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Abstract

Let ψ be the characteristic exponent of a symmetric Lévy process X. The function

h(x) =
2
π

∫ ∞

0

1− cos(λx)
ψ(λ)

dλ

appears in various studies on the local time of X. We study monotonicity properties
of the function h. In case when X is a subordinate Brownian motion, we show that
x 7→ h(

√
x) is a Bernstein function.
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1 Introduction

Let X be a symmetric Lévy process in R with the characteristic exponent ψ, i.e.,

EeiλXt = e−tψ(λ).

Throughout this paper we assume that the point 0 is regular for itself, and that the charac-

teristic exponent ψ satisfies ∫ ∞

0

1

1 + ψ(λ)
<∞ . (1)

These two conditions guarantee that the process X admits a local time L(0, t) at zero. Let

Tx = inf{s > 0 : Xs = x} be the hitting time to x ∈ R, and let

h(x) := E(L(0, Tx)) .

Then by Lemma 11 in Chapter 5 of [2]

h(x) =
2

π

∫ ∞

0

1− cos(λx)

ψ(λ)
dλ . (2)

This function appears often in studies of the local time of Lévy processes. For instance, a

monotone rearrangement of this function was used in [1] to formulate necessary and sufficient

conditions for the joint continuity of the local time. In his study on the most visited sites

of X [5], M. B. Marcus assumed that the function h is strictly increasing on [0,∞). This

assumption on h does not seem easy to check. In Section 5 of [5], Marcus showed that the

so called stable mixtures satisfy the assumption.

The purpose of this note is to better understand the monotonicity of the function h, and

to provide more examples of strictly increasing h. We also show that for subordinate Brow-

nian motions, x 7→ h(
√
x) is, in fact, a Bernstein function. Under a reasonable additional

assumption, it is even a complete Bernstein function.

We start with a simple sufficient condition for h to be increasing. To this end we first

rewrite the function h in a different way. It follows from Theorem 16 and Theorem 19 in

Chapter 2 of [2] that under the assumptions stated in the first paragraph, the q-potential

measure U q of X has a density uq which is bounded and continuous. From the proof of

Lemma 11 in Chapter 5 of [2] we see that h defined by (2) may be written as

h(x) = 2 lim
q↓0

(uq(0)− uq(x)), x ∈ R. (3)

Thus if we know that for any q > 0, the function uq is decreasing in [0,∞), then the

equation above immediately gives us that h is increasing in [0,∞). Using this fact and

Theorem 54.2 of [9] we immediately get the following
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Proposition 1.1 If the Lévy measure ν of the process X is given by

ν(dx) = n(x)dx

for some even function n which is decreasing in (0,∞), then h is increasing in [0,∞).

Proof. It follows from Theorem 54.2 of [9] that when the Lévy measure ν of the process X

is given by

ν(dx) = n(x)dx

for some even function n which is decreasing in (0,∞), the distribution of Xt is unimodal

with mode 0 for every t > 0. This implies that, for any q > 0, uq is a decreasing function in

[0,∞). Therefore h is increasing in [0,∞). 2

2 Subordinate Brownian motion

In this section we first make a comment that a subordinate Brownian motion satisfies con-

dition of Proposition 1.1, and then prove that a much stronger result than Proposition 1.1

holds in this case. Let us begin by recalling relevant definitions.

Let T = (Tt : t ≥ 0) be a subordinator with Laplace exponent f , that is,

Ee−λTt = e−tf(λ),

and let B = (Bt : t ≥ 0) be a Brownian motion with generator d2

dx2 . If B and T are

independent, then the process Xt := B(Tt) is called a subordinate Brownian motion with

subordinator T . It is well known that the characteristic exponent of this subordinate Brow-

nian motion satisfies ψ(λ) = f(λ2), that is,

EeiλXt = e−tf(λ2).

We still assume that (1) holds. This implies that limλ→∞ f(λ) = ∞, which means that T

is not a compound Poisson process. It is well known that the Lévy measure of subordinate

Brownian motion has the density n given by

n(x) =

∫ ∞

0

1√
4πt

e−x
2/4t µ(dt) ,

where µ is the Lévy measure of the subordinator. Clearly, n is even and decreasing on (0,∞),

hence the assumption of Proposition 1.1 is satisfied.

The Laplace exponent f is a Bernstein function, that is, f ∈ C∞(0,∞), and satisfies

(−1)nDnf ≤ 0 for every n ∈ N. Note that a nonconstant Bernstein function is strictly
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increasing. We will also need the notion of a complete Bernstein function: A function

f : (0,∞) → [0,∞) is called a complete Bernstein function if there exists a Bernstein

function g such that

f(λ) = λ2Lg(λ), λ > 0,

where L stands for the Laplace transform. Complete Bernstein function is a Bernstein

function. The family of all complete Bernstein functions is a convex cone containing positive

constants and it is closed under compositions. For more on complete Bernstein functions see

[4].

