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There iv an immaediate application of Theorem 3 to the equation

¥ ="k )

Tlhis shiows at once that there are only & finite number of intcger solutions
Wia kY = 1, ay huppens for example when & s square free, We mst sobve
A, = where fv, 1) is a2 binary cubic with diseriminant —44, Since ther
are only a finite number of classes of forms with discriminant — 4k, Thue's
theorem in Chapter 22 shows at once that there are oaly n finite number of
integer solutions for v, 1.

The result holds for all & as is shown in Chapier 26,

3. We discuss in more defail the integer solutions of the general cubic
equation
Fx )y =a® + 5% 4 oy + oy = , (an

It fs known as a particular case of Thue's theorem of Chapter 22 that there are
only a finite number of solutions if we suppose that f{v, ¥} &s frredueible, No
necessary and suflicient condition for the existence of integer solutions of
equation (12) nor 2 finite algorithm for finding them when they exist are
kitown, However, Baker® has recomly fonnd an upper bound (8 very large
one indced) for the magnitude of the solutions.

Some results are known gbout the number of solutions and some special
cquations of the form ax® 4+ dy® == ni can be compietely solved. We have
seen that it suffices in (12), to consider the ¢ase when = 1, Then if one
solution is known, we may by means of a linear substitution supposc that
a = I

Let &, 8, 6" be the roots of the cubic cquation

— b2t of - d = 0, (13)

and fet & = ((0) be the cubic fickd over the rational ficid generated by & Two
cases arise according as the discriminant D < Qor >0

Suppose first D < G Then combining results of Delaunoy* and Nagell®,
we have the

Theorem 4
The equation {12} for m = 1 has af mast three integer solutions except whey
S, 3) = (g, b,c,dy ~ (1,0, 1, Dor (1, — 1,1, D when there are exacdly four
solutions, or when f{x, y} ~ {1, 0, — 1, [}, when there are exactly five solutions.
The proof requires a detailed investigation and so we shall give only a
sketeh of the method, We operate in the ring Z{#). In this there is one funda-
mental unit#, and this may be taken tosatisfy ¢ < » < 1. Fromequation (13},

(x + B%x + 09Xy + 89) = 1,
and so x + B is a unit in the ring. Hence
xdfr=9" m=0, 41, +£2,... (14}
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and we have Lo find the integer values of ar for which this is possibie, The first
stage in the proof is to show that equation (14} can be replaced by

X b =T, (5

and thut % is a root of an cquation with o == 1. The next stage is to show that
1 2 0 except for the excliuded case 7% 4+ 9% = | when 5% = { 4 .

We show there is at most one unit for which xy # 0. Suppose that mg is the
teast pesitive integer for which 4 relation

No Y = g0 (16)
holds, and that x, 3, 1 in equation (15} is a differcnt set.
Put m=gn+r, 07 <y
ftcanbeshown that 3 € r € ay, — 2 Put
eyl XA p¥ o ptZ 4N
Then Z £ Guince v - . From cquations (15), (163
XoE g {Xg b i 4 gV 4 22

A congrucnce mod v, shows that Z = 0 (mod 3y} and so |Z| 2 34 From
equation (17) and the conjupate equations,

EVDZ = (0 = e b 7" = e+ (g - )

Also PEy =z g
. . 3 e A 1 » vl = 1
I P g i Ak ALIR .
sinee [xo} < bk |nyel < 1 4+ | Vol and fxg) = [yg| implies {yo] = 1.
Hence B 5 ( ';-’“F,; i)‘
7' 7
Then [yfe] € 1 since ™y e 1,

Hence, sinee I5'f > 1,

VDyol < 24 40l + [36] = D = —2 + 8|3l

Then — D < 64, and then there can be af most three nnits.

Thecases D > — 64 arisc only for & = ~23, — 31, — 44 and these must be
investipated in detail,
4. Theorem 4 does not enable us to find the existing integer solutions. Al the
solutions, however, can be found for some equations of the form

ax® 4 % o= e
in purticular, as was first shown by Delaunuy, (he equation

3 4o di? =1
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does not present too much difficulty, The integer solutions are trivial when d
is a perfect cube. Then if 4] > 1, the only solution is x = 1,y = 0, and when
[d} = 1, there is another solution v = 0, dy = 1. We may suppose now that
d > i and is free from cubed fuctors since these can be absorbed in y4
We consider the cubic field K = Q(Vd). The integers in X of the form
x + yVd + 2VJ where x, v, 2 are rational integers, form a ring Z[Vd,
the units in which are those integers » whose norm N{n) = +1. Let ¢ be
the fundamental unit in the ring chosen so that 0 < ¢ < 1. Then all the units
in Z[Vd] are given by

7= deh,

where » takes all integer values. The + sign must be taken for the positive
units. Then if rational integers v, p satisfy

