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Abstract. We construct an elliptic curve over the �eld of rational functions
with torsion group Z/2Z × Z/4Z and rank equal to 4, and an elliptic curve
over Q with the same torsion group and rank 9. Both results improve previ-
ous records for ranks of curves of this torsion group. They are obtained by
considering elliptic curves induced by Diophantine triples.

1. Introduction

A set {a1, a2, . . . , am} of m non-zero integers (rationals) is called a (rational)
Diophantine m-tuple if ai · aj + 1 is a perfect square for all 1 ≤ i < j ≤ m. In this
paper, we will consider elliptic curves of the form

(1) y2 = (ax+ 1)(bx+ 1)(cx+ 1),

where {a, b, c} is a rational Diophantine triple. We say that the elliptic curve (1)
is induced by the Diophantine triple {a, b, c}. By Mazur's theorem, there are at
most four possibilities for the torsion group of such curves, namely, Z/2Z× Z/2Z,
Z/2Z × Z/4Z, Z/2Z × Z/6Z and Z/2Z × Z/8Z, and in [7] it was shown that all
these torsion groups indeed appear. Questions about the ranks of elliptic curves
induced by Diophantine triples have been considered in several papers. In [1], a
parametric family of elliptic curves induced by Diophantine triples with rank 5, and
an elliptic curve over Q with rank 11 were constructed (improving previous similar
results from [6, 7]). These curves have torsion group Z/2Z × Z/2Z. Curves with
larger torsion were studied in [7]. In particular, it was shown that every elliptic
curve over Q with torsion group Z/2Z× Z/8Z is induced by a Diophantine triple,
see also [2].

In this paper, we study elliptic curves induced by Diophantine triples, with
torsion Z/2Z×Z/4Z. In [7], such curves with rank r = 0, 1, . . . , 7 were constructed.
Our purpose is not just to improve that result, but also to obtain elliptic curves over
Q and over the �eld of rational functions Q(t) with the largest known rank. The
previous records were rank 8 over Q, due to Elkies, Eroshkin and Dujella [10, 12],
and rank ≥ 3 over Q(t), due to Lecacheux, Elkies and Eroshkin [16, 11, 12].

We �nd new examples of such curves over Q with rank 8 and one example with
rank 9. Also, we construct a parametric family of elliptic curves with torsion group
Z/2Z×Z/4Z and with rank ≥ 4. Moreover, we prove that its generic rank is equal
to 4 and �nd the generators of the Mordell-Weil group.

2. Rank 4 family

We consider elliptic curves with the torsion subgroup isomorphic to Z/2Z×Z/4Z.
It follows from the 2-descent proposition [15, 4.2, p.85], that all such curves have
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equations of the form

(2) y2 = x(x+ x2
1)(x+ x2

2), x1, x2 ∈ Q.

The point [x1x2, x1x2(x1 + x2)] is a rational point on the curve of order 4. The
coordinate transformation x 7→ x

abc , y 7→ y
abc applied to the curve (1) leads to

the elliptic curve y2 = (x + ab)(x + ac)(x + bc) in the Weierstrass form, and by
translation we obtain the equation

(3) y2 = x(x+ ac− ab)(x+ bc− ab).

Therefore, if we can �nd a, b, c such that ac − ab and bc − ab are perfect squares,
then the elliptic curve induced by {a, b, c} will have torsion subgroup isomorphic
to Z/2Z × Z/4Z. We may expect that this curve will have positive rank, since it
also contains the point [ab, abc]. A convenient way to ful�ll these conditions is to
choose a and b such that ab = −1. Then we require ac − ab = ac + 1 = p2 and
bc − ab = bc + 1 = q2. It remains to �nd c such that{a,−1/a, c} is a Diophantine
triple. We get the system

(4) ac+ 1 = �, − c

a
+ 1 = �.

Inserting ac+ 1 = p2 into − c
a + 1 = q2, we obtain

1− p2 + a2 = �.

which has the parametric solution of the form

a =
ατ + 1

τ − α
, p =

τ + α

τ − α
.

