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Motivation from dynamical systems

Consider the standard Hopf–Takens bifurcations in polar
coordinates:

ṙ = r

(
r2l +

l−1∑
i=0

ai r
2i

)
ϕ̇ = 1

(1)

Theorem (Weak focus; D. Zubrinic, V. Zupanovic, (2005))

Let Γ be a part of a trajectory of (1) near the origin.

(a) Assume that a0 6= 0. Then the spiral Γ is comparable with
r = ea0ϕ, and hence dimB Γ = 1.

(b) Let k be fixed, 1 ≤ k ≤ l , al = 1 and a0 = . . . = ak−1 = 0,
ak 6= 0. Then Γ is comparable to the spiral r = ϕ−1/2k and
dimB Γ = 4k

2k+1 . Moreover, the spiral Γ is Minkowski measurable.



What is a fractal?

Figure: The middle-third Cantor set C .

Figure: The Sierpiński gasket S .



Fractal dimensions

There are several definitions of fractal dimension.

e.g., similarity dimension, Hausdorff dimension, box counting
dimension, Minkowski dimension, etc.

Figure: dimH C = dimB C = log3 2

Figure: dimH S = dimB S = log2 3 > 1

Mandelbrot: A set is fractal if its fractal dimension exceeds its
topological dimension.

None of the above dimensions give a completely satisfactory
definition of a fractal.



Relative fractal drum (A,Ω)

∅ 6= A ⊂ RN , Ω ⊂ RN , Lebesgue measurable, i.e., |Ω| <∞
upper r-dimensional Minkowski content of (A,Ω):

Mr (A,Ω) := lim sup
δ→0+

|Aδ ∩ Ω|
δN−r

upper Minkowski dimension of (A,Ω):

dimB(A,Ω) = inf{r ∈ R : Mr (A,Ω) = 0}

lower Minkowski content and dimension defined via lim inf



Minkowski measurability

dimB(A,Ω) = dimB(A,Ω) ⇒ ∃ dimB(A,Ω)

if ∃D ∈ R such that

0 <MD(A,Ω) =MD(A,Ω) <∞,

we say (A,Ω) is Minkowski measurable; in that case

D = dimB(A,Ω)

if the above inequalities are not satisfied for D, we call (A,Ω)
Minkowski degenerated



The relative distance zeta function

(A,Ω) RFD in RN , s ∈ C and fix δ > 0

the distance zeta function of (A,Ω):

ζA,Ω(s; δ) :=

∫
Aδ∩Ω

d(x ,A)s−N dx

dependence on δ is not essential

the complex dimensions of (A,Ω) are defined as the poles
of ζA,Ω

take Ω to be an open neighborhood of A in order to recover
the classical ζA



Holomorphicity theorem

Theorem

(a) ζA,Ω(s) is holomorphic on {Re s > dimB(A,Ω)}, and

(b) R 3 s < dimB(A,Ω) ⇒ the integral defining ζA,Ω(s) diverges

(c) If ∃D = dimB(A,Ω) < N and MD(A,Ω) > 0, then

ζA,Ω(x)→ +∞ when R 3 x → D+

Definition (Complex dimensions)

Assume ζA,Ω can be meromorphically extended to W ⊆ C.
The set of complex dimensions of A visible in W :

P(ζA,Ω,W ) :=
{
ω ∈W : ω is a pole of ζA,Ω

}
.



Fractal tube formulas for relative fractal drums

An asymptotic formula for the tube function

t 7→ |At ∩ Ω| as t → 0+ in terms of ζA,Ω .

Theorem (Simplified pointwise formula with error term)

• α < dimB(A,Ω) < N; ζA,Ω satisfies suitable rational decay
(d-languidity) on the half-plane W := {Re s > α}, then:

|At ∩ Ω| =
∑

ω∈P(ζA,Ω,W)

res

(
tN−s

N−s
ζA,Ω(s), ω

)
+ O(tN−α).

if we allow polynomial growth of ζA,Ω, in general, we get a
tube formula in the sense of Schwartz distributions



The Minkowski measurability criterion

Theorem (Minkowski measurability criterion)

• (A,Ω) is such that ∃D := dimB(A,Ω) and D < N
• ζA,Ω is d-languid on a suitable domain W ⊃ {Re s = D}

Then, the following is equivalent:

(a) (A,Ω) is Minkowski measurable.

(b) D is the only pole of ζA,Ω located on the critical line
{Re s = D} and it is simple.

In that case:

MD(A,Ω) =
res(ζA,Ω,D)

N − D



Figure: The Sierpiński gasket

an example of a self-similar fractal spray with a generator
G being an open equilateral triangle and with scaling ratios

r1 = r2 = r3 = 1/2

(A,Ω) = (∂G ,G ) t
⊔3

j=1(rjA, rjΩ)



Fractal tube formula for The Sierpiński gasket

ζA(s; δ) =
6(
√

3)1−s2−s

s(s − 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s − 1

P(ζA) = {0, 1} ∪
(

log2 3 +
2π

log 2
iZ
)

By letting ωk := log2 3 + pki and p := 2π/ log 2 we have that

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s; δ), ω

)

= t2−log2 3 6
√

3

log 2

+∞∑
k=−∞

(4
√

3)−ωk t−pki

(2− ωk)(ωk − 1)ωk
+

(
3
√

3

2
+ π

)
t2,

valid pointwise for all t ∈ (0, 1/2
√

3).



The fractal nest generated by the a-string

a > 0, aj := j−a, `j := j−a − (j + 1)−a, Ω := Ba1(0)

ζAa,Ω(s) =
22−sπ

s − 1

∞∑
j=1

`s−1
j (aj + aj+1)



Fractal tube formula for the fractal nest generated
by the a-string

Example

P(ζAa,Ω) ⊆
{

1,
2

a + 1
,

1

a + 1

}
∪
{
− m

a + 1
: m ∈ N

}
a 6= 1, D := 2

1+a ⇒
|(Aa)t ∩ Ω| =

22−DDπ

(2− D)(D − 1)
aD−1t2−D + 2π

(
2ζ(a)− 1

)
t

+ O
(
t2− 1

a+1
)
, as t → 0+

|(A1)t ∩ Ω| = res

(
t2−s

2− s
ζA1,Ω(s), 1

)
+ o(t)

= 2πt(− log t) + const · t + o(t) as t → 0+

• a pole ω of order m generates terms of type

tN−ω(− log t)k−1 for k = 1, . . . ,m in the fractal tube formula



Further research directions

Riemann surfaces generated by relative fractal drums

Extending the notion of complex dimensions to include
complicated “mixed” singularities/branching points and
connecting them with various gauge functions

Obtaining corresponding tube formulas and gauge-Minkowski
measurability criteria

Applying the theory to problems from dynamical systems
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