*supported by Croatian Science Foundation (HRZZ), grant DSfracta, HRZZ UIP-2017-05-1020

Formal classification of parabolic Dulac maps

P. Mardešić, M. Resman ${ }^{1}$, J.P. Rolin, V. Županović

Equadiff 2019, Leiden, Netherlands

$$
\text { July 9, } 2018
$$

Dulac or almost regular germs

Definition [Ilyashenko].
Parabolic almost regular germ (Dulac germ):

- $f \in C^{\infty}(0, d)$
- extends to a holomorphic germ f to a standard quadratic domain Q :

$$
Q=\Phi\left(\mathbb{C}_{+} \backslash \overline{K(0, R)}\right), \Phi(\eta)=\eta+C(\eta+1)^{\frac{1}{2}}, C, R>0
$$

in the logarithmic chart $\xi=-\log z$.

Standard quadratic domain

$$
\begin{aligned}
& r_{k}:=r\left(\varphi_{k}\right) \sim e^{-C \sqrt{\frac{|k| \pi}{2}}}, k \rightarrow \pm \infty, \\
& \varphi_{k} \in((k-1) \pi,(k+1) \pi)
\end{aligned}
$$

- f admits the Dulac asymptotic expansion:

$$
\begin{aligned}
& f(z) \sim_{z \rightarrow 0} 1 \cdot z+\sum_{k=1}^{\infty} z^{\alpha_{i}} P_{i}(-\log z) \\
& \text { i.e. } f(z)-z-\sum_{i=1}^{n} z^{\alpha_{i}} P_{i}(-\log z)=O\left(z^{\alpha_{n}}\right), n \in \mathbb{N}
\end{aligned}
$$

- $\alpha_{i}>1$, strictly increasing to $+\infty$,
- α_{i} finitely generated ${ }^{2}$,
- P_{i} polynomials.

■ \mathbb{R}_{+}invariant under f (i.e. coefficients of \widehat{f} real!)
${ }^{2}$ There exist $\beta_{k}, k=1 \ldots n$, such that: $\alpha_{i} \in \mathbb{N} \beta_{1}+\ldots+\mathbb{N} \beta_{n}$.

Motivation and history

■ first return maps for polycycles with hyperbolic saddle singular points $-n$ saddle vertices with hyperbolicity ratios $\beta_{i}>0$ (Dulac)

- locally at the saddle

$$
\left\{\begin{array}{l}
\dot{x}=x+\text { h.o.t. } \\
\dot{y}=-\beta_{i} y+\text { h.o.t. }
\end{array}\right.
$$

Motivation and history

- Dulac's problem: accumulation of limit cycles on a hyperbolic polycycle possible?
■ limit cycles $=$ fixed points of the first return map
■ Dulac: accumulation \Rightarrow trivial power-log asymptotic expansion of the first return map \Rightarrow trivial germ on \mathbb{R}_{+} (Dulac's mistake)
- the problem: Dulac asymptotic expansion does not uniquely determine f on \mathbb{R}_{+}(add any exponentially small term w.r.t. x !), e.g.

$$
f(x) \sim x+x^{2}-\log x, f(x)+e^{-1 / x} \sim x+x^{2}-\log x, x \rightarrow 0
$$

■ Ilyashenko's solution: first return maps extendable to a SQD
■ SQD sufficiently large complex domain: by a variant of maximum modulus principle (Phragmen-Lindelöf), Dulac's expansion uniquely determines the germ on a SQD!

Questions

\star goal: theory like the standard theory of Birkhoff, Ecalle, Voronin, Kimura, Leau etc. for parabolic analytic germs $\operatorname{Diff}(\mathbb{C}, 0)$

■ formal classification of parabolic Dulac germs - by a sequence (!!! not necesarily convergent) of formal power-logarithmic changes of variables

$$
\widehat{g}=\widehat{\varphi}^{-1} \circ f_{0} \circ \widehat{\varphi}
$$

\widehat{f}, f_{0} Dulac expansions, f_{0} simple 3 -monomial expression $\widehat{\varphi}(z)=z+$ h.o.t. diffeo- with power-log asymptotic expansion

- simpler question: is a Dulac germ formally embeddable as time-one map in a flow of an analytic vector field $\xi(z) \frac{d}{d z}$ defined on a standard quadratic domain? (= describe trivial analytic class)

$$
g=\widehat{\varphi}^{-1} \circ \tilde{f}_{0} \circ \widehat{\varphi}
$$

f, \tilde{f}_{0} Dulac germs, \tilde{f}_{0} time-one map of an analytic vector field on Q,

Why formal classification?

