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Abstract. We show that there are infinitely many triples of positive integers
a, b, c (greater than 1) such that ab+1, ac+1, bc+1 and abc+1 are all perfect

squares.

1. Introduction

A Diophantine m-tuple is a set of m distinct positive integers with the property
that the product of any two of its distinct elements plus 1 is a perfect square. The
first example of a Diophantine quadruple was found by Fermat, and it was the set
{1, 3, 8, 120}. In 1969, Baker and Davenport [1] proved that Fermat’s set cannot
be extended to a Diophantine quintuple. There are infinitely many Diophantine
quadruples. E.g., {k, k+2, 4k+4, 16k3+48k2+44k+12} is a Diophantine quadruple
for k ≥ 1. In 2004, Dujella [3] proved that there is no Diophantine sextuple and
that there are only finitely many Diophantine quintuples. Finally, in 2019, He,
Togbé and Ziegler [6] proved that there is no Diophantine quintuple.

There are many known variants and generalizations of the notion of Diophantine
m-tuples. For a survey of various generalizations and the corresponding references
see Section 1.5 of the book [5].

Here we will consider a variant that was introduced in several internet forums1,
and appeared also in Section 14.5 of the book [2], where it is attributed to John
Gowland. We will consider triples of positive integers a, b, c with the property that
ab + 1, ac + 1, bc + 1 and abc + 1 are perfect squares. Thus, we are interested in
Diophantine triples {a, b, c} satisfying the additional property that abc + 1 is also
a perfect square. If we allow that a = 1, then the problem degenerates from four
conditions to only three conditions that b+ 1, c+ 1 and bc+ 1 are perfect squares,
or in other words that {1, b, c} is a Diophantine triple. It is easy to see that there
are infinitely many such triples, e.g. we may take b = k2 − 1, c = (k + 1)2 − 1 for
any k ≥ 2. Hence, we will require that a, b, c are positive integers greater than 1.

Several examples of such triples were given in Section 14.5 of [2], e.g., (5, 7, 24),
(8, 45, 91), (8, 105, 171), (3, 133, 176), (11, 105, 184), (20, 84, 186), (44, 102, 280),
(40, 119, 297), (24, 301, 495), (24, 477, 715). However, it remained an open ques-
tion whether there exist infinitely many such triples. The main result of this paper
gives an affirmative answer to that question.

Theorem 1. There are infinitely many triples of positive integers a, b, c greater
than 1 such that ab+ 1, ac+ 1, bc+ 1 and abc+ 1 are all perfect squares.
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2. The construction of infinitely many triples

We will search for the solutions within so-called regular Diophantine triples, i.e.,
triples {a, b, c}, such that c = a+ b+2r, where ab+1 = r2. Then ac+1 = (a+ r)2

and bc+ 1 = (b+ r)2, so {a, b, c} is indeed a Diophantine triple. According to [4],
most of Diophantine triples are of this form.

By studying and extending the list of known solutions, we can see that many of
them have the property that a is of the form A2 + 4:

(8 = 22 + 4, 45, 91),

(8 = 22 + 4, 105, 171),

(20 = 42 + 4, 84, 186),

(40 = 62 + 4, 119, 297),

(40 = 62 + 4, 2387, 3045),

(85 = 92 + 4, 672, 1235),

(85 = 92 + 4, 11859, 13952),

(533 = 232 + 4, 33475, 42456),

(533 = 232 + 4, 509736, 543235),

(1160 = 342 + 4, 165627, 194509),

(1160 = 342 + 4, 2449135, 2556897),

(7400 = 862 + 4, 7102165, 7568067),

(7400 = 862 + 4, 101263737, 103002439),

(16133 = 1272 + 4, 34117191, 35617120),

(16133 = 1272 + 4, 482768440, 488366151).

Almost all of these examples follow the following pattern: a is of the form a = A2
n+4,

where An is a (two-sided) binary recursive sequence defined by

A0 = 1, A1 = 6, An+1 = 4An −An−1.

For n ≥ 1, the elements of the sequence An are: 6, 23, 86, 321, . . ., while for n ≤ −1,
the elements of the sequence −A−n are: 2, 9, 34, 127, 474, . . ..

Next, we study the values of r (from ab + 1 = r2) in observed examples. For
each a, we had two triples with given property. We will give details for the second
(with larger b) triples. We notice that r’s have the form r = A2

nRn + An+1 − 2,
where

R0 = 2, R1 = 8, Rn = 4Rn−1 −Rn−2 + 1,

and again we may extend the recurrence to negative indices, so for n ≤ −1, the
elements of the sequence R−n are: 1, 3, 12, 46, . . .. (In the smaller triples, we have
r = A2

nRn−1 −An−1 − 2.)
To simplify manipulations with the above introduced recursive sequences, will

we express them in the terms of the sequence

P0 = 0, P1 = 1, Pn = 4Pn−1 − Pn−2.
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The sequence (Pn) satisfies

(1) Pn =
1

2
√
3

(
(2 +

√
3)n − (2−

√
3)n

)
.

Let us denote x = Pn+1, y = Pn. Then we have An = x+2y andRn = 1
2 (5x−3y−1).

From (1), it follows easily that

(2) x2 − 4xy + y2 = 1.

We will use (2) to make further expressions as homogeneous as possible in order
to simplify expressions and in particular to allow factorizations. In that way, we
obtain

a = 5x2 − 12xy + 8y2,

r =
17

2
x3 − 33

2
x2y − 5

2
x2 + 14xy2 + 6xy − 7y3 − 4y2,

b =
31

2
x4 − 55

2
x3y +

75

2
x2y2 − 25xy3 + 8y4 − 17

2
x3 +

33

2
x2y − 14xy2 + 7y3,

c =
31

2
x4 − 55

2
x3y +

75

2
x2y2 − 25xy3 + 8y4 +

17

2
x3 − 33

2
x2y + 14xy2 − 7y3.

In order to prove Theorem 1, it remains to check that abc + 1 is a perfect square.
First we get

abc =
1

4
(3y + 8x)(5x2 − 12xy + 8y2)(2y3 − 2xy2 − 2x2y + 3x3)

× (10y4 − 22xy3 + 50x2y2 − 39x3y + 28x4),

and then by writing 1 = (x2 − 4xy + y2)5 in abc+ 1, we finally obtain

abc+ 1 =
1

4
(22y5 − 24xy4 − 8x2y3 + 84x3y2 − 119x4y + 58x5)2,

which shows that abc+ 1 is indeed a perfect square. □

For example, by taking n = 4, we have x = 209, y = 56, and we get a =
1435208, r = 2347998213, b = 3841321681771, c = 3846019113405, and abc + 1 =
46047226934271792.
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