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Abstract. Let X be a mixture of independent Brownian motion and symmetric stable
process. In this paper we establish sharp bounds for transition density of X, and prove
a parabolic Harnack inequality for nonnegative parabolic functions of X.

1. Introduction

Let W = (Wt : t ≥ 0) be a Brownian motion in Euclidean d-space Rd, and let Y = (Yt :

t ≥ 0) be a rotationally invariant α-stable process in Rd, where 0 < α < 2. Suppose that

W and Y are independent and define the process X = (Xt : t ≥ 0) by Xt = Wt +Yt. The

law of X started from x ∈ Rd will be denoted by Px. We will call the process X the mixture

of the Brownian motion W and the stable process Y . Although X is a Lévy process with

explicitly known generator and Lévy measure, until recently not much was known about

the Green function and transition density of this process. The main difficulty in studying

the process is the fact that it runs on two different scales. By realizing the process X as a

subordinate Brownian motion and using Tauberian theorems, the asymptotic behaviors of

the Green function of X near zero and infinity were established in [7]. These asymptotics

were used in proving an elliptic Harnack inequality for the nonnegative harmonic functions

of X. The study of elliptic Harnack inequality for purely discontinuous processes was

initiated only recently by Bass and Levin in [1] whose approach was also used in [7].

Parabolic Harnack inequality for nonnegative parabolic functions of purely discontinu-

ous symmetric Markov processes was established by Chen and Kumagai in [4] based on

the ideas developed in [2]. The processes they studied have a scaling property that was

essentially used in their argument. In a work in progress Chen and Kumagai were able to

extend the parabolic Harnack inequality to a more general class of purely discontinuous

symmetric Markov processes including sums of independent stable processes with differ-

ent scales. Their work so far does not include the process X described in the paragraph

above.
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The goal of this paper is to establish a parabolic Harnack inequality for the nonnegative

parabolic functions of the process X. In order to do this, we first establish sharp upper

and lower bounds for the transition density of X. Although our proof of these bounds is

elementary and does not extend to general Markov processes which have both a continuous

component and a discontinuous component, these bounds can serve as guidelines for the

general case.

The content of this paper is organized as follows. The upper and lower bounds on the

density of X are established in Section 2. In Section 3 we establish a lower bound for the

transition density of the process X killed upon exiting a ball, and in Section 4 we prove

the parabolic Harnack inequality.

2. Bounds for transition densities of the mixture

Let p(2)(t, x) be the transition density of W , and p(α)(t, x) the transition density of Y .

Then

p(2)(t, x) = (4πt)−d/2 exp(−|x|
2

4t
) ,

while it follows from [3] that there are positive constants C1, C2 such that for all t > 0

and x ∈ Rd,

(1) C1 min(t−d/α, t|x|−d−α) ≤ p(α)(t, x) ≤ C2 min(t−d/α, t|x|−d−α) .

The transition density p(t, x) of X is given by

p(t, x) :=

∫

Rd

p(2)(t, x− y)p(α)(t, y) dy .

The purpose of this section is to obtain sharp bounds on p(t, x). In order to do this, we

will need to compare p(2)(t, x) and p(α)(t, x).

Lemma 2.1. Let γ > 0.

(i) There exists a positive constant c > 0 such that for all x ∈ Rd and all t > 0

satisfying |x| ≤ 1 ≤ t, it holds that

t−d/α ≤ ct−d/2 exp(−|x|
2

γt
) .

(ii) For all x ∈ Rd and all t ∈ (0, 1), it holds that

t−d/α ≥ t−d/2 exp(−|x|
2

γt
) .

(iii) There exists a positive constant c > 0 such that for all t > 0 and all |x| ≥ 1, it

holds that

(2) t−d/2 exp(−|x|
2

γt
) ≤ ct|x|−d−α .



PARABOLIC HARNACK INEQUALITY FOR THE MIXTURE 3

Proof. We omit the easy proofs of (i) and (ii), and only give a proof of (iii).

For fixed x 6= 0, define f : (0,∞) → (0,∞) by

f(t) := t−d/2−1 exp(−|x|2/(γt)) .

Then f(0+) = f(+∞) = 0. Further,

f ′(t) = f(t)t−2(−(d/2 + 1)t + |x|2/γ) .

This derivative is zero for

t0 =
|x|2

(d/2 + 1)γ
,

positive for t < t0, and negative for t > t0. Thus f attains its maximum value at t0, and

max f = f(t0) =

( |x|2
(d/2 + 1)γ

)−d/2−1

exp

(
−|x|

2

γ

(d/2 + 1)γ

|x|2
)

= ((d/2 + 1)γ)d/2+1 exp(−d/2− 1) |x|−d−2 = c|x|−d−2 .

It follows that for all t > 0

t−d/2 exp(−|x|2/(γt)) ≤ tf(t) ≤ tc|x|−d−2 = ct|x|−d−α|x|α−2 ≤ ct|x|−d−α

since |x| ≥ 1. ¤

Remark 2.2. Note that the proof of (iii) shows that for |x| < 1 there does not exist a

positive constant c independent of x such that (2) holds. Clearly, the reverse inequality

cannot be true either.

Now we will establish upper bounds for p(t, x).

Lemma 2.3. There exists a positive constant c such that for t ≥ |x|α,

p(t, x) ≤ cp(α)(t, x) .

Proof. For all y ∈ Rd, p(α)(t, y) ≤ C2t
−d/α. For t > |x|α, we have that p(α)(t, x) ≥

C1t
−d/α. Hence,

p(t, x) =

∫

Rd

p(2)(t, x− y)p(α)(t, y) dy

≤ C2t
−d/α

∫

Rd

p(2)(t, x− y) dy ≤ (C2/C1)p
(α)(t, x) .

¤

Lemma 2.4. There exists a positive constant c such that for t ≥ |x|2,
p(t, x) ≤ cp(2)(t, x) .
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Proof.

p(t, x) =

∫

Rd

p(2)(t, x− y)p(α)(t, y) dy

= p(2)(t, x)

∫

Rd

p(2)(t, x− y)

p(2)(t, x)
p(α)(t, y) dy

= p(2)(t, x)

∫

Rd

exp(
1

4t
(|x|2 − |x− y|2))p(α)(t, y) dy

≤ p(2)(t, x)

∫

Rd

exp(|x|2/(4t))p(α)(t, y) dy

= p(2)(t, x) exp(|x|2/(4t)) ≤ e1/4 p(2)(t, x) .