Inserting this in (3), after some simpli�cations, we get
(5)
y2 = x3+2(α2+τ2+4α2τ2+α4τ2+α2τ4)x2+(τ+α)2(ατ−1)2(τ−α)2(ατ+1)2x.

Up the this point, we followed closely the approach from [7]. Now we force x =
(τ + α)2(ατ − 1)(ατ + 1) to satisfy the equation (5), and we get the condition

(6) τ2 + α2 + 2 = �.

By [3, �10], the solution of (6) is given by

(7) τ =
r2 − s2 − 2t2 + 2v2

2(rt+ sv)
, α =

rs− 2tv

rt+ sv
.

On the other hand, by forcing x = (τ + α)(ατ − 1)2(τ − α) to satisfy (5), we get
the condition

(8) α2τ2 + 2α2 + 1 = �.

We seek a parametric solution of the system (6) and (8). By our construction, this
should give a family of elliptic curves with rank at least 3. However, we will show
that the resulting family has rank 4. Motivated by some experimental data, we
take v = 0, r = s+ t+ 1 and insert (7) in (8). We get the quartic in s:

(12t2 + 8t+ 4)s4+(12t3 + 20t2 + 12t+ 4)s3(9)

+ (13t4 + 12t3 + 10t2 + 4t+ 1)s2+(8t5 + 8t4)s+ 4t6 + 8t5 + 4t4 = g2.

Since it contains the point [0, 2t3 + 2t2], it can be transformed into the cubic over
Q(t) given by:

w3 + (13t4 + 12t3 + 10t2 + 4t+ 1)w2(10)

+(−96t8 − 256t6 − 256t7 − 128t5 − 32t4)w

−1152t12 − 3840t11 − 5504t10 − 4608t9 − 2432t8 − 768t7 − 128t6 = h2.
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For explicit transformations see e.g. [4, Section 2.1]. By checking factors of
1152t12 +3840t11 +5504t10 +4608t9 +2432t8 +768t7 +128t6 = 128t6(t+1)2(3t2 +
2t+1)2 as possible w-coordinates of points on (10), we �nd that the point [4t2(3t2+
2t+1), 4t2(t− 1)(3t+1)(3t2 +2t+1)] lies on (10). By transforming it back to the
quartic (9), we get

s = −7t3 + 9t2 + 3t+ 1

t2 + 6t+ 3
.

Then we can easily compute:

τ =
(3t2 + 6t+ 1)(5t2 + 2t− 1)

4t(t− 1)(3t+ 1)(t+ 1)
,

α =− (t+ 1)(7t2 + 2t+ 1)

t(t2 + 6t+ 3)
,

a =− (t+ 1)(31t4 + 52t3 + 22t2 − 4t− 1)(3t2 + 2t+ 1)

t(11t4 + 12t3 + 2t2 − 4t− 1)(9t2 + 14t+ 7)
,

b =
t(11t4 + 12t3 + 2t2 − 4t− 1)(9t2 + 14t+ 7)

(t+ 1)(31t4 + 52t3 + 22t2 − 4t− 1)(3t2 + 2t+ 1)
,

c =
(
16(t− 1)(3t+ 1)(t+ 1)t(t2 + 6t+ 3)(3t2 + 6t+ 1)

(5t2 + 2t− 1)(7t2 + 2t+ 1)
)
/

((11t4 + 12t3 + 2t2 − 4t− 1)(9t2 + 14t+ 7)

(31t4 + 52t3 + 22t2 − 4t− 1)(3t2 + 2t+ 1)).