■ motivated by analytic classification of parabolic Dulac germs

$$
g=\varphi^{-1} \circ f \circ \varphi
$$

f, g Dulac germs on $Q, \varphi(z)=z+o(z)$ analytic on Q

- φ admits $\widehat{\varphi}$ as its asymptotic expansion?
- domains of analytic 'summability' of $\widehat{\varphi}$

Historical results - germs of parabolic analytic

 diffeomorphisms(Fatou \sim end of $19^{\text {th }}$ century; Birkhoff \sim 1950; Ecalle, Voronin~1980, ...)

$$
f \in \operatorname{Diff}(\mathbb{C}, 0), f(z)=z+a_{1} z^{k+1}+a_{2} z^{k+2}+\ldots, \quad k \in \mathbb{N}
$$

- Formal embedding
$=$ formal reduction to a time-one map of a vector field:
$f_{0}(z)=\operatorname{Exp}\left(\frac{z^{k+1}}{1+\rho z^{k}} \frac{d}{d x}\right) . \mathrm{id}=z+z^{k+1}+\left(\rho+\frac{k+1}{2}\right) z^{2 k+1}+\ldots$
Step-by-step elimination of monomials from f :
$\varphi_{\ell}(z)=\left\{\begin{array}{l}a z, a \neq 1, \\ z+c z^{\ell}, \ell \in \mathbb{N}\end{array} \leftrightarrow \widehat{\varphi}(z)=a z+\sum_{k=2}^{\infty} c_{k} z^{k} \in \mathbb{C}[[z]]\right.$
(formal changes of variables)
$\Rightarrow(k, \rho), k \in \mathbb{N}, \rho \in \mathbb{C} \ldots\left(\rho=\operatorname{Res}_{0}\left(\frac{1}{z-f(z)}\right)\right)$ formal invariants for f.

Example

$f(z)=z+z^{2}+z^{3}+\ldots=\frac{z}{1-z}$ time-one map of $z^{2} \frac{d}{d y}$.

Example

$g(z)=e^{z}-1=z+z^{2}+z^{3}+\ldots$ not a time-one map of a vector field, formally embeddable in $z^{2} \frac{d}{d y}$

Historical results - germs of analytic diffeomorphisms

- Is g analytically embeddable, or just formally?
\leftrightarrow Does $\widehat{\varphi}$ converge to an analytic function at 0 ?
Leau-Fatou flower theorem (1987):
$\star 2 k$ analytic conjugacies φ_{i} of f to f_{0}, all expanding in $\widehat{\varphi}$
\star defined on $2 k$ petals invariant under local discrete dynamics
$\star k$ attracting directions: $\left(-a_{1}\right)^{-\frac{1}{k}} ; k$ repelling directions: $a_{1}^{-\frac{1}{k}}$

$$
k=3 \rightarrow 6 \text { petals, } f(z)=z+z^{4}+\ldots
$$

\rightarrow in general, analytic embedding in a flow only on open sectors
\rightarrow the analytic class of f in direct relation with this question

Formal embedding into flows for Dulac germs (non-analytic at 0)

- elimination term-by-term by an adapted 'sequence' of non-analytic elementary changes of variables:
$\varphi(z)=a z ; \quad \varphi_{\alpha, m}(z)=z+c z^{\alpha} \ell^{m}, m \in \mathbb{Z}, \alpha>0,(\alpha, m) \succ(1,0)$.