¤

Lemma 2.5. Let p̃(2)(t, x) := (4πt)−d/2 exp{−|x|2/(16t)}. There exists a positive con-

stant c such that for all |x| ≤ 1 and all t < |x|2,
p(t, x) ≤ max(p̃(2)(t, x), p(α)(t, x)) .

Proof.

p(t, x) =

∫

Rd

p(2)(t, x− y)p(α)(t, y) dy

=

∫

|y|< t1/α

2

+

∫
t1/α

2
≤|y|< t1/2

2

+

∫

|y|≥ t1/2

2
, |y−x|>|x|/2

+

∫

|y|≥ t1/2

2
, |y−x|≤|x|/2

=: I1 + I2 + I3 + I4 .

(i) For |y| < t1/α/2 and t1/2 < |x| ≤ 1, it holds that 2|y| < t1/α < t1/2 < |x|. Hence

|x − y| > |x|/2, and so exp{−|x − y|2/(4t)} ≤ exp{−|x|2/(16t)}. Clearly, p(α)(t, y) ≤
C2t

−d/α. Therefore,

I1 ≤ C2(4πt)−d/2 exp(−|x|2/(16t))t−d/α

∫

|y|< t1/α

2

dy

= c1(4πt)−d/2 exp(−|x|2/(16t)) .

(ii) For |y| < t1/2/2 we have that 2|y| < t1/2 < |x|, and so again |x− y| > |x|/2. Clearly,

p(α)(t, y) ≤ C2t|y|−d−α. Therefore,

I2 ≤ C2(4πt)−d/2 exp(−|x|2/(16t))

∫
t1/α

2
≤|y|< t1/2

2

ty−d−α dy

= c2(4πt)−d/2 exp(−|x|2/(16t)) t

∫ t1/2

2

t1/α

2

rd−1r−d−α dr

= c3(4πt)−d/2 exp(−|x|2/(16t)) t ((t1/α)−α − (t1/2)−α)

= c3(4πt)−d/2 exp(−|x|2/(16t)) (1− t1−α/2)

≤ c3(4πt)−d/2 exp{−|x|2/(16t)} .
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(iii) Similarly as in (ii),

I3 ≤ C2(4πt)−d/2 exp(−|x|2/(16t))

∫

|y|≥ t1/2

2
, |y−x|>|x|/2

ty−d−α dy

≤ C2(4πt)−d/2 exp(−|x|2/(16t)) t

∫

|y|≥ t1/2

2

|y|−d−α dy

= c4(4πt)−d/2 exp(−|x|2/(16t)) t (t1/2)−α

≤ c5(4πt)−d/2 exp(−|x|2/(16t)) ,

since t1−α/2 ≤ 1 for t ≤ 1.

(iv) For |y − x| ≤ |x|/2, we have |y| ≥ |x|/2, and hence |y|−d−α ≤ 2d+α|x|−d−α. Further,

since t < |x|2 < |x|α for |x| ≤ 1, it holds that t|x|−d−α ≤ (1/C1)p
(α)(t, x). Thus

I4 ≤ C2

∫

|y|≥ t1/2

2
, |y−x|≤|x|/2

p(2)(t, x− y)t|y|−d−α dy

≤ c6

∫

|y|≥ t1/2

2
, |y−x|≤|x|/2

p(2)(t, x− y)t|x|−d−α dy

≤ c6t|x|−d−α

∫

Rd

p(2)(t, x− y) dy ≤ c7p
(α)(t, x) .

From the estimates above it follows that

p(t, x) ≤ c8p̃
(2)(t, x) + c7p

(α)(t, x) ≤ c9 max(p̃(2)(t, x), p(α)(t, x)) .

¤

Lemma 2.6. There exists a positive constant c such that for all t < |x|α and |x| ≥ 1, it

holds that

p(t, x) ≤ cp(α)(t, x) .

Proof.

p(t, x) =

∫

Rd

p(2)(t, x− y)p(α)(t, y) dy

=

∫

|x−y|≤|x|/2

+

∫

|x−y|>|x|/2,|y|≥t1/α

+

∫

|x−y|>|x|/2,|y|<t1/α

=: I1 + I2 + I3 .

(i) For |x−y| ≤ |x|/2 we have |y| ≥ |x|/2. Hence p(α)(t, y) ≤ C2t|y|−d−α ≤ C22
d+αt|x|−d−α =

c10t|x|−d−α. Also, p(α)(t, x) ≥ C1t|x|−d−α. Therefore,

I1 ≤ c10t|x|−d−α

∫

|x−y|≤|x|/2

p(2)(t, x− y) dy

≤ c10t|x|−d−α ≤ c11p
(α)(t, x) .



6 R. SONG AND Z. VONDRAČEK

(ii) For |x−y| ≥ |x|/2 we have exp{−|x−y|2/(4t)} ≤ exp(−|x|2/(16t)). Also, p(α)(t, y) ≤
C2t|y|−d−α. Therefore,

I3 ≤ C2(4πt)−d/2 exp(−|x|2/(16t))

∫

|x−y|≥|x|/2,|y|≥t1/α

t|y|−d−α dy

≤ C2(4πt)−d/2 exp(−|x|2/(16t))t

∫

|y|≥t1/α

|y|−d−α dy

≤ c12(4πt)−d/2 exp(−|x|2/(16t))t(t1/α)−α

= c13(4πt)−d/2 exp(−|x|2/(16t)) ≤ c14p
(α)(t, x),

where in the last inequality we used Lemma 2.1 (iii).