X b dyt =1, i N+ yVd) = 1,
nw=x+4yVdis a positive unit in the ring Such a unit will be called a
binemial unit,

Theorem §

The eguation x* + dy® = 1 (d > 1} has at most one integer solution with
Xy £ 0. This is given by the fimdamental unit in the ring when it is @ binemial
unit, i.e. e takes the form ¢ = x + y¥4

We require four lemmas,

Lemma 1
There vannet exist units

Suppose first that R = 0. Then PQ < 0, and
inl =P — PQVi 4 QVE > 1 4+ Vd 4+ V& > 3,

a contradiction.
Soif @ =0, PR < 9, and

] = P® — PRV + R¥VGT > 3,
Hence we have to find the positive integers » such that
e m X -+ ym
Lemma 2
No wnit of the types

CrpVdr, n= 22,53 AP n=xl, 42,
can be a binomial unit,
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We may suppose that the units are positive a‘?g‘ IIIII so n > 0. Take tIilc i}rs:t
type. Expand and equate to zero the terms in Vd% and put ¢ = &3 This
gives three different cases depending on the residuce of n {mod 3). Then for

a1 & 2 {mod 3,
pA=2M3 g pla-BHE 3 ("3’) PR TN (g) AR (’2’) = 0,
1 {mod 3},
PUSTITY (;) g TR (’5’) Joeen 4 (Y ens (z) e 0,
nom O {mod 3),
pit- i (?) gm0 (’4’) doe o (o0 (’2’) w0,

Since t = oy®, {x, ¢} = 1. Suppose first that ¢ > 2 and so x|} > L Z:etp _bc
& prime divisor of v and let p* be the greatest power of p dividing the_bmm?uaf
coefficient in the highest power of { in the equation above under discussion,
We shall show that the remaining terms in the equation are divisible by p**+?
thus giving u contradiction. .

1t will spffice to take the case = 1 (mod 3). The general term with r > 015
given by

o
I

PR I S B T |

{3r + 231

‘,tn =gy — 1){3_\.31'

Write this as

A I 2 B B 1)( x¥ ){{nwa,w”w_
2(“ 31 ) 35 Gra D3r+ 2

The first {wo terms in brackets are integers. Now if p = 2, p% > 3¢ + 2since
2% > 3r 4+ 2, and so the lerm in the third bracket is divisible by p.
We now take the second type of units, and write £ = d%°,
Three cases arise:
a2 {mod 3),

(;’) (DB g g n-5y8 3 (z) oo (B (r}z) =0,
# = {mod 3
LU U R S (g) B o (YL (’;) a0,

0{mod 3},
fin- 5 (;) G R 8Y3,8 (’;) T (’;) = 0.

An argument simifar to that for the first type applies.
g*

E
I
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Suppose finally that d = 2. Then it is known thas the only rational solutions
af v 4 2yt e faresy s}y w Qix e — oy e Disee Chapter 1), and that
—1 + V7 is the fundamental unit,

Lewma 3
The square of a unit n # 11 cannot be a binomial unit.
Suppose that

nw= Pt OQVd + RV
Then 0 & 2PR = 0. (18)
Also PP P + R — 3dPQR = 1, {19}

since 4 i$ 3 unit,

We shall show that the only integer solutions of these simultaneous equa-
tionsarcgiven by P= |, Q= R O, a0 P 0 = 0, R |, of = §, and
these are obviously excluded.

From equation (19}, (A, R} = 1, and so equation (18} gives lour cases.

B) P=¢,  R=-2% Q= 22,
By P=—¢% R=% Q= il

© P=2g% R=-r Q= sl

(D} Pa= Qg% R r? = +2qr

Here g, r are integers. Substituting these in equation (2}, we have, on putting
p = dr®,

(A} —8p* &+ 2pg® + ¢° =
(B} —8p* £ 20pg® +¢°
(€Y p? x Hpg® ~ 8¢° = L
(DY & 20pg° — 8¢° = — 1,

[

i

—1,

Clearly {B') and {D) are impossible on taking residucs mod 4.
From (A"},

(4p & 5¢% = 279" — 2.
This is Fermat's cquation of which the only solutionsare g = 1, p = {,

Thenrw0,and P~ 1, @ = R = Q
Next cquation {C) can be writien as

{p £ 104" — 108¢° = 1,

OF say P~ 4qd = 1,
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Hence pr+ b= 248, po— b o 243, qy = Golfs.
Then
gigi=1 qa=1  g=0 or gg=0, gge —1.
Henee q =06, pw 2], P=9, {7 = 0, Ro=d= i,

Lemma 4
The cube of a unit o # + 1, camot be a binomial unit,
Let n= P4 Q¥d + RYDE
Then equating to zero the cocflicient of Va2 in g% we have
PER + POP 4+ REQd = 0, (203
Also PR O & R — 3PORA = (21}

We shall show that the only solutions of these equations are P = |, Q=
R=QorPasR=0, 0=l wdorPsQu=0 R=1d=1

Write ({0, R) = 8 and so (P, db) = |.