Example (MRRZ, 2016)

0. $f(z)=z-z^{2} \ell^{-1}+z^{2}+z^{3}$,
1. $\varphi_{1}(z)=z+c_{1} z \ell, c_{1} \in \mathbb{C}$,

$$
f_{1}(z)=\varphi_{1}^{-1} \circ f \circ \varphi_{1}(z)=z-z^{2} \ell^{-1}+a_{1} z^{2} \ell+\text { h.o.t },
$$

2. $\varphi_{2}(z)=z+c_{2} z \ell^{2}, c_{2} \in \mathbb{R}$,

$$
f_{2}(z)=\varphi_{2}^{-1} \circ f \circ \varphi_{2}(z)=z+z^{2} \ell^{-1} \quad+a_{2} z^{2} \ell^{2}+\text { h.o.t }
$$

3. $\varphi_{3}(z)=z+c_{3} z \ell^{3}, c_{3} \in \mathbb{R}$,

$$
f_{3}(z)=\varphi_{3}^{-1} \circ f \circ \varphi_{3}(z)=z+z^{2} \ell^{-1} \quad+a_{2} z^{2} \ell^{3}+\text { h.o.t }
$$

The visualisation of the reduction procedure

the control of the support!

The description of the formal change of variables

- more than just a formal series composition of changes of variables: a transfinite composition, \rightarrow produces a transseries $\widehat{\varphi}$: * in the process, prove that every change has its successor change \star prove the formal convergence of composition of changes of variables: by transfinite induction ${ }^{1}$ in the formal topology ${ }^{2}$
${ }^{1}$ a generalization of the mathematical induction from \mathbb{N} to ordinal numbers: existence of a successor element and a limit element, 2 i.e. in each step of composition the support remains well-ordered; the coefficient of each monomial in the support stabilizes in the course of composition.

A broader class closed to embeddings: the class of power-log transseries $\widehat{\mathcal{L}}$

...contains both the Dulac germ expansions $f \mapsto \widehat{f}$ and the formal changes of variables

$$
\widehat{\mathcal{L}} \ldots \widehat{f}(z)=\sum_{\alpha \in S} \sum_{k=N_{\alpha}}^{\infty} a_{\alpha, k} z^{\alpha} \ell^{k}, a_{\alpha, k} \in \mathbb{R}, \quad N_{\alpha} \in \mathbb{Z}
$$

$S \subseteq(0, \infty)$ well-ordered (here: finitely gen.)

Similarly we define $\widehat{\mathcal{L}}_{2}, \widehat{\mathcal{L}}_{3}$, etc. and

$$
\widehat{\mathfrak{L}}:=\cup_{k \in \mathbb{N}} \widehat{\mathcal{L}}_{k} .
$$

(iterated logarithms admitted!)
(L. van den Dries, A. Macintyre, D. Marker, Logarithmic-exponential series. Ann. Pure Appl. Logic 111 (2001))
$\ell:=-\frac{1}{\log x}$

Theorem (Formal embedding theorem for Dulac germs, MRRZ 2016)

$\widehat{f}(z)=z-a z^{\alpha} \ell^{m}+$ h.o.t. parabolic Dulac, $a>0, \alpha>1, m \in \mathbb{N}_{-}$. \Rightarrow formally in $\widehat{\mathcal{L}}$ conjugated to:

$$
\begin{aligned}
f_{0}(z) & =\exp \left(\frac{-z^{\alpha} \ell^{m}}{1-\frac{\alpha}{2} z^{\alpha-1} \ell^{k}+\left(\frac{k}{2}-\rho\right) z^{\alpha-1} \ell^{k+1}} \frac{d}{d z}\right) \cdot \mathrm{id}= \\
& =z-z^{\alpha} \ell^{m}+\rho z^{2 \alpha-1} \ell^{2 m+1}+\text { h.o.t. }
\end{aligned}
$$

$\star(\alpha, m, \rho), \rho \in \mathbb{R} \ldots$ formal invariants $\left(\rho=\left[\frac{\ell}{z}\right] \frac{1}{z-f(z)}\right)$ for Dulac germ
$\star f_{0}(z)$ a time-one map of an analytic vector field on SQD $\left(\mathbb{Q}_{+}\right)$