(iii) For |x−y| ≥ |x|/2 we have exp(−|x−y|2/(4t)) ≤ exp{−|x|2/(16t)}. Also, p(α)(t, y) ≤
C2t

−d/α. Therefore,

I3 ≤ C2(4πt)−d/2 exp(−|x|2/(16t))

∫

|y|<t1/α

t−d/αdy

≤ c15(4πt)−d/2 exp(−|x|2/(16t)) ≤ c16p
(α)(t, x) ,

where in the last inequality we used Lemma 2.1 (iii).

From the estimates above it follows that p(t, x) ≤ c17p
(α)(t, x). ¤

Remark 2.7. Suppose that t < |x|α and |x| ≥ R, where 0 < R < 1. Then p(t, x) ≤
cRα−2p(α)(t, x), where the constant c does not depend on R. This can be proved by

changing the estimates for I2 and I3, by using a modification of Lemma 2.1 (iii).

Next we establish lower bounds for p(t, x).

Lemma 2.8. Let p̂(2)(t, x) := (4πt)−d/2 exp(−|x|2/t). There exists a positive constant c

such that for all t ≤ |x|α,

p(t, x) ≥ cp̂(2)(t, x) .
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Proof. For |y| ≤ |x| we have that |y − x| ≤ 2|x|, and hence exp(−|x − y|2/(4t)) ≥
exp(−|x|2/t). Therefore,

p(t, x) ≥
∫

B(0,|x|)
p(2)(t, x− y)p(α)(t, y) dy

≥ (4πt)−d/2 exp(−|x|2/t)
∫

B(0,|x|)
p(α)(t, y) dy

= (4πt)−d/2 exp(−|x|2/t)
∫

B(0,|x|)
t−d/αp(α)(1, t−1/αy) dy

= (4πt)−d/2 exp(−|x|2/t)
∫

B(0,t−1/α|x|)
p(α)(1, u) du

≥ (4πt)−d/2 exp(−|x|2/t)
∫

B(0,1)

p(α)(1, u) du

= c1(4πt)−d/2 exp(−|x|2/t) .

¤

Lemma 2.9. There exists a positive constant c such that for every x ∈ Rd and every

y ∈ B(x, |x|/2), it holds that

p(α)(t, y)

p(α)(t, x)
≥ c .

Proof. This result can be easily proved by looking at the following four cases. Case

1: t > |x|α, t > |y|α; Case 2: t ≤ |x|α, t ≤ |y|α; Case 3: t > |x|α, t ≤ |y|α and Case 4:

t ≤ |x|α, t > |y|α. We omit the details. ¤

Lemma 2.10. There exists a positive constant c such that for all t ≤ |x|2,

p(t, x) ≥ cp(α)(t, x) .
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Proof.

p(t, x) =

∫

Rd

p(α)(t, y)p(2)(t, x− y) dy

= p(α)(t, x)

∫

Rd

p(α)(t, y)

p(α)(t, x)
p(2)(t, x− y) dy

≥ c1p
(α)(t, x)

∫

B(x,|x|/2)

p(2)(t, x− y) dy

= c1p
(α)(t, x)

∫

B(0,|x|/2)

p(2)(t, y) dy

= c̃p(α)(t, x)

∫

B(0,t−1/2|x|/2)

p(2)(1, u) du

≥ c1p
(α)(t, x)

∫

B(0,1/2)

p(2)(1, u) du = c2p
(α)(t, x) ,

where the third line follows from Lemma 2.9. ¤

Lemma 2.11. There exists a positive constant c such that for all t ≥ 1 and all |x|α < t

we have

p(t, x) ≥ cp(α)(t, x) .

Proof. For |x|α < t, p(α)(t, x) ≤ C2t
−d/α. If |y − x| ≤ t1/α, then |y| ≤ |x− y| + |x| ≤

2t1/α. If |y| ≤ t1/α, then p(α)(t, y) ≥ C1t
−d/α. If t1/α < |y| ≤ 2t1/α, then p(α)(t, y) ≥

C1t|y|−d−α ≥ C12
−d−αt−d/α. Therefore,

p(t, x) ≥
∫

|x−y|≤t1/α

p(2)(t, x− y)p(α)(t, y) dy

≥ c3t
−d/α

∫

|x−y|≤t1/α

p(2)(t, x− y) dy

= c3t
−d/α

∫

|y|≤t1/α

p(2)(t, y) dy = c3t
−d/α

∫

|y|≤t−1/2t1/α

p(2)(1, u) du

≥ c3t
−d/α

∫

|y|≤1

p(2)(1, u) du = c4t
−d/α ≥ c5p

(α)(t, x) .

¤

Lemma 2.12. There exists a positive constant c such that for all |x|α ≤ t ≤ 1 it holds

that

p(t, x) ≥ cp(2)(t, x) .
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Proof. If |y| < t1/α, then p(α)(t, y) ≥ C1t
−d/α. Also, |x−y| ≤ |x|+|y| ≤ 2t1/α implying

exp(−|x− y|2/(4t)) ≥ exp(−4t2/α/(4t)) = exp(−t2/α−1) ≥ e−1, since t2/α−1 ≤ 1 for t ≤ 1.

Therefore,

p(t, x) ≥
∫

|y|<t1/α

p(2)(t, x− y)p(α)(t, y) dy

≥ C1t
−d/α

∫

|y|<t1/α

p(2)(t, x− y) dy

≥ C1t
−d/α(4πt)−d/2e−1

∫

|y|<t1/α

dy

= c6(4πt)−d/2 ≥ c6(4πt)−d/2 exp(−|x|2/(4t))
= c6p

(2)(t, x) .

¤

By collecting the results from previous lemmas, we obtain the lower and upper bounds

for the transition density p(t, x). In order to briefly state the result, we define

q1(t, x) =





p̂(2)(t, x), |x|2 < t < |x|α ≤ 1 ,

max(p̂(2)(t, x), p(α)(t, x)), t < |x|2 ≤ 1 ,

p(2)(t, x), |x|α ≤ t ≤ 1 ,

p(α)(t, x), t ≥ 1 or |x| ≥ 1 ,

and

q2(t, x) =





p(2)(t, x), |x|2 < t < |x|α ≤ 1 ,

max(p̃(2)(t, x), p(α)(t, x)), t < |x|2 ≤ 1 ,

p(2)(t, x), |x|α ≤ t ≤ 1 ,

p(α)(t, x), t ≥ 1 or |x| ≥ 1 .

