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and x, y are consecutive terms of the sequence 1, 1,3, 13,. .. where 1, =
Stz — Huoz — 1

The equation
Mg e x—ytl=apx>0y>0,

Now x{pf—yp-+1, rix¥—x+4, and y =y =1

We conelude by noting that when the divisibility conditions {46) are not
satisfied, the problem becomes a very difficult one. Thus for {1 + ) m
x* + 2% the only procedure scems to be to try if there is a solution for
various values of 7, e.g.,” when z == 43, x = 30005, 3 = 661738,

S, The equation x™ — y" w=
This cquation scems {0 have been first noticed by Catalan who proposed in
1842 the

Conjecture
The only solwtion in integers m > 1, n > L, x > 1,y > 1 of the equation
X" Yo {61}
ie n =3, n = 2, X =2, y =3 {62)

This still remains unproved, An allernative form of the conjecture is
If p and g are prime mumbers apd x > 1, y > 1, a similar result holds for

¥ = (63)

Very few really peneraf results are known, and even when they are simple,
their proofs are usually rather complicated and often out of place here, Some
of the results give estimates for possible values of i, 1, p, .

Perhaps the most peneral result is Cassels™*?

Theorem 4

ineguation (83, p>g>20rg>p > 2, thengix, ply

Another proof has been given by Hyyré ! The result when p = 2 is due to
Nagell**,

Most of the other results deal with the cases when some of the variables
24 %,y are given. Thus Lo Veque'!® cstablished a result proved later by
Cassels1® as the

Theorem 8
Suppose that Lx, ¥) are given in (01Y, and (62} is exchuded. Let p, v he the
feast positive solution of

X = I{mod ¥, W= i{mod X},
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where X, Y are the products of the odd primes dividing x, y respectively. Then
W o= p, 0t o= except that s = 2,0 = Imayocenrif g = v = landx 4 1lis
a power of 2.

When /1, i are given in equation (61), the cqnation has only a finite number
of solutions but these are not easily found. This is a purtionlur case of Siegel's
Theeorem in Chapter 25, The result also follows from Mahler's*® result.

Theorem 6

The greatest prime factor of ax™ + by, ab o 0, (e, )= Lmz 3, nz 3
tends ro infinity as max {|xD), ((3]) tends to infinity,

Proofs for equation (61) when s, n are primes satisfying various conditions
have been given by LeVegue by using the methods for dealing with Fermat's
last theorem.

Suppose next in equation (63) that p and ¢ are given odd primes, Then
Hyyrs*7 has shown that all the solutions can be given explicitly in terms of the
convergents o the simple continued {raction for gt 1mpt-3/e,

There are many results for special values of 1, n and some are now given,

The equation ¥° + 1 = x¥, p an odd prime.

This was proved impossible for x > 1 in 1850 by Lebesgue®, A stightly
dissimilar proof was given by Cassels 8, Clearly p = 0 (mod 2}, x = | (mod 2),
Then from

(1 i)l — D) = 7,
Pt dy=ifu+iry r=40123%
SRR

The {actor i* can be gbsorbed in the pth power, and so we need only
consider r = 0, Then

© 4 opptTl,

g1 p—1lp-2.p-3
PPZi _PP f;! o

Then, since v is even, the general term can be written for £ = 1 as

£ prd =0 (69

Al pe2.p =3 .p—2k+ 1. 1.2F2
Qk - D 2 — 1.2 3

To prove that equation (64} is impossible {which is obvious if (p.p — 12 %s
odd since o is even), we need only show that for & > I the term (65} is

(o e Puyz"!'
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divisiblc by a higher power of 2 than for & = 1. The first two parts of (65) are
integers, Also 2 cannot occur in the reduced denominator of the third part
since, for & > |,

2% L+ 2k — 2>k

The equation y° -~ | = xF
The special case g = 3 of the equation

[ A (66)

was considered by Euler, The only solutionsare x == 0, — 1, 2

We may suppose now that pis a prime > 3. The first general resulis are duc to
Nagelt 1432, He proved very simply that p must be = [ {mod 8) and 3 =
g (mod p). He showed that cquation (66} leuds to

¥+ 1= 2%, yE = 2P0,
and 5o X 2070 = (67)

Since ¥ = 0{mod p), It is casy to see that (x 4+ L x4 1) = p, and
(x 4+ Dy + 1) = 0{mod p) but 3 0 {mod p?).