Example continued

Example (continued)

$$
\begin{aligned}
f_{0}(z)= & \exp \left(-\frac{z^{2} \ell^{-1}}{1-z \ell^{-1}+\left(b-\frac{1}{2}\right) z}\right) \cdot \mathrm{id}= \\
= & z-z^{2} \ell^{-1}+b z^{3} \ell^{-1}+\text { h.o.t. } \\
& f_{0}=\hat{\varphi}^{-1} \circ \widehat{f} \circ \hat{\varphi}, \quad \widehat{\varphi} \in \widehat{\mathcal{L}}-\text { a transfinite change of variables }
\end{aligned}
$$

Parallel construction: the (formal) Fatou coordinate and Abel equation " = " (formal) embedding in a vector field
'Equivalent' problems:
1 (formal) conjugation of f to f_{0} (time-one map of an analytic vector field)
2 (formal) Fatou coordinate for f
$\Psi(f(z))-\Psi(z)=1 \quad$ (Abel equation)
$\widehat{\Psi}(\widehat{f}(z))-\widehat{\Psi}(z)=1 \quad$ (formal Abel equation)
$\Psi=\Psi_{0} \circ \varphi, \widehat{\Psi}=\Psi_{0} \circ \widehat{\varphi}$

* the Fatou coordinate represents the time:

$$
\widehat{\Psi}\left(\widehat{f}^{t}\left(x_{0}\right)\right)-\widehat{\Psi}\left(x_{0}\right)=t
$$

Non-uniqueness of asymptotic expansion of a germ in $\widehat{\mathcal{L}}$

When do we say that $\widehat{\Psi}$ is the transserial asymptotic expansion of Ψ ?

Caution! Transserial asymptotic expansion is not well-defined (unique), if we do not prescribe a canonical summation method on limit ordinal steps (dictated here by Abel equation)!
\rightarrow ambiguity: choice of the sum in ℓ at limit ordinal steps

Example

$$
f(z)=z+z^{2} \frac{\ell}{1-\ell}+z^{5}
$$

Some possible asymptotic expansions:

$$
\begin{aligned}
& \widehat{f}_{1}(z)=z+z^{2}\left(\ell+\ell^{2}+\ell^{3}+\ldots\right)+z^{5} \\
& \widehat{f}_{2}(z)=z+z^{2}\left(\ell+\ell^{2}+\ell^{3}+\ldots\right)-z^{3}+z^{5}, \text { etc. }
\end{aligned}
$$

- \widehat{f}_{1} : canonical (convergent sum) at the first limit ordinal step:

$$
\begin{gathered}
\ell+\ell^{2}+\ell^{3}+\ldots \mapsto \frac{\ell}{1-\ell} \\
\square \widehat{f_{2}}: \ell+\ell^{2}+\ell^{3}+\ldots \mapsto \frac{\ell}{1-\ell}+e^{-\frac{3}{\ell}} \quad\left(z=e^{-1 / \ell}\right)
\end{gathered}
$$

Moreover: (?) canonical choice if series in ℓ was divergent (Fatou

Sketch of the proof / method of summation

$f(z) \sim \widehat{f}(z)=z+z^{\alpha_{1}} P_{1}(-\log z)+z^{\alpha_{2}} P_{2}(-\log z)+\ldots$
■ solve (formal) Abel equation by blocks

$$
\widehat{\Psi}\left(z+z^{\alpha_{1}} P_{1}\left(\ell^{-1}\right)+\ldots\right)-\widehat{\Psi}(z)=1
$$

- $\widehat{\Psi}(z):=\sum z^{\beta_{i}} \widehat{T}_{i}(\ell)$
- In each step, \widehat{T}_{i} obtained solving one differential equation:

$$
\begin{aligned}
\frac{d}{d z}\left(z^{\beta_{i}} \widehat{T}_{i}(\ell)\right): & =z^{\beta_{i}-1} R(\ell) \\
(*) \widehat{T}_{i}(\ell) & =z^{-\beta_{i}} \int z^{\beta_{i}-1} R(\ell) d z
\end{aligned}
$$

β_{i} a finite combination of $\alpha_{i} ; R$ a rational function in ℓ.