Theorem 2.13. There exists a positive constant C3 such that

C−1
3 q1(t, x) ≤ p(t, x) ≤ C3q2(t, x).

3. Lower bounds for transition densities of the killed process

In this section we will establish a lower bound for the transition density of the process

X killed upon exiting a ball of radius R. Let p(t, x, y) := p(t, y − x). We first need the

following lemma.

Lemma 3.1. There exists a constant C4 > 0 such that for every R > 0, every x ∈ Rd

and every t > 0,

(3) Px(τB(x,R) ≤ t) ≤ C4t

R2 ∧Rα
,

where τB(x,R) = inf{s > 0; Xt /∈ B(x,R)}.
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This result for R ∈ (0, 1] appears as Lemma 2.1 in [8]. By a slight modification of the

proof, the result follows for R ≥ 1 as well.

Let R > 0, B = B(0, R), and let τB denote the first exit time of X from B. Let XB

denote the process X killed upon exiting B. The transition density of XB is given by

pB(t, x, y) = p(t, x, y)− rB(t, x, y) , x, y ∈ B ,

where

rB(t, x, y) = Ex[p(t− τB, XτB
, y) 1(t>τB)] .

Lemma 3.2. There exist constants C5 > 0 and C6 ∈ (0, 1/10) such that:

(i) For every R > 0, for all x, y ∈ B(0, 2R/3) and all 0 < t < 1 satisfying |x− y|2 <

t ≤ C6(R
2 ∧Rα) it holds that

pB(t, x, y) ≥ C5t
−d/2 .

(ii) For every R ≥ 1, for all x, y ∈ B(0, 2R/3) and all t ≥ 1 satisfying |x− y|α < t ≤
C6R

α it holds that

pB(t, x, y) ≥ C5t
−d/α .

(iii) For every R ≥ 1, for all x, y ∈ B(0, 2R/3) and all t ≥ 1 satisfying |x − y|α ≥ t

and t ≤ C6R
α it holds that

pB(t, x, y) ≥ C5tR
−d−α .

Proof. We first find an upper bound for rB(t, x, y). Suppose that 0 < R ≤ 1. Note

that by combining Lemma 2.6 with Remark 2.7, if |y − z| > R/3 and t < |y − z|2, then

p(t, z, y) ≤ c(R/3)α−2p(α)(t, z, y) ≤ cC2(R/3)α−2 t |z − y|−d−α. Let x, y ∈ B(0, 2R/3) and

choose t ≤ R2/10. Then |XτB
− y| > R/3 and t ≤ R2/10 < |XτB

− y|2, so on {t > τB}
p(t− τB, XτB

, y) ≤ cC2(R/3)α−2(t− τB)|XτB
− y|−d−α

≤ cC2(R/3)α−2t(R/3)−d−α ≤ c1R
−d−2t .

Note further that for x ∈ B(0, 2R/3) it holds that Px(τB < t) ≤ Px(τB(x,R/3) < t) ≤
C4t/(R/3)2 by Lemma 3.1. Therefore, for all x, y ∈ B(0, 2R/3) and all t ≤ R2/10,

rB(t, x, y) = Ex[p(t− τB, XτB
, y) 1(t>τB)]

≤ c1R
−d−2tPx(t > τB)

≤ 9c1R
−d−2t C4tR

−2 = c2t
2R−d−4 .

Suppose now that R ≥ 1. If 1 > |y − z| ≥ R/3 ≥ 1/3, and t < |y − z|α, it holds

by Remark 2.7 that p(t, y, z) ≤ c(1/3)α−2p(α)(t, y, z). If 1 > |y − z| ≥ R/3 ≥ 1/3, and

t ≥ |y−z|α, then by Lemma 2.3, p(t, y, z) ≤ cp(α)(t, y, z). If |y−z| ≥ 1, then the estimate

p(t, y, z) ≤ cp(α)(t, y, z) follows from Theorem 2.13. Therefore, whenever |y − z| ≥ R/3
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and for all t > 0, p(t, y, z) ≤ cp(α)(t, y, z) ≤ cC2t|y − z|−α−d ≤ cC2t(R/3)−α−d. Let

x, y ∈ B(0, 2R/3). Then on {t > τB}
p(t− τB, XτB

, y) ≤ cC2t(R/3)−d−α ≤ c3R
−d−αt .

Again by Lemma 3.1, Px(τB < t) ≤ Px(τB(x,R/3) < t) ≤ C4t/(R/3)α. It follows that

rB(t, x, y) = Ex[p(t− τB, XτB
, y) 1(t>τB)]

≤ c3R
−d−αtPx(t > τB)

≤ 9c3R
−d−αt C4tR

−α = c4t
2R−d−2α .

(i) Suppose first that 0 < t < 1 and R ∈ (0, 1]. For all x, y ∈ Rd such that |x− y| ≤ 1,

we have by Theorem 2.13 that p(t, x, y) ≥ c5p̂
(2)(t, y−x). Therefore, for x, y ∈ B(0, 2R/3)

and |x− y|2 ≤ t ≤ R2/10 it follows that

p(t, x, y) ≥ c5(4πt)−d/2e−|x−y|2/t ≥ c6e
−1 t−d/2 = c7t

−d/2 .

It follows that for x, y ∈ B(0, 2R/3) and |x− y|2 ≤ t ≤ R2/10

pB(t, x, y) = p(t, x, y)− rB(t, x, y)

≥ c7t
−d/2 − c2t

2R−d−4

= c7t
−d/2(1− c2

c7

t(d+4)/2R−d−4) ≥ c7

2
t−d/2

provided that 1− (c2/c7)t
(d+4)/2R−d−4 > 1/2. This last condition is satisfied if

t <

(
c7

2c2

)2/(d+4)

R2 = c8R
2 .

