・ロト・日本・モート モー うへぐ

Zagreb dynamical systems workshop October 22-26th 2018

Dynamics of surface diffeomorphisms

f: a C^2 -diffeomorphism of the 2-disc \mathbb{D} . $h_{top}(f)$: its topological entropy. (exponential growth rate of the number of orbits)

When $h_{top}(f) > 0$, the dynamics is rich.

- 日本 - 4 日本 - 4 日本 - 日本

Questions:

How is the dynamics when $h_{top}(f) = 0$?

What happens just before the entropy becomes positive?

Conservative examples:

- translations on \mathbb{T}^2 ,
- hamiltonian systems.

Conservative examples:

- translations on \mathbb{T}^2 ,
- hamiltonian systems.

◆□> ◆□> ◆豆> ◆豆> □豆

(Gambaudo - Tresser - Van Strien)

Conservative examples:

- translations on \mathbb{T}^2 ,
- hamiltonian systems.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conservative examples:

- translations on \mathbb{T}^2 ,
- hamiltonian systems.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conservative examples:

- translations on \mathbb{T}^2 ,
- hamiltonian systems.

Some converse results: Franks-Handel (conservative), Le Calvez-Tal (homeo)

Set of periods when the entropy vanishes

n is a *period* of *f* if f^n has a fixed point *x*, not fixed by f^m , m < n.

Dimension 1. Endomorphisms of [0, 1].

Sharkovskii's thm. The set of periods (if infinite) is $\{2^n, n \in \mathbb{N}\}$.

Coullet-Tresser / Feigenbaum. The dynamics is renormalizable.

Set of periods when the entropy vanishes

n is a *period* of *f* if f^n has a fixed point *x*, not fixed by f^m , m < n.

Dimension 1. Endomorphisms of [0, 1].

Sharkovskii's thm. The set of periods (if infinite) is $\{2^n, n \in \mathbb{N}\}$.

Coullet-Tresser / Feigenbaum. The dynamics is renormalizable.

Dimension 2. Diffeomorphisms of the disc.

No direct generalization of Sharkovskii!

Gambaudo-Tresser conjecture. In the dissipative case, – there exists $k_0 \ge 1$ such that any period has the form $k.2^n$, $k \le k_0$. – the set of periods (if infinite) contains $\{k.2^n, n \in \mathbb{N}\}$ for some k.

De Carvalho-Martens-Lyubich. Renormalization for Hénon maps with jacobian $\ll 1$.

Strongly dissipative diffeomorphisms

A diffeomorphism *f* is *strongly dissipative* if:

- it is dissipative: $|det(D_x f)| < 1$ for all $x \in \mathbb{D}$,
- \forall ergodic measure $\mu \not(\neq \text{sink})$, and μ -a.e. x, $W^s(x)$ separates \mathbb{D} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Strongly dissipative diffeomorphisms

A diffeomorphism *f* is *strongly dissipative* if:

- it is dissipative: $|det(D_x f)| < 1$ for all $x \in \mathbb{D}$,
- \forall ergodic measure $\mu \not(\neq \text{sink})$, and μ -a.e. x, $W^s(x)$ separates \mathbb{D} .

Examples.

- Hénon maps for |b| < 1/4: $(x, y) \mapsto (1 - ax^2 + y, -bx)$ (uses Wiman's theorem).
- Maps close to 1D endomorphisms.
- C^2 -open property.

Renormalization

Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeomorphism f of the disc whose topological entropy vanishes,

- a- either any forward orbit of f converges to a fixed point,
- b- or f is renormalizable: there exists a topological disc U and $m \ge 2$ such that $f^m(U) \subset U$ and $f^i(U) \cap U = \emptyset$ when 0 < i < m.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Renormalization

Theorem A. (C-Pujals-Tresser) For any strongly dissipative diffeomorphism f of the disc whose topological entropy vanishes,

- a- either any forward orbit of f converges to a fixed point,
- b- or f is renormalizable: there exists a topological disc U and $m \ge 2$ such that $f^m(U) \subset U$ and $f^i(U) \cap U = \emptyset$ when 0 < i < m.

In case (b), the result also applies to the renormalization $f^m|_U$.

f is *infinitely renormalizable* when there exists an infinite sequence of successive renormalizations.

Decomposition of the dynamics: periodic structure

The renormalization domains are "attached" to particular saddle orbits that are "decorated" around a fixed point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Decomposition of the dynamics: periodic structure

The renormalization domains are "attached" to particular saddle orbits that are "decorated" around a fixed point.

 \Rightarrow The set of periodic orbits has a hierarchical structure.

Decomposition of the dynamics: aperiodic structure

Corollary. For f infinitely renormalizable, there is Λ compact s.t.

- $-\Lambda$ is the disjoint union of invariant compact sets K_i ,
- any forward orbit accumulates on a periodic orbit or on some K_i ,
- the periodic orbits of large periods are close to Λ ,
- each K_i is semi-conjugated to an odometer: $\pi_i \colon K_i \to \mathcal{O}_i$, for a.e. $x \in \mathcal{O}_i$, $\pi_i^{-1}(x)$ is a singleton. (So K_i is uniq. ergodic.)

Gambaudo-Tresser conjecture

f: a strongly dissipative diffeomorphism of the disc with zero entropy.

Theorem B. There exist W open and $m \ge 1$ such that $f(\overline{W}) \subset W$ and:

- the periods of the periodic points of f^m in W are $\{2^n, n \in \mathbb{N}\}$,
- the periods of the periodic points in $\mathbb{D} \setminus W$ is bounded.

Corollary. There exist integers m_1, \ldots, m_ℓ such that the set of periods of the periodic orbits of f coincides with

 $Per(f) = \{m_i.2^n, n \ge 0, 1 \le i \le \ell\} \cup finite set.$

Gambaudo-Tresser conjecture: thm $A \Rightarrow$ thm B

Consider a nested sequence of renormalizations domains $U_k \cup f(U_k) \cup \cdots \cup f^{m_k-1}(U_k)$ with period $m_k \to +\infty$, and decreasing towards an odometer K.

Goal. When m_k is large, $m_{k+1} = 2m_k$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow All periodic points in U_k have periods in $\{m_k.2^n: n \ge 0\}$.

Gambaudo-Tresser conjecture: γ -dissipation

K: a limit odometer with trapping neighborhood U.

Observation. The dynamics on U is 9/10-dissipative:

for
$$x, y \in U$$
, $u \in T_y^1 M$, $|det(D_x f)| \le ||D_y f.u||^{9/10}$.

Indeed: the (aperiodic) measure on K can not be hyperbolic since $h_{top} = 0$. Hence its maximal Lyapunov exponent vanishes.

Quantitative Pesin theory. If f is 9/10-dissipative, there is a set X s.t. $-W^{s}(x)$ varies continuously with $x \in X$ for the C¹-topology, $-\mu(X) > 2/3$ for any measure μ supported on U.

Gambaudo-Tresser conjecture: no decoration

K: a limit odometer with trapping neighborhoods $U_k \cup f(U_k) \cup \cdots \cup f^{m_k-1}(U_k)$ with period $m_k \to +\infty$,

When $\frac{m_{k+1}}{m_k} \ge 3$, the decoration implies a bending of the stable manifolds...

... for at least 1/3 of the iterates of any periodic orbit close to K.

This contradicts the uniform Pesin theory!

Conclusion: $\frac{m_{k+1}}{m_k} = 2$ for k large. This gives thm B (Gambaudo-Tresser conjecture) from thm A (renormalization).