Let V be the potential measure of T , that is,

V (A) = E
∫ ∞

0

1{Tt∈A}dt .

Then it is well known that

1

f(λ)
=

∫ ∞

0

e−λtdV (t), λ > 0. (4)

Proposition 2.1 The function φ : [0,∞) → [0,∞) defined by

φ(x) := h(
√
x) =

2

π

∫ ∞

0

1− cos(λ
√
x)

f(λ2)
dλ (5)

is a Bernstein function.

Proof. Using (4) we get

h(x) =
2

π

∫ ∞

0

(1− cos(λx))

∫ ∞

0

e−λ
2tdV (t) dλ

=
2

π

∫ ∞

0

dV (t)

∫ ∞

0

(1− cos(λx))e−λ
2t dλ

=
1

π

∫ ∞

0

dV (t)

∫ ∞

0

q−1/2(1− cos(x
√
q))e−qtdq

=
1

π

∫ ∞

0

dV (t)

(∫ ∞

0

q−1/2e−qtdq −
∫ ∞

0

q−1/2 cos(x
√
q)e−qtdq

)
(6)

Using formula (67) on page 158 of [3] we see that∫ ∞

0

q−1/2 cos(x
√
q)e−qtdq =

√
π

t
e−

x2

4t , (7)

thus we have

h(x) =
1√
π

∫ ∞

0

1√
t
(1− e−

x2

4t ) dV (t).
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Consequently we have

φ(x) =
1√
π

∫ ∞

0

1√
t
(1− e−

x
4t ) dV (t).

Let Ṽ be the image measure of V with respect to the mapping t 7→ 1/4t. Then

φ(x) =
1√
π

∫ ∞

0

√
4t(1− e−xt) dṼ (t)

=
2√
π

∫ ∞

0

(1− e−xt)t1/2 dṼ (t) (8)

It is straightforward to check that the measure t1/2 dṼ (t) is a Lévy measure, thus proving

that φ is a Bernstein function. 2

Remark 2.2 Let p(t, x) = (1/
√

4πt) exp{−x2/4t} be the transition density of Brownian

motion B. By use of (6) and (7), we may rewrite the formula for the function h in the

following explicit form:

h(x) = 2

∫ ∞

0

(p(t, 0)− p(t, x)) dV (t) . (9)

This formula should be compared with the formula for the compensated potential density of

Brownian motion.

In the same spirit as above we can show that, for any q > 0, the q-potential density uq(x)

of the subordinate process X is strictly decreasing on [0,∞). Indeed, let q > 0, and let V q

denote the potential measure of the subordinator T killed at an independent exponential time

with parameter q. Then

uq(x) =

∫ ∞

0

p(t, x) dV q(t).

This formula clearly proves that x→ uq(x) is strictly decreasing on [0,∞).

Proposition 2.1 can be strengthened as follows.

Proposition 2.3 Suppose that T is a subordinator with Laplace exponent f such that

x

f(x)
= x2Lg(x)

for some Bernstein function g. If g is given by

g(x) =

∫ ∞

0

(1− e−tx)ρ(t)dt (10)

for some Lévy density ρ such that tρ(t) is decreasing on (0,∞), then the function φ defined

in (5) is a complete Bernstein function.
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Proof. Since T corresponds to a complete Bernstein function and is not a compound Poisson

process, we know from [8] that

dV (t) = v(t) dt

where v is a locally integrable decreasing function on (0,∞). The formula 8 tells us that

under the present assumption we have

φ(x) =
2

π

∫ ∞

0

(1− e−qx)
1

q3/2
v(

1

4q
)dq.

To show that φ is a complete Bernstein function, it suffices to show that the function

2

π

1

q3/2
v(

1

4q
)

is the Laplace transform of some positive function. Assumption (10) implies that

g′(x) =

∫ ∞

0

e−txtρ(t)dt.

From the proof of Theorem 2.3 in [8] we know that v(x) = g′(x) and so v is the Laplace

transform of the function tρ(t). Therefore by formula (30) of [3] we know that the function

π1/2λ−3/2v(λ−1)

is the Laplace transform of the function∫ ∞

0

sin(2s1/2t1/2)s1/2ρ(s)ds.

The function above can be rewritten as

2

∫ ∞

0

sin(2t1/2r)r2ρ(r2)dr.