Now we claim that the induced elliptic curve

E : y2 = x3 +A(t)x2 +B(t)x,

where

A(t) =

2(87671889t24 + 854321688t23 + 3766024692t22 + 9923033928t21

+ 17428851514t20 + 21621621928t19 + 19950275060t18

+ 15200715960t17 + 11789354375t16 + 10470452464t15 + 8925222696t14

+ 5984900048t13 + 2829340620t12 + 820299856t11 + 59930952t10

− 66320528t9 − 35768977t8 − 9381000t7 − 1017244t6 + 262760t5

+ 159130t4 + 41096t3 + 6468t2 + 600t+ 25),

B(t) =

(t2 − 2t− 1)2(69t4 + 148t3 + 78t2 + 4t+ 1)2(13t2 − 2t− 1)2

× (9t4 + 28t3 + 18t2 + 4t+ 1)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (9t2 + 14t+ 7)2(31t4 + 52t3 + 22t2 − 4t− 1)2(3t2 + 2t+ 1)2,

has rank ≥ 4 over Q(t). Indeed, it contains points whose x-coordinates are
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X1 = (9t4 + 28t3 + 18t2 + 4t+ 1)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (69t4 + 148t3 + 78t2 + 4t+ 1)2,

X2 = (3t2 + 2t+ 1)(9t2 + 14t+ 7)2(13t2 − 2t− 1)

× (9t4 + 28t3 + 18t2 + 4t+ 1)(11t4 + 12t3 + 2t2 − 4t− 1)2

× (31t4 + 52t3 + 22t2 − 4t− 1),

X3 = (3t2 + 2t+ 1)(9t2 + 14t+ 7)2(13t2 − 2t− 1)

× (9t4 + 28t3 + 18t2 + 4t+ 1)2(11t4 + 12t3 + 2t2 − 4t− 1)

× (69t4 + 148t3 + 78t2 + 4t+ 1),

X4 = −(3t2 + 2t+ 1)2(9t2 + 14t+ 7)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (31t4 + 52t3 + 22t2 − 4t− 1)2.

Note that the point X4 corresponds to the point [−1,−c] on the curve (3). Other
points were found by searching for points on E with x-coordinates which are di-
visors of the polynomial B(t). A specialization, e.g. t = 2, shows that the four
points P1, P2, P3, P4, having x-coordinates X1, X2, X3, X4, are independent points
of in�nite order. Thus we obtain an elliptic curve over the �eld of rational functions
with torsion group Z/2Z × Z/4Z and rank ≥ 4. This improves previous records
(with rank ≥ 3) for curves with this torsion group, obtained by Lecacheux, Elkies
and Eroshkin [16, 11, 12]. Moreover, since our curve has full 2-torsion, we can
get more precise information by applying the algorithm by Gusi¢ and Tadi¢ [13,
Theorem 3.1 and Corollary 3.2], see also [14]. Using this algorithm we can show
that rank(E(Q(t))) = 4 and that the four points P1, P2, P3, P4 are free generators
of E(Q(t)). We will sketch the application of this algorithm (for a detailed example
of such application see e.g. [9]). To apply the algorithm, we write E in the form

y2 = (x− e1)(x− e2)(x− e3),

with e1, e2, e3 ∈ Z[t], and consider the factorization

(e1 − e2) · (e1 − e3) · (e2 − e3) = β · fα1
1 (t) · · · fαl

l (t),

where β ∈ Z and fi ∈ Z[t] are irreducible (of positive degree) and αi ≥ 1. Let
t0 ∈ Q. Assume that for each i = 1, . . . , l the square-free part of each of fi(t0)
has at least one prime factor that does not appear in the square-free part of any
of fj(t0) for j ̸= i and does not appear in the factorization of β. Then the special-
ization homomorphism E(Q(t)) → E(t0)(Q) is injective [13, Theorem 3.1]. Fur-
thermore, if |E(t0)(Q)tors| = 8 and there exist points Q1, . . . , Qr ∈ E(Q(t)) such
that Q1(t0), . . . , Qr(t0) are the free generators of E(t0)(Q), then the specializa-
tion homomorphism E(Q(t)) → E(t0)(Q) is an isomorphism. Thus E(Q(t)) and
E(t0)(Q) have the same rank r, and Q1, . . . , Qr are the free generators of E(Q(t))
[13, Corollary 3.2]. In our case,

(e1 − e2)(e1 − e3)(e2 − e3) =

−16(13t2 − 2t− 1)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (9t4 + 28t3 + 18t2 + 4t+ 1)2(9t2 + 14t+ 7)2(t2 − 2t− 1)2