Suppose now that 0 < t < 1 and R ≥ 1. The same argument as above shows that

for x, y ∈ B(0, 2R/3) and |x − y|2 ≤ t ≤ Rα/10 it holds that p(t, x, y) ≥ c7t
−d/2, and

consequently

pB(t, x, y) = p(t, x, y)− rB(t, x, y)

≥ c7t
−d/2 − c2t

2R−d−2α

= c7t
−d/2(1− c2

c7

t(d+4)/2R−d−2α) ≥ c7

2
t−d/2

provided that 1− (c2/c7)t
(d+4)/2R−d−2α > 1/2. This last condition is satisfied if

t <

(
c7

2c2

)2/(d+4)

R2(d+2α)/(d+4) = c9R
2(d+2α)/(d+4) .

Note that α < 2(d + 2α)/(d + 4). Therefore, if t < c9R
α, then t < c9R

2(d+2α)/(d+4), and

consequently pB(t, x, y) ≥ (c7/2)t−d/2.

Choose c11 = min(1/10, c8, c9). Then we have proved that for every R > 0, for all

x, y ∈ B(0, 2R/3) and all 0 < t < 1 satisfying |x− y|2 < t ≤ c11(R
2 ∧Rα) it holds that

pB(t, x, y) ≥ c7

2
t−d/2 .
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(ii) Let R ≥ 1 and x, y ∈ B(0, 2R/3). Suppose that |x − y|α < t. By Theorem 2.13,

p(t, x, y) ≥ C−1
3 p(α)(t, x, y) ≥ C−1

3 C2 min(t−d/α, t|x − y|−d−α) ≥ c12t
−d/α. By combining

with the upper bound for rB(t, x, y), it follows that

pB(t, x, y) = p(t, x, y)− rB(t, x, y)

≥ c12t
−d/α − c4t

2R−d−2α

= c12t
−d/α(1− c4

c12

td/α+2R−d−2α) ≥ c12

2
t−d/α

provided that 1− (c4/c12)t
d/α+2R−d−2α > 1/2. This last condition is satisfied if

t <

(
c12

2c4

)α/(d+2α)

Rα = c13R
α .

(iii) Let R ≥ 1 and x, y ∈ B(0, 2R/3). Suppose that |x − y|α ≥ t. Again by Theorem

2.13, p(t, x, y) ≥ C−1
3 p(α)(t, x, y) ≥ C−1

3 C2 min(t−d/α, t|x−y|−d−α) = C−1
3 C2t|x−y|−d−α ≥

c14tR
−d−α. By combining with the upper bound for rB(t, x, y), it follows that

pB(t, x, y) = p(t, x, y)− rB(t, x, y)

≥ c14tR
−d−α − c4t

2R−2α−d

≥ c14tR
−d−α(1− c4

c14

tR−α)

≥ c14

2
tR−d−α

provided that 1− (c4/c14)tR
−α ≥ 1/2. This is satisfied if

t <
c14

2c4

Rα = c15R
α .

We finish the proof of the lemma by choosing C5 = min(c5/2, c12/2, c14/2) and C6 =

min(c11, c13, c15). ¤

Let N = b2/C6c where C6 is the constant from Lemma 3.2, and b·c denotes the smallest

integer function. The proof of the next result follows the proof of Theorem 2.7 in [5].

Proposition 3.3. Let δ ∈ (0, 1). There exists a constant C7 = C7(δ) > 0 such that for

all 0 < R ≤ (2N/δ)1/α, all x, y ∈ B(0, R/2) and all 0 < t ≤ R2 ∧Rα it holds that

pB(t, x, y) ≥ C7t
−d/2e−|x−y|2/(C7t) .

Proof. Let R ≤ (2N/δ)1/α, x, y ∈ B(0, R/2) and t ≤ R2 ∧ Rα. Suppose first that

t < |x− y|2 and define k = b4N |x− y|2/(δt)c. Then k ≥ 2N/δ ≥ 2/(C6δ), and therefore

t/k ≤ (C6δt)/2 ≤ (1/2)C6δ(R
2 ∧Rα) ≤ C6(R

2 ∧Rα). Moreover,

C6δ

2
(R2 ∧Rα) ≤ C6δ

2

[(
N

δ

)1/α
]α

≤ C6δ

2

N

δ
≤ 1 ,
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implying that t/k ≤ 1. For l = 1, 2, . . . , k − 1 let

zl = x +
l

k
(y − x) .

From k ≥ 2N |x− y|2/(δt) it follows that |x− y|2 ≤ δkt/(2N). Therefore

|zl − zl−1| = |x− y|
k

≤
√

δ

2

√
kt/N

k
=

√
δ

2N

√
t

k
.

Define

S =
k−1∏

l=1

B

(
zl,

√
δ

2N

√
t

k

)
.

Note that √
δ

2N

√
t

k
≤

√
δ

2N

√
C6R2 ≤ C6R ≤ 1

10
R ,

implying that for every l = 1, 2, . . . , k − 1,

B

(
zl,

√
δ

2N

√
t

k

)
⊂ B(0, 2R/3) .

For ζl ∈ B(zl,
√

δ/(2N)
√

t/k) and ζl−1 ∈ B(zl−1,
√

δ/(2N)
√

t/k), l = 2, 3, . . . , k − 1, we

have that |ζl − ζl−1| ≤ |ζl − zl| + |zl − zl−1| + |zl−1 − ζl−1| ≤ 3
√

δ/(2N)
√

t/k ≤
√

t/k.

Therefore,

|ζl − ζl−1|2 ≤ t

k
≤ C6(R

2 ∧Rα) ,

implying by Lemma 3.2(i) that pB(t/k, ζl−1, ζl) ≥ C5(t/k)−d/2. Hence

pB(t, x, y) =

∫

B

∫

B

. . .

∫

B

pB

(
t

k
, x, ζ1

)
pB

(
t

k
, ζ1, ζ2

)
· · · pB

(
t

k
, ζk−1, y

)
dζ1 dζ2 . . . dζk−1

≥
∫

. . .