Now using the assumption that tρ(t) is decreasing we can easily show that the function about

is positive. Using this and properties of the Laplace transform it follows that the function

2

π

1

q3/2
v(

1

4q
)

is the Laplace transform of some positive function. 2
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3 Examples

We first recall an example from [5] and show that it fits into the setting of Section 2. Take

the Laplace exponent

f(λ) =

∫ 1

1/2

λs dξ(s), λ > 0

with ξ a finite measure on (1
2
, 1]. Then

ψ(λ) = f(λ2),

is a function of the type given in (5.1) of [5]. The function h is strictly increasing on [0,∞),

and x 7→ h(
√
x) is a Bernstein function.

The above example belongs to the class of stable mixtures studied by Marcus and Rosen

in [6] and [7]. We give now several examples of different type.

Example 3.1 Let

f(λ) = (λα + 1)β − 1

for 0 < α ≤ 1 and 0 < β < 1. Being a composition of complete Bernstein function, f itself is

a Bernstein function. When α = 1, the corresponding subordinator is a relativistic β-stable

subordinator. In order for (1) to be satisfied, we assume that αβ > 1/2. By Proposition 2.1,

the function

h(x) =
2

π

∫ ∞

0

1− cos(λx)

f(λ2)
dλ

is strictly increasing. Moreover, the characteristic exponent ψ(λ) = f(λ2) is regularly varying

at 0 with index 2α. In [5], Marcus assumed another condition, namely that ψ is regularly

varying at zero with index α ∈ (1, 2]. Hence, by assuming 1/2 < α ≤ 1, we see that ψ is

regularly varying with index α ∈ (1, 2). On the other hand, since ψ is regularly varying at

infinity with index 2αβ < 2α, it cannot be a stable mixture (see [7], Lemma 7.1).

We describe now a class of examples that satisfy the assumptions of Proposition 2.3. Let

µ be a Lévy measure on (0,∞), i.e.,∫ ∞

0

(1 ∧ t)µ(dt) <∞ .

Define g : (0,∞) → (0,∞) by

g(x) :=

∫ ∞

0

(1− e−tx)µ(dt) .

Clearly, g is a Bernstein function. An easy calculation shows that

Lg(λ) =

∫ ∞

0

1

λ(λ+ t)
t µ(dt) .
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Therefore

λ2Lg(λ) = λ

∫ ∞

0

1

λ+ t
t µ(dt) .

Define k : (0,∞) → (0,∞) by

k(λ) := λ

∫ ∞

0

1

λ+ t
t µ(dt) .

Then
k(λ)

λ
=

∫ ∞

0

1

λ+ t
t µ(dt) ,

is a Stieltjes function. By Theorem 3.9.29 in [4], k is a complete Bernstein function. Define

f : (0,∞) → (0,∞) by f(λ) := λ/k(λ). By the same theorem, f is a complete Bernstein

function. But,
λ

f(λ)
= k(λ) = λ2Lg(λ)

for g of the form in Proposition 2.3. This shows that for any Lévy measure µ and g defined

as above, the function f(λ) defined by λ/f(λ) := λ2Lg(λ) is a complete Bernstein function.

Suppose, additionally, that µ(dt) = ρ(t) dt where ρ : (0,∞) → (0,∞) is such that tρ(t)

is decreasing. By Proposition 2.3, the corresponding φ is a complete Bernstein function.

Example 3.2 Let ξ be a finite measure on (1, 2) with compact support. Define

ρ(t) =

∫ 2

1

t−β ξ(dβ).

Clearly, tρ(t) is decreasing. Since∫ ∞

0

t1−β

t+ x
dt =

(
− π

sin βπ

)
x1−β ,

it follows that ∫ ∞

0

1

t+ λ
tρ(t) dt =

∫ 2

1

∫ ∞

0

t1−β

t+ λ
dt ξ(dβ)

=

∫ 2

1

(
− π

sin βπ

)
λ1−β ξ(dβ) .

Therefore,

k(λ) = λ

∫ ∞

0

1

t+ λ
tρ(t) dt =

∫ 2

1

(
− π

sin βπ

)
λ2−β ξ(dβ)

and

f(λ) =
λ

k(λ)
=

λ∫ 2

1

(
− π

sinβπ

)
λ2−β ξ(dβ)

.
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The corresponding ψ(λ) = f(λ2) is of the form

ψ(λ) =
λ2∫ 2

1

(
− π

sinβπ

)
λ4−2β ξ(dβ)

.

Moreover, if the support of the measure ξ is contained in (3/2, 2), then ψ is regularly varying

at zero with index α ∈ (1, 2).
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