× (69t4 + 148t3 + 78t2 + 4t+ 1)2(31t4 + 52t3 + 22t2 − 4t− 1)2

× (3t2 + 2t+ 1)2(t− 1)(3t+ 1)(2t2 + 2t+ 1)

× (t2 + 6t+ 3)(3t2 + 6t+ 1)(5t2 + 2t− 1)

× (41t4 + 76t3 + 50t2 + 12t+ 1)(9t4 + 12t3 + 2t2 − 4t+ 1)

× (7t2 + 2t+ 1)(25t4 + 44t3 + 26t2 + 4t+ 1),
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thus we have β = −16 and l = 18. If we take t0 = 15, then it is easy to check that
the conditions of [13, Theorem 3.1], given above, are satis�ed. Using mwrank [5],
we compute that rank(E(15)(Q)) = 4. Hence, we have proved that

rank(E(Q(t))) = 4.

Moreover, mwrank is able to �nd free generators, R1, R2, R3, R4, of E(15)(Q). If we
express P1(15), P2(15), P3(15), P4(15) in the basis R1, R2, R3, R4 (modulo torsion),
we get that the transformation matrix has determinant equal to −1. Thus we get
that P1(15), P2(15), P3(15), P4(15) also represent a full basis for E(15)(Q). Finally,
by [13, Corollary 3.2], we conclude that P1, P2, P3, P4 are free generators of E(Q(t)).

3. Examples of curves with high rank

In this section, we are searching for particular elliptic curves over Q with torsion
group Z/2Z×Z/4Z and high rank. In [7], several such curves, induced by Diophan-
tine triples, with rank 7 were presented. In the above notation, they correspond to
α = 2. Here we will search for such curves with τ and α of the form (7).

We will not only improve the result of [7], but by �nding a curve of rank 9, we will
give the current record for all known elliptic curves with torsion group Z/2Z×Z/4Z.
Previous records with rank 8, due to Elkies, Eroshkin and Dujella [10, 12], were
found by di�erent methods. In our search, we cover the range |r|+|s|+|t|+|v| ≤ 420.
We use sieving methods, which include computing Mestre-Nagao sums [18], Selmer
rank (as implemented in mwrank [5]) and Mestre's conditional upper bound [17], to
locate good candidates for high rank, and then we compute the rank with mwrank.
In that way, we �nd �ve curves with rank 8, corresponding to the parameters

(r, s, t, v) =

(20,−11, 25, 68), (82, 9, 73, 30), (55, 31, 142, 15), (91, 55, 33, 104), (157, 127, 43, 12).

Details about these curves can be found on [8]. Finally, we �nd a curve with rank
equal to 9, corresponding to the parameters (r, s, t, v) = (155, 54, 96, 106). The
curve is induced by the Diophantine triple{

301273

556614
, −556614

301273
, −535707232

290125899

}
.

The minimal Weierstrass form of the curve is

y2 = x3 + x2 − 6141005737705911671519806644217969840x

+ 5857433177348803158586285785929631477808095171159063188.

The torsion points are:

O, [−2861469472720778854, 0],

[1431017969855150171, 0], [1430451502865628682, 0],

[1381707195787460036,−100990010591667129753450630],

[1381707195787460036, 100990010591667129753450630],

[1480328743922840306,−103337259355706972940063720],

[1480328743922840306, 103337259355706972940063720],
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while independent points of in�nite order are:

[−612695149795875652, 3064309824349077381027308358],

[−431590874944672564, 2903005768083873104158859430],

[187501554154394546, 2170847073897415394832351000],

[−1383500708967173302, 3421314943163833774567917408],

[1428519047239049546, 4551549120021779137548000],

[1430248713837731282, 818226000869154831593640],

[1429305792931194266, 2901212522992755483557760],

[103900694057898826, 2284841365124562079087206240],

[1429854291102331316, 1726936504767203175719910].

The same curve can be obtained by the parameters (r, s, t, v) = (82,−19, 87, 14),
i.e. it is induced also the by the Diophantine triple{

−126555

2686
,

2686

126555
, −9107022944

249946125

}
.
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