∫

S

pB

(
t

k
, x, ζ1

)
pB

(
t

k
, ζ1, ζ2

)
· · · pB

(
t

k
, ζk−1, y

)
dζ1 dζ2 . . . dζk−1

≥ |S|
(

C5

(
t

k

)−d/2
)k

=

(
|B(0, 1)|

(
δt

2Nk

)d/2
)k−1 (

C5

(
t

k

)−d/2
)k

=

(
C5δ

d/2|B(0, 1)|
2d/2Nd/2

)k
2d/2Nd/2

δd/2|B(0, 1)|k
d/2t−d/2

≥ exp

(
−k log(

2d/2Nd/2

C5δd/2|B(0, 1)|)
)

2d/2Nd/2

δd/2|B(0, 1)|N
d/2t−d/2

≥ c16 exp

(
− log(

2d/2Nd/2

C5δd/2|B(0, 1)|)
4N |x− y|2

δt

)
t−d/2

≥ c17t
−d/2 exp

(
−|x− y|2

c17t

)
.
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Assume now that t ≥ |x−y|2 and define k = b4N/δc. Then again k ≥ 2N/δ ≥ 2/(C6δ)

implying t/k ≤ C6t ≤ C6(R
2 ∧ Rα) and t/k ≤ 1. The same argument as above gives the

following estimate

pB(t, x, y) ≥
(

C5δ
d/2|B(0, 1)|
2d/2Nd/2

)k
2d/2Nd/2

δd/2|B(0, 1)|k
d/2t−d/2

≥
(

C5δ
d/2|B(0, 1)|
2d/2Nd/2

)2N
2d/2Nd/2

δd/2|B(0, 1)|(2N)d/2t−d/2

= c18t
−d/2 ≥ c18t

−d/2 exp

(
−|x− y|2

c18t

)
.

The claim follows by taking C7 = min(c17, c18). ¤

Proposition 3.4. Let δ ∈ (0, 1). There exists a constant C8 = C8(δ) > 0 such that for

all R ≥ (2N/δ)1/α, all x, y ∈ B(0, R/2) and all t satisfying δRα < t < Rα it holds that

pB(t, x, y) ≥ C8t
−d/α .

Proof. Let R ≥ (2N/δ)1/α and δRα < t < Rα. First note that δRα ≥ 2N , implying

t ≥ 2N . Define k = N . Then clearly t/k = t/N ≥ 1. Also, since N > 1/C6, we have that

t/k ≤ C6t ≤ C6R
α.

Suppose that u, v ∈ B(0, R/2). If |u− v|α ≤ t/k, then by Lemma 3.2(ii) it follows that

pB(t/k, u, v) ≥ C5

(
t

k

)−d/α

≥ C5t
−d/α .

If |u − v|α ≥ t/k, then by Lemma 3.2(iii) it follows that pB(t/k, u, v) ≥ C5(t/k)R−d−α.

But since δRα < t, we have that R < (t/δ)1/α, implying

pB(t/k, u, v) ≥ C5
t

k

(
t

δ

)−(d+α)/α

= C5
δ1+d/α

N
t−d/α = c19t

−d/α .

Hence, for any u, v ∈ B(0, R/2) it holds that pB(t/k, u, v) ≥ c19t
−d/α. Define

S =
k−1∏

l=1

B

(
0,

t1/α

k

)
.

Note that B(0, t1/α/k) ⊂ B(0, R/2) since t < Rα. Hence

pB(t, x, y) =

∫

B

∫

B

. . .

∫

B

pB

(
t

k
, x, ζ1

)
pB

(
t

k
, ζ1, ζ2

)
· · · pB

(
t

k
, ζk−1, y

)
dζ1 dζ2 . . . dζk−1

≥
∫

. . .

∫

S

pB

(
t

k
, x, ζ1

)
pB

(
t

k
, ζ1, ζ2

)
· · · pB

(
t

k
, ζk−1, y

)
dζ1 dζ2 . . . dζk−1

≥ |S|
(

c19

(
t

k

)−d/α
)k

=

(
|B(0, 1)|

(
t1/α

k

)d
)k−1 (

c19

(
t

k

)−d/α
)k

= |B(0, 1)|k−1ck
19k

dk(1/α−1)+dt−d/α = c20t
−d/α ,
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where c20 depends on δ. Choose C8 = c20. ¤

Corollary 3.5. Let δ ∈ (0, 1). There exists a constant C9 = C9(δ) > 0 such that for

all R > 0, all x, y ∈ B(0, R/2) and all t ∈ (δ(R2 ∧Rα), R2 ∧Rα) it holds that

pB(t, x, y) ≥ C9

Rd
.

Proof. Suppose first that R ≤ 1. By Proposition 3.3,

pB(t, x, y) ≥ C7t
−d/2e−|x−y|2/(C7t) .

We use that |x − y|2/t ≤ 1/δ and t−d/2 ≥ R−d to obtain the estimate with c21 =

C7 exp(−1/(C7δ)). If 1 ≤ R ≤ (2N/δ)1/α, then again by Proposition 3.3,

pB(t, x, y) ≥ C7t
−d/2e−|x−y|2/(C7t) .

Now we use the estimate

|x− y|2
t

≤ R2

δRα
≤ 1

δ

(
2N

δ

)(2−α)/α

= c22 ,

and t ≤ Rα ≤ R2, to obtain that

pB(t, x, y) ≥ C7e
−c22/C7R−d = c23R

−d .

Finally, let R ≥ (2N/δ)1/α. Then by Proposition 3.4 it holds that

pB(t, x, y) ≥ C8t
−d/α ≥ C8R

−d .

The proof is finished by choosing C9 = min(c21, c22, C8).

¤

4. Parabolic Harnack inequality

In this section we are going to prove the parabolic Harnack inequality following closely

the approach from [4]. Let us first introduce the space-time process Zs = (T0 + s,Xs).

The law of the space-time process starting from (t, x) ∈ [0,∞) × Rd will be denoted by

P(t,x).

Definition 4.1. Let (t, x) ∈ [0,∞)×Rd and let r1, r2 > 0. We say that a nonnegative

function q : [0,∞) × Rd → [0,∞) is parabolic in [t, t + r1] × B(x, r2) if for any [s1, s2] ⊂
[t, t + r1) and B(y, r) ⊂ B(y, r) ⊂ B(x, r2) we have

q(s, z) = E(s,z)(q(Zτ[s1,s2)×B(y,r)
)), ∀(s, z) ∈ [s1, s2)×B(y, r),

where τ[s1,s2)×B(y,r) = inf{s : Zs /∈ [s1, s2)×B(y, r)}.
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For t ≥ 0, x ∈ Rd and R > 0, define

Q(t, x, R) = [t, t + (R2 ∧Rα)]×B(x, R) .