Then from equation (20)

R 8%, Q=38 (g =1,

and so PPr 4 Pg® 4 8%%qd = 0,

or g8 = P{Pr 4 ¢%),

But {roPr +gn =1 andso P = pr?,

and ~q8%d = p(q® + pr3), \
Also (P, d8) = 1 and so (p, d8) = |, and g = Py

‘Then - &l e p(ps? 4+ P,

Henge 5w i, — B8 = (% 4 PR

Now!]sig,andsincerirand (g, r) = 1, thent = + 1,
Hence + 8% v p o S (25
Substituting in cquation (21} the valucs
R = r8, g = & p8, P pr® POR = +r%588,
we get Por® 3 pi8d o+ 188 & 3p%08%d = 1.
Replacing 8%/ from equation {22), we have
p:!rs —_ pﬁfp:! o ,—3} e rﬁ{pS -+ .*’3)2 4 3173?'3{]?3 s ;-1!} we §,
of = p% bk 6P 4 BpS w1, 23

There are scveral ways of dealing with this equation.
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Writing pr® = I, r® — p* w m, it becomes
9 b m? =
This is our equation with ¢ = 9. The fundamental unjt is £ = —2 4 99,

Also " is a binomial unit only when # = 1, This proves the lemma,
Alternatively putting p? = v, r® = , we can verify the identity

(4 + 6 + 3u® — OUS = V2 4 e, (24}
where
Ume 4 4+ uo + o7, Moo w4 3nfu — oY, Woe 3% - 3

Hence the only solutions of equations (23} and (24) are given by UVIV = 0
andsou =0,p0= 1§y Bos Oppe — 1 pow j

We can now prove that the ath power of g unit % ¥ k1, is not & binomial
unit. We may assume that 0 < 5 < fandn > 0. We need prove the statement
fornm = 1(mod2) and n # 0 (mod 3.

Write Xr=(P 4 QVd + RVED = x & »Vd
Then X" 4 pY" + o227 =,

where p = 2 and ¥, Z are the conjugates of X in K. This equation can be
written in various forms depending upon the residue of n (mod 3). Thus when
" 2{mod 3},

X 4 (2Y) 4 (pZ)r = O,

Hence p* ¥ + pZ divides the unit X and so must be a unit, i.e. on substituting
for ¥,Z, then — P + 20V — p¥d is a unit,

Hence - P - RO% — R — PR = 1 1,
also P34 Q%+ R%? - 3PORI = 1,
By addition G9Qd(Q% ~ PRY = (, 2,

and so either £ = Gor Q% — PR = 0,

IfQ=0,7=P+ RV and is excluded by Lemma 2.
If 0% — PR =0,

1 1
7 P4 OVd + RVG

= P2+ OOV + ROV — dQR -~ PRYFE .. POV
= P2 — JOR + (R — POYYVd

is a binomial unit > and is excluded by Lemma 1,
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Suppose next that # = 1 (mod 3). Then
X'+ (pY) + (0229 =0,
and $0 p¥ + p°Z, e, —P - O¥d + 2RV d? is 2 unit. Hence
P4 % — BR¥* + 6PPRd = £ 1.
Also P34 0% 4+ R%® — 3PORd = 1.
Hence QRA(F2d —~ POY =10

Then either R = Qand P + Q¥dis a binomial unit and so » = 1 is the only
possibility from Lemma 2, or R — PQ =0,

Then 1 = P% — dOR + (Q? — PRYVd*
is a4 binomial unit > | and this is impossible.

This completes the proof.
Nagell? and Liunggren® have generalized the method above and have found

more comprehensive resulls given us

Theorem 6 L
Let a, b, ¢ be positiveintegers,a > b > L e = 1,3, (ab, ¢} = 1, b= 1ifc =
3, Then the equation

ax? 4 by? = ¢ 29
has at most one integer solution (x, ¥), and for this
e HxVa + yVE
is either the fundamental urit or its square in the cubic feldQ (Vd) defined by

Q{x‘"/ ab®), exeluding however, the equation 2x* + y* = 3 which has the two

sofutions (1, 1) and (4, —5). , ‘ ‘
Further there is at most one equation (25) with given d which has integer

solutions with xy # 0 except when d = 2, 20.

3. Suppose nextthat O > Cin equation {12). There are now two fundamental

units uy, 4y and so
x + By = nind, (26}

it is not often that equations such as (26) are so easily dealt with as in Chapter
27. In general, they prove rather difficult and troublesome as was seen for

the equation
-3 b yie

considered in Chapter 23



