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Similarly, from x" = 2" — 3", x has at least r + 1 distinct prime factors,
except when - = v + | and » is odd, in which case, it can only be said that x
has at least r distinct prime factors, O

And now, more explicitly.

(5C) Let 1> 2, let 0 < x < y <z be relatively prime integers satisfying
(5.1} Then
1. z, ¥ are Aot prime powers.
2. If x is a prime power, then = = y ++ | gnd r is an odd prime.
ProOE.

{1} If 7 is a prime power, so is 2" = X" + y". By the preceding result, nis g
power of 2, n > 4, and this contradicts Fermat's theorem, which is true for

such exponents. The same argument is enough {0 show that v is not a prime
DOWET,

z == 1, It remains to show that ¢ = 1,
Assumee > 180 22" ' — v 7' > 1 and

X = P
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Hence p does not divide
i
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because p divides all but the last summand. So x?° is the power of a prime
g # p. Hence g divides both factors of {5.2), that is,

¥ e P (mod g)  and {5.3)

FOTIREY e T et L T e DT e () (mod g),
Thus ¢ divides y and therefore by {3.3), ¢ divides z = v + [, a contradiction.
i

With more refined, but still clementary methods, Inkeri proved in 1946
thatiff 0 < x<y<g P+ W=zfandpixyn thenr—~y> landsoxis
not a prime-power, Pl return to this guestion in my lecture on estimates.

6. Fermat’s Equation with Even Exponent

As I shall indicate, it is possible to prove the first case of Fermat’s theorem
for gven exponents, Clearly, it suffices to consider the exponents 2p, where p
is an odd prime.
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The first result in this connection was obtained by Kummer, in 1837 It
is his first paper on Fermat's equation and it is written in Latin. Later, this
result was rediscovered many times {(Niedermeier, 1943; Griselle, 1953,
Oeconomu, 1956}

The best theorem concerning the exponent 2p was published by Terianian,
in December 1977, It is indeed quite surprising that his proof, which requires
oniy very clementary considerations, was not found beforehand. I'll not
jump to the conclusion that perhaps there is also a simple proof of Fermat’s
theorem awaiting to be discovered. | would rather say that Terjanian's result
shows that the first case of Fermat’s theorem for an even cxponent is far
easier than for a prime exponent.

I begin with Kummer’s theorem:

{6AY Let n > 1 be an odd integer. If there exist nonzere integers x, y, z such

ProOF. It is possibie to take x, y, z positive and relatively prime. A simple
observation tells that x may be assumed even, while y, ¢ are odd. Write

xz“ = ;_-'2“ e }!2“ o (22 p— }_12) X " ..... g : g {6 ])

and observe that if the two factors on the right are relatively prime, then they
are 2nth powers.
z* — y* is even, and
2 P e d 4 ame b2 2a- 1) -
=z FDE gy (6.2)
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is a sum of n odd summands, hence it is odd, therefore of the form k%, with
k odd.

{mod &).
Thus {6.2) becomes an equality of the form

8h + 1= {8a; + 13+ +{8a, + 1)
Therefore n = 1 {mod 8}, 03
For example, the first case of Fermat's theorem holds for 2n = 14,

Kummer’s theorem was extended by Grey in 1954 and by Long in 1960.
Just for the record, I quote one of Long's resuits:

{6B) If n is an integer whose last digit (in decimal notation) is 4 or 6, and
if x, ¥, z are nonzero integers such that x" + ¥ = 2" then gedlaxys) > 2

Now 1 shall give the proof of Terjanian’s theorem, which contains all the
above results as corollaries, Once more, as in §1, it is question of the guotient



6. Fermat's Equation with Even Fxponent &7

If m, # are nonzero relatively prime integers, n odd, 1 = 3, let £) denote
the Jacobi symbol defined by (F) = 1 when m is a square modulo » and
{#) = -] otherwise.

Lemma 6.1, Let y, z be distinct nonzero integers.
L lfm=ng +r,0sr<n<m then
Qulz: —3) = ZQL", — ¥z, — y) + Y7z, — )
2 m=ng —r,0<r-<n<m,then
Oz —3) = {27 Q2 — ) + Y TIQ2, —3) — VP02, - ),

3. If z, y are odd, relatively prime, z = y (mod 4) and m is odd, then Oufz,~yr =
m{mod 4), so Q,{z,—v) is odd.
4. If z, y are odd, relatively prime, z = y (mod 4) and m and n are odd natural

numbers, then
Qrz{z) ¥ ) R .

Proor, The assertions {1} and {2} follow at once from the definitions.
(3t Let z = y + 4z. Then

) G = (N s () gy
Qnlz,—3) = = (T )ym = () )y 24+

= my™ " = m(mod4),

because m — 1 is even, y is odd, so y" ! = 1 (mod 4),

{4} The assertion is proved by induction on m+ n, It is trivial when
m=pn=1 Letm+n>2

if m > n, then there exist an infeger r, odd, 0 <r < n, and ¢ such that
M= gn 4 rOT m == gn — 1

Hm = gn + r, then m - r is even, so by {}) and induction

(Qm[zs . y)) - (}M—PQr Z)“y_}) = (Qr(«—”,“‘.}"}) = (ﬁ) = ({?)
@ulz,— ) 0z, — ) Gz~ ) n nj

Hm = gn — r, then m — nand n — r are even, s¢ by {2} and induction
(Qm{z,“y)) - (--~y”'“”2" i} 'Q,{z,wy}) _ (“Qf(z,“y})
Qn(z> - }’} Qn(zs - y} Qn{z) - }‘}

(o) 6e=) - (aam))
Oz~ 3/ \Qulz.~y)]  \Qdlz,— ¥/ \n)

By (3), 0.(z,y) = n (mod4). I n = [ [}, p, then it is easy to check that
n— 1= Z?mz{f’i — 1}e; {mod 4), so
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Since G,(z,3) = n {mod 4},

e —y1—1 _n—1
5 =y {mod2)

( ______________ -1 ) ....... (—1)
Gz~ n)
Qudr =\ _ (=N (m
Odz.—vy) \on J\n) \n/
Now, if m < n, by Jacobi’s reciprocity law and the above proof

(Qm{:_3)) = (o 1) HQ =3 1 MGt 1 1) (%(:_3))

hence

Thus

Qu(za " .}} Qm{za o J')

After this lemma, Terianian’s result follows almost at once:

(6C) Let p be an odd prime. If X, v,z are nonzero integers such that
X o vEP o 228 then 2p divides X or 3.

Proor. There is no loss of generality in assuming that x, y, ¢ are pairwise
relatively prime. Also x, y cannot be both odd, since this would imply that
X = 2P = 1 {mod 4} and hence that -2 = 2 {mod 4), which is impossible.
Let x be oven, so v, z arg odd. Then

By Lemma 1.2

s 22— yEe
gcd(:.. - J.l’., s ;.2 ..... ) = por 1.

If the greatest common divisor is p, then p divides x?7, so 2p divides x.

1 show now that it is not possible that 2% — y?and (22 — y*9/(z* — Y are
relatively prime. If they are, both must be squares. But z* = 1* {mod 4).
Since p is not a square, there exists a prime ¢ such that p is not a square
modulo g. It follows from Lemma 6.1 that

e (P) - (Qm*z})
. 4 Qq(:zs“}'z) ’

which is absurd, because O p{zz, ------- y2}is a square.
This concludes the proof. O