- (*) solvable analytically (T_{i} analytic on Q) as well as formally
($\widehat{T}_{i} \in \mathbb{C}[[z]]$) by partial integration
\rightarrow principle of summation at limit ordinal steps: $\widehat{T}_{i} \mapsto T_{i}$
(integral sum)
- $\widehat{\Psi}:=\Psi_{\infty}+\widehat{R}$, where Ψ_{∞} contains only finitely many infinite blocks

■ analytic Fatou coordinate on small sectors around \mathbb{R}_{+}: iterative summation of the Abel equation along the orbit of f / f^{-1}, after subtracting sufficiently many blocks:

$$
R(f(z))-R(z)=\delta(z)
$$

$\delta(z)$ of arbitrarily small order.

$$
\Rightarrow R(z):=-\sum_{k=0}^{\infty} \delta\left(f^{\circ(\pm) k}(z)\right), j \in \mathbb{Z}
$$

Converges locally uniformly on small sectors around \mathbb{R}_{+}.
Q.E.D.

Example of blocks computation in the Fatou coordinate of a Dulac germ

Example

$f(z)=z+z^{2} \ell^{-1}+z^{3} \Rightarrow \Psi\left(z+z^{2} \ell^{-1}+z^{3}\right)-\Psi(z)=1 .(*)$
Computation of the first block of Ψ by formal T. expansion of $(*)$:

$$
\Psi_{0}^{\prime}(z) z^{2} \ell^{-1}=1 \Rightarrow \Psi_{0}(z)=\int z^{-2} \ell d z
$$

- Integration by parts: $\widehat{\Psi}_{0}(z)=z^{-1} \sum_{n \in \mathbb{N}} n!\ell^{n}$ (divergent series in ℓ in the first block!)
- Analytic integration on SQD: $\Psi_{0}(z)=\int_{*}^{z} y^{-2} \ell(y) d y$
? appropriate sum of divergent series above ? integral sum

$$
\sum_{n} n!\ell^{n} \mapsto \frac{\int_{*}^{z} y^{-2} \ell(y) d y}{z^{-1}}
$$

A Fatou coordinate \leftrightarrow embedding in a flow

Theorem (MRRZ2)

There exists a unique (up to an additive constant) formal Fatou coordinate $\widehat{\Psi}$ for the Dulac expansion \widehat{f} in $\widehat{\mathfrak{L}}$. Moreover, it is in $\widehat{\mathcal{L}}_{2}^{\infty}$.

Theorem (MRRZ2)

There exists an analytic Fatou coordinate $\Psi \in C^{\infty}(0, d)$ (that is, an analytic embedding $\left.\left\{f_{t}\right\}_{t}, f_{t} \in C^{\infty}(0, d)\right)$ which admits the formal Fatou coordinate $\Psi \in \mathcal{L}_{2}^{\infty}$ as its "integral asymptotic expansion".

Note: the analytic construction extendable to complex sectors coresponding to attracting/repelling petals for the local dynamics of Dulac f

The solution: the notion of sectional asymptotic expansions [MRRZ2]

\star the notion of a sectional asymptotic expansion-a section is a linear operator attributing a particular germ to partial expansions on intermediate limit ordinal levels

* the integral section: a canonical choice dictated by the solution of the Abel equation!

References

MRRZ Mardešić, P., Resman, M., Rolin, J.P., Županovic, V., Normal forms and embeddings for power-log transseries, Advances in Mathematics 303 (2016), 888-953
MRRZ2 Mardešić, P., Resman, M., Rolin, J.-P., Županović, V., The Fatou coordinate for parabolic Dulac germs, Journal of Differential Equations (2019)
MRRZ3 Mardesic, P., Resman, M., Rolin, J.P., Zupanovic, V.: Length of epsilon-neighborhoods of orbits of Dulac maps (preprint, 2018), https://arxiv.org/pdf/1606.02581v3.pdf