For A ⊂ [0,∞)× Rd, let σA = inf{t > 0; Zt ∈ A} and As = {y ∈ Rd; (s, y) ∈ A}.
The idea for the proof of the next result comes from [6].

Lemma 4.2. Let δ ∈ (0, 1]. There exists a constant C10 = C10(δ) > 0 such that for all

R > 0, any z ∈ Rd, any v ∈ B(z, R/3) and any A ⊂ Q(0, z, R/2)∩([δ(R2∧Rα),∞)×Rd),

P(0,v)(σA < τR) ≥ C10
|A|

Rd(R2 ∧Rα)
,

where τR = τQ(0,z,R).

Proof. We are going to estimate the expected time that the space-time process Z

spends in A before exiting Q(0, z, R). Let XB(z,R) denote the process X killed upon

exiting the ball B(z, R) and let pB(z,R) be its transition density. Then

E(0,v)

∫ τR

0

1A(s,Xs) ds = E(0,v)

∫ ∞

0

1A(s, XB(z,R)
s ) ds =

∫ R2∧Rα

0

P(0,v)((s,XB(z,R)
s ) ∈ A) ds

=

∫ R2∧Rα

0

Pv(XB(z,R)
s ∈ As) ds =

∫ R2∧Rα

δ(R2∧Rα)

∫

As

pB(z,R)(s, v, y) dy ds

≥
∫ R2∧Rα

δ(R2∧Rα)

∫

As

C9

Rd
dy ds = C9

|A|
Rd

,

where the inequality follows from Corollary 3.5 by using that s ∈ (δ(R2 ∧ Rα), R2 ∧ Rα)

and v, y ∈ B(z, R/2). On the other hand,

E(0,v)

∫ τR

0

1A(s,Xs) ds =

∫ ∞

0

P(0,v)(

∫ τR

0

1A(s,Xs) ds > u) du

=

∫ R2∧Rα

0

P(0,v)(

∫ τR

0

1A(s,Xs) ds > u) du

≤
∫ R2∧Rα

0

P(0,v)(

∫ τR

0

1A(s,Xs) ds > 0) du

≤ (R2 ∧Rα)P(0,v)(σA < τR) .

The last two displays prove the lemma. ¤

Define U(t, x, r) = {t} ×B(x, r).

Lemma 4.3. Let δ ∈ (0, 1). There exists C11 = C11(δ) > 0 such that for all R > 0, any

z ∈ Rd, (t, x) ∈ Q(0, z, R/3), v ∈ B(z, R/3), r ≤ R/4 and t ≥ δ(R2 ∧Rα),

P(0,v)(σU(t,x,r/3) < τQ(0,z,R)) ≥ C11
(r/3)d+2

Rd+2
.
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Proof. Note that

P(0,v)(σU(t,x,r/3) < τQ(0,z,R)) = Pv(X
B(z,R)
t ∈ B(x, r/3))

=

∫

B(x,r/3)

pB(z,R)(t, v, y) dy ≥ C9
|B(x, r/3)|

Rd

= C11
(r/3)d

Rd
≥ C11

(r/3)d+2

Rd+2
,

which proves the corollary. Note that the first inequality above follows from Corollary

3.5, because v, y ∈ B(z, R/2) and t ≥ δ(R2 ∧Rα). ¤

Lemma 4.4. There exists a constant C12 such that for any x ∈ Rd, r > 0, y ∈ B(x, r/3)

and any bounded non-negative function h on [0,∞) × Rd that is supported in [0,∞) ×
B(x, 2r)c,

(4) E(0,x)[h(τr, Xτr)] ≤ C12E(0,y)[h(τr, Xτr)] ,

where τr = τQ(0,x,r).

Proof. A Lévy system (N, H) of the process X is given by N(x, dy) = c dy
|x−y|d+α and

Ht = t for some positive constant c. Thus the proof of the lemma is the same as that of

Lemma 4.9 in [4]. The fact that our process X has a continuous component does not play

any role since the function h is supported in [0,∞)×B(x, 2r)c. ¤

With these lemmas observed, the next theorem can be proved in a manner similar to

that in Proposition 4.3 in [4].

Theorem 4.5. For every δ ∈ (0, 1/18) there exists a constant C13 = C13(δ) > 0 such

that for all R > 0, for every z ∈ Rd and every non-negative function q on [0,∞) × Rd

that is parabolic and bounded on [0, 4(R2 ∧Rα)]×B(z, 2R),

sup
(t,y)∈Q(δ(R2∧Rα),z,R/3)

q(t, y) ≤ C13 inf
y∈B(z,R/3)

q(0, y) .

Proof. Without loss of generality we may assume that

inf
y∈B(z,R/3)

q(0, y) = 1/2 .

Let v ∈ B(z, R/3) be such that q(0, v) ≤ 1. For any x ∈ Rd and t ≥ 0, consider Q(t, x, r)

for r ≤ R/4 and let τr = τQ(t,x,r). Suppose that C ⊂ Qδ(t, x, r/3) := Q(t, x, r/3) ∩ ([t +

δ(r2 ∧ rα),∞)× Rd) = [t + δ(r2 ∧ rα), t + (r/3)2 ∧ (r/3)α]× B(x, r/3). Then by Lemma

4.2,

P(t,x)(σC < τr) ≥ C10
|C|

rd(r2 ∧ rα)
.
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Note that there exists a constant c0 such that c0r
d(r2 ∧ rα) ≤ |Qδ(t, x, r/3)| ≤ c−1

0 rd(r2 ∧
rα). Hence, there exists a constant c1 = c1(δ) > 0 such that for all C ⊂ Qδ(t, x, r/3)

satisfying |C|/|Qδ(t, x, r/3)| ≥ 2/3 we have

(5) P(t,x)(σC < τr) ≥ c1 .

