Towards bifurcations of complex dimensions

Goran Radunović

Equadiff 2019

9th July 2019

Joint work with: Michel L. Lapidus, University of California, Riverside, Darko Žubrinić, University of Zagreb

Supported in part by the Croatian Science Foundation,

under the project UIP-2017-05-1020

Motivation from dynamical systems

Consider the standard Hopf–Takens bifurcations in polar coordinates:

$$\dot{r} = r \left(r^{2l} + \sum_{i=0}^{l-1} a_i r^{2i}
ight)$$

 $\dot{\varphi} = 1$
(1)

Theorem (Weak focus; D. Zubrinic, V. Zupanovic, (2005))

Let Γ be a part of a trajectory of (1) near the origin.

(a) Assume that $a_0 \neq 0$. Then the spiral Γ is comparable with $r = e^{a_0 \varphi}$, and hence dim_B $\Gamma = 1$.

(b) Let k be fixed, $1 \le k \le l$, $a_l = 1$ and $a_0 = \ldots = a_{k-1} = 0$, $a_k \ne 0$. Then Γ is comparable to the spiral $r = \varphi^{-1/2k}$ and $\dim_B \Gamma = \frac{4k}{2k+1}$. Moreover, the spiral Γ is Minkowski measurable.

What is a fractal?

											_			_	
							_				 _		_	_	-
_											_		_	_	-
_	_	_	-				_	_	_	_	-		_	_	-
-	-	-					_	-	_	-	_	-	_		-
			10.					H H							18

Figure: The middle-third Cantor set *C*.

Figure: The Sierpiński gasket S.

Fractal dimensions

- There are several definitions of fractal dimension.
- e.g., similarity dimension, Hausdorff dimension, box counting dimension, Minkowski dimension, etc.

Figure: dim_{*H*} $C = \dim_B C = \log_3 2$

Figure: dim_{*H*} $S = \dim_B S = \log_2 3 > 1$

- Mandelbrot: A set is fractal if its fractal dimension exceeds its topological dimension.
- None of the above dimensions give a completely satisfactory definition of a fractal.

Relative fractal drum (A, Ω)

Ø ≠ A ⊂ ℝ^N, Ω ⊂ ℝ^N, Lebesgue measurable, i.e., |Ω| < ∞
 upper *r*-dimensional Minkowski content of (A, Ω):

$$\overline{\mathcal{M}}^r(A,\Omega):=\limsup_{\delta o 0^+}rac{|A_\delta\cap\Omega|}{\delta^{N-r}}$$

■ upper Minkowski dimension of (A, Ω) : $\overline{\dim}_B(A, \Omega) = \inf\{r \in \mathbb{R} : \overline{\mathcal{M}}^r(A, \Omega) = 0\}$

Iower Minkowski content and dimension defined via liminf

Minkowski measurability

$$\underline{\dim}_B(A,\Omega) = \overline{\dim}_B(A,\Omega) \Rightarrow \exists \dim_B(A,\Omega)$$

• if $\exists D \in \mathbb{R}$ such that

$$0 < \underline{\mathcal{M}}^{D}(A, \Omega) = \overline{\mathcal{M}}^{D}(A, \Omega) < \infty,$$

we say (A, Ω) is **Minkowski measurable**; in that case $D = \dim_B(A, \Omega)$

if the above inequalities are not satisfied for D, we call (A, Ω)
 Minkowski degenerated

The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N , $s \in \mathbb{C}$ and fix $\delta > 0$
- the distance zeta function of (A, Ω) :

$$\zeta_{A,\Omega}(s;\delta) := \int_{A_{\delta}\cap\Omega} d(x,A)^{s-N} dx$$

- dependence on δ is not essential
- the complex dimensions of (A, Ω) are defined as the poles of ζ_{A,Ω}
- take Ω to be an open neighborhood of A in order to recover the classical ζ_A

Holomorphicity theorem

Theorem

(a) $\zeta_{A,\Omega}(s)$ is **holomorphic on** {Re $s > \overline{\dim}_B(A, \Omega)$ }, and (b) $\mathbb{R} \ni s < \overline{\dim}_B(A, \Omega) \Rightarrow$ the integral defining $\zeta_{A,\Omega}(s)$ diverges (c) If $\exists D = \dim_B(A, \Omega) < N$ and $\underline{\mathcal{M}}^D(A, \Omega) > 0$, then $\zeta_{A,\Omega}(x) \to +\infty$ when $\mathbb{R} \ni x \to D^+$

Definition (Complex dimensions)

Assume $\zeta_{A,\Omega}$ can be meromorphically extended to $W \subseteq \mathbb{C}$. The set of complex dimensions of A visible in W:

$$\mathcal{P}(\zeta_{\mathcal{A},\Omega}, W) := \Big\{ \omega \in W : \omega \text{ is a pole of } \zeta_{\mathcal{A},\Omega} \Big\}.$$

Fractal tube formulas for relative fractal drums

• An asymptotic formula for the **tube function** $t \mapsto |A_t \cap \Omega|$ as $t \to 0^+$ in terms of $\zeta_{A,\Omega}$.