When p o 1 (mod 8), NageH'* showed by cyclotomic considerations
applied to equation {68) that a necessary condition for solvability is that
w4 v = 1 (mod 8), where i -+ pV/p is the fundumental unit > 1 in the field
gencrated by V/p. This condition is equivalen! to his other one that 2isa
biquadratic residue of p. Since Nagell proved the impossibility of cquation
(66) when p = 3, 5, 7 {mod B), he thus showed that equation (66} is impos-
sible fora set of primes of density } + L + 4 + § = %

}t may be noted that from (67), estimates {rather lurge ones) had been found
for the magnitude of possible p, x;, x, by Obldth®, Hyyrd'? and Inkeri®,

Some thirty years after Nagell's results, Chao Ko** proved the impossibility
of equation {66). We give his proof which for p = 3, §, 7 {mod 8) 1§ similar to
Nagell's but not so simple.

It easily follows from {66) that

X7 ]
x4+ 1= py, T 3, (68}
where Yo py iy s odd,

Suppose first that p = 5, 7 {mod 8}, and so p = 81 + g, 4 = 5, 7. Then from
(67, x = g — | (mod 8). Write (66) as

yhoes % — 1 4 Pt ]
= x* -+ | {mod x% — 1},
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Hence the quadratic character
X% 41y ( 2 ) -
(.\' N 3 B P ‘
This is impossible sincex — 1 = 3,5 (mod 8}
Suppose next that

po=8n 4+ 3=24m+a, a= 11,19

Now pr=a% - 1+ P L

x84 1 {mod x® — 13,

Il

a8 4]
Hence (ﬁ%ﬁ - %) = L.

N BN A0 ] 2(“""}):(“?2'1"}):( 2 ):««i.
R T Y B PO x4+ ] x4+ 1 x4+

Take ¢ = 19, x = 2 (mod 8}, and then

{ = At 1V x4+ Y (x:’-m E) ._.,,._..( 2 )ﬂ 1.
TAxt— 1 -1 x4 X
There remains p = | (mod 8), and now from (68), v = 0 (med §).
From (68),

&

pyi=art - x4 = x4 L (69)

Let ¢ < p be a positive odd integer. Write p = kg + a, 0 < a < g, and $0
(@ q) = 1.

{(—x)f — 1
Put E0 = 5=

and so £{1) = 1 {mod &). By (68),

Since 17 4+ 1 = (3 4 1) E(g), this becomes

" (x + D E(q) — e 4
F¥e = PO

DN T (mod E(9), (10)
x4+ 1
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since & = a + ) {mod 2), Now

(Elas, Blgy = L8 =

—x -1

=
We show that the quadratic character (E(a) E(g)) = 1. We apply the Euclidean
algorithm

g=ka+r, 0<r, <a

g hyry bry, O<rpan

r1=k3r2 + ra, 0‘@?’3{?’2

oy = ks+1~"s-; For,y, < Py < 5oy

-
i

Fo = Resglyat.

Then since £{ka + n) — E{r)) = 0 {mod E(a)),
(2w = () = (%) - (5)

() ()

() -+ ()=

Since x = —1 {mod p) from (67),

() - (20)- 3
Elq) p pl :
We have a contradiction if ¢ is taken as an odd quadratic non-residue of p.

This proves the result,
We conclude this section by mentioning the impaossibility of the equations

From (70},

=40, x| > 1, Nagell®
Y=~ 1, vl > 2, Nagell®
P X7 g ], Selberg ™®,

The last result is now a special case of Chao Ko's theorem.
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