Define

(6) η =
c1

3
and ξ =

1

3
∧ (C12η) ,

where C12 is the constant from Lemma 4.4.

Suppose there is some point (t, x) ∈ Q(δ(R2∧Rα), z, R/3) such that q(t, x) > K, where

K is a constant to be determined later. Define

c2 = max

((
3

c0C10ξ

)1/(d+α)

,

(
3

c0C10ξ

)1/(d+2)

,
3 · 21/(d+2)

(C11ξ)1/(d+2)

)
,

where C10 and C11 are constants from Lemma 4.2 and Lemma 4.3 respectively. Choose

(7) r = c2RK−1/(d+2) .

Then an easy computation shows that

(8)
|Qδ(0, x, r/3)|
Rd(R2 ∧Rα)

≥ 3

C10ξK
,

rd+2

Rd+2
≥ 2 · 3d+2

C11ξK
,

Let U = {t} × B(x, r/3). Suppose that q ≥ ξK on U . Let Q = Q(0, z, R). Then by

Lemma 4.3

1 ≥ q(0, v) = E(0,v)[q(ZσU∧τR
)] ≥ ξKP(0,v)(σU < τR) ≥ ξK

C11(r/3)d+2

Rd+2
,

which contradicts the choice of r in the second inequality in (8). Thus, there exists at

least one point in U at which q takes a value less than ξK.

We next claim that

(9) E(t,x)[q(τr, Xτr) : Xτr /∈ B(x, 2r)] ≤ ηK ,

where τr = τQ(t,x,r). If not, by Lemma 4.4, for all y ∈ B(x, r/3),

q(t, y) ≥ E(t,y)[q(τr, Xτr) : Xτr /∈ B(x, 2r)]

≥ C−1
12 E(t,x)[q(τr, Xτr) : Xτr /∈ B(x, 2r)]

≥ C−1
12 ηK ≥ ξK .

But this contradicts the already proven fact that there exists at least one point in U at

which q takes a value less than ξK. Therefore, (9) holds true.

Let A be any compact subset of

Ã := {(s, y) ∈ Qδ(t, x, r/3); q(s, y) ≥ ξK} .
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Note that Ã ⊂ Q(0, z, R/2). By Lemma 4.2

1 ≥ q(0, v) ≥ E(0,v)[q(ZσA
) : σA < τQ] ≥ ξKP(0,v)(σA < τQ) ≥ ξK

C10|A|
Rd(R2 ∧Rα)

.

By the first inequality in (8)

(10)
|A|

|Qδ(t, x, r/3)| ≤
Rd(R2 ∧Rα)

C10 |Qδ(t, x, r/3)| ξK ≤ 1

3
.

Since (10) holds for every compact subset A of Ã, it holds for Ã in place of A.

Let C := Qδ(t, x, r/3) \ Ã. Then by (10), |C|/|Qδ(t, x, r/3)| ≥ 2/3. Let

M = sup
(s,y)∈Q(t,x,2r)

q(s, y) .

Then

q(t, x) = E(t,x)[q(σC , XσC
) : σC < τr]

+E(t,x)[q(σC , XσC
) : τr ≤ σC , Xτr /∈ B(x, 2r)]

+E(t,x)[q(σC , XσC
) : τr ≤ σC , Xτr ∈ B(x, 2r)] .

The first term on the right is bounded by ξKP(t,x)(σC < τr), the second term is according

to (9) bounded by ηK, and the third term is bounded by MP(t,x)(σC ≥ τr). Therefore,

K ≤ q(t, x) ≤ ξKP(t,x)(σC < τr) + ηK + MP(t,x)(σC ≥ τr) .

Note that by (5), P(t,x)(σC < τr) ≥ c1. Hence by use of (6),

M

K
≥ 1− η − ξP(t,x)(σC < τr)

P(t,x)(σC ≥ τr)
≥ 1− η − ξc1

1− c1

≥ 1− 2c1/3

1− c1

= 1 + 2β ,

where β = c1/6(1 − c1). Hence, there exists a point (t1, x1) ∈ Q(t, x, 2r) ⊂ Q̂(0, z, R) :=

[0, 3(R2 ∧ Rα)] × B(z, R) such that q(t1, x1) ≥ (1 + β)K =: K1. Note that 0 ≤ t1 − t ≤
(2r)2 ∧ (2r)α and |x1 − x| ≤ 2r.

Iterate the above procedure to obtain a sequence of points {(tk, xk)} in the following

way. Using above argument (with (t1, x1) and K1 instead of (t, x) and K), there exists

(t2, x2) ∈ Q(t1, x1, 2r1) such that q(t2, x2) ≥ (1 + β)K1 =: K2. Continue this proce-

dure to obtain a sequence of points {(tk, xk)} such that (tk+1, xk+1) ∈ Q(tk, xk, 2rk) and

q(tk+1, xk+1) ≥ (1 + β)k+1K1 =: Kk+1. We have that 0 ≤ tk+1 − tk ≤ (2rk)
2 ∧ (2rk)

α,

|xk+1 − xk| ≤ 2rk. Moreover, by (7),

rk ≤ c2RK
−1/(d+2)
k ≤ c2(1 + β)−k/(d+2)K−1/(d+2)R .
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Note that
∑

k

rk ≤ c2K
−1/(d+2)R

∑

k

((1 + β)−1/(d+2))k =
c2K

−1/(d+2)R

1− (1 + β)−1/(d+2)
,

∑

k

(2rk)
2 ≤ (2c2K

−1/(d+2)R)2
∑

k

((1 + β)−2/(d+2))k =
(2c2K

−1/(d+2)R)2

1− (1 + β)−2/(d+2)
,

∑

k

(2rk)
α ≤ (2c2K

−1/(d+2)R)α
∑

k

((1 + β)−2/(d+2))k =
(2c2K

−1/(d+2)R)α

1− (1 + β)−2/(d+2)
.

Therefore, we may choose K large enough so that (tk, xk) ∈ Q̂(0, z, R) for all k. This is a

contradiction because q(tk, xk) ≥ (1 + β)kK goes to infinity as k →∞. ¤
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