Theorem (Simplified pointwise formula with error term)

• $\alpha < \dim_B(A, \Omega) < N$; $\zeta_{A,\Omega}$ satisfies suitable rational decay (*d*-languidity) on the half-plane $\mathbf{W} := \{\operatorname{Re} s > \alpha\}$, then:

$$|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, \mathbf{W})} \operatorname{res}\left(rac{t^{N-s}}{N-s}\zeta_{A,\Omega}(s), \omega
ight) + O(t^{N-lpha}).$$

 if we allow polynomial growth of ζ_{A,Ω}, in general, we get a tube formula in the sense of Schwartz distributions

The Minkowski measurability criterion

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and D < N
- $\zeta_{A,\Omega}$ is *d*-languid on a suitable domain $W \supset \{\operatorname{Re} s = D\}$

Then, the following is equivalent:

(a) (A, Ω) is Minkowski measurable.

(b) D is the only pole of $\zeta_{A,\Omega}$ located on the critical line {Re s = D} and it is simple.

In that case:

$$\mathcal{M}^D(A,\Omega) = rac{\mathsf{res}(\zeta_{A,\Omega},D)}{N-D}$$

Figure: The Sierpiński gasket

• an example of a **self-similar fractal spray** with a generator *G* being an open equilateral triangle and with **scaling ratios** $r_1 = r_2 = r_3 = 1/2$

$$(A, \Omega) = (\partial G, G) \sqcup \bigsqcup_{j=1}^{3} (r_{j}A, r_{j}\Omega)$$

Fractal tube formula for The Sierpiński gasket

$$\zeta_{\mathcal{A}}(s;\delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^{s}-3)} + 2\pi\frac{\delta^{s}}{s} + 3\frac{\delta^{s-1}}{s-1}$$
$$\mathcal{P}(\zeta_{\mathcal{A}}) = \{0,1\} \cup \left(\log_{2}3 + \frac{2\pi}{\log 2}i\mathbb{Z}\right)$$

By letting $\omega_k := \log_2 3 + \mathbf{p} k \mathbf{i}$ and $\mathbf{p} := 2\pi/\log 2$ we have that

$$\begin{aligned} |A_t| &= \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_A(s;\delta),\omega\right) \\ &= t^{2-\log_2 3} \frac{6\sqrt{3}}{\log 2} \sum_{k=-\infty}^{+\infty} \frac{(4\sqrt{3})^{-\omega_k} t^{-\mathfrak{p}k\mathfrak{i}}}{(2-\omega_k)(\omega_k-1)\omega_k} + \left(\frac{3\sqrt{3}}{2} + \pi\right) t^2, \end{aligned}$$

valid pointwise for all $t \in (0, 1/2\sqrt{3})$.

The fractal nest generated by the a-string

 $a > 0, \; a_j := j^{-a}, \; \ell_j := j^{-a} - (j+1)^{-a}, \; \Omega := B_{a_1}(0)$

$$\zeta_{A_a,\Omega}(s) = rac{2^{2-s}\pi}{s-1}\sum_{j=1}^{\infty}\ell_j^{s-1}(a_j+a_{j+1})$$

Fractal tube formula for the fractal nest generated by the *a*-string

Example

$$\mathcal{P}(\zeta_{\mathcal{A}_{a},\Omega})\subseteq\left\{1,rac{2}{a+1},rac{1}{a+1}
ight\}\cup\left\{-rac{m}{a+1}:m\in\mathbb{N}
ight\}$$

$$\begin{aligned} a \neq 1, \ D &:= \frac{2}{1+a} \Rightarrow \\ |(A_a)_t \cap \Omega| &= \frac{2^{2-D}D\pi}{(2-D)(D-1)} a^{D-1} t^{2-D} + 2\pi \left(2\zeta(a) - 1\right) t \\ &+ O\left(t^{2-\frac{1}{a+1}}\right), \text{ as } t \to 0^+ \\ |(A_1)_t \cap \Omega| &= \operatorname{res}\left(\frac{t^{2-s}}{2-s}\zeta_{A_1,\Omega}(s), 1\right) + o(t) \\ &= 2\pi t (-\log t) + \operatorname{const} \cdot t + o(t) \quad \text{as } t \to 0^+ \end{aligned}$$

• a pole ω of order m generates terms of type $t^{N-\omega}(-\log t)^{k-1}$ for $k = 1, \dots, m$ in the fractal tube formula

Further research directions

- Riemann surfaces generated by relative fractal drums
- Extending the notion of complex dimensions to include complicated "mixed" singularities/branching points and connecting them with various gauge functions
- Obtaining corresponding tube formulas and gauge-Minkowski measurability criteria
- Applying the theory to problems from dynamical systems

- M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions, and Zeta Functions: Geometry and Spectra of Fractal Strings, second revised and enlarged edition (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2013.
- M. L. Lapidus, G. Radunović and D. Žubrinić, *Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions*, Springer Monographs in Mathematics, New York, 2017.
- G. Radunović, *Fractal Analysis of Unbounded Sets in Euclidean Spaces and Lapidus Zeta Functions*, Ph. D. Thesis, University of Zagreb, Croatia, 2015.
- D. Žubrinić and V. Županović, Fractal analysis of spiral trajectories of some planar vector fields, *Bulletin des Sciences Mathématiques* No. 6, **129** (2005), 457–485.