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Dulac or almost regular germs

Definition [Ilyashenko].
Parabolic almost regular germ (Dulac germ):

I f ∈ C∞(0, d)

I extends to a holomorphic germ f to a standard quadratic
domain Q:

Q = Φ(C+ \K(0, R)), Φ(η) = η + C(η + 1)
1
2 , C, R > 0,

in the logarithmic chart ξ = − log z.



Standard quadratic domain

rk := r(ϕk) ∼ e−C
√
|k|π
2 , k → ±∞,

ϕk ∈
(
(k − 1)π, (k + 1)π

)



I f admits the Dulac asymptotic expansion:

f(z) ∼z→0 1 · z +

∞∑
k=1

zαiPi(− log z),

i.e. f(z)− z −
n∑
i=1

zαiPi(− log z) = O(zαn), n ∈ N,

I αi > 1, strictly increasing to +∞,
I αi finitely generated 1,
I Pi polynomials.

I R+ invariant under f (i.e. coefficients of f̂ real!)

1There exist βk, k = 1 . . . n, such that: αi ∈ Nβ1 + . . .+ Nβn.



Motivation and history
I first return maps for polycycles with hyperbolic saddle singular

points – n saddle vertices with hyperbolicity ratios βi > 0
(Dulac)

I locally at the saddle{
ẋ = x+ h.o.t.

ẏ = −βiy + h.o.t.



Motivation and history

I Dulac’s problem: accumulation of limit cycles on a hyperbolic
polycycle possible?

I limit cycles = fixed points of the first return map

I Dulac: accumulation ⇒ trivial power-log asymptotic
expansion of the first return map ⇒ trivial germ on R+

(Dulac’s mistake)

I the problem: Dulac asymptotic expansion does not uniquely
determine f on R+ (add any exponentially small term
w.r.t. x!), e.g.

f(x) ∼ x+ x2− log x, f(x) + e−1/x ∼ x+ x2− log x, x→ 0

I Ilyashenko’s solution: first return maps extendable to a SQD

I SQD sufficiently large complex domain: by a variant of
maximum modulus principle (Phragmen-Lindelöf ), Dulac’s
expansion uniquely determines the germ on a SQD!



Questions

? goal: theory like the standard theory of Birkhoff, Ecalle, Voronin, Kimura, Leau etc.

for parabolic analytic germs Diff(C, 0)

I formal classification of parabolic Dulac germs – by a
sequence (!!! not necesarily convergent) of formal
power-logarithmic changes of variables

ĝ = ϕ̂−1 ◦ f̂ ◦ ϕ̂,

f̂ , ĝ Dulac expansions,
ϕ̂(z) = z + h.o.t. diffeo- with power-log asymptotic expansion

I analytic classification of parabolic Dulac germs

g = ϕ−1 ◦ f ◦ ϕ,

f, g Dulac germs on Q, ϕ(z) = z + o(z) analytic on Q

I ϕ admits ϕ̂ as its asymptotic expansion?



I simpler question: is a Dulac germ analytically embeddable
in a flow of an analytic vector field ξ(z) ddz defined on a
standard quadratic domain? (= describe trivial analytic class)

g = ϕ−1 ◦ f0 ◦ ϕ,

f, f0 Dulac germs,
f0 time-one map of an analytic vector field,
ϕ analytic.

Example

f(z) = z + z2 + z3 + . . . = z
1−z time-one map of z2 d

dy .



Historical results - germs of parabolic analytic
diffeomorphisms

(Fatou ∼ end of 19th century; Birkhoff∼ 1950; Ecalle,
Voronin∼ 1980, . . .)

f ∈ Diff(C, 0), f(z) = z + a1z
k+1 + a2z

k+2 + . . . , k ∈ N

• Formal embedding
= formal reduction to a time-one map of a vector field:

f0(z) = Exp(
zk+1

1 + ρzk
d

dx
).id = z + zk+1 + (ρ+

k + 1

2
)z2k+1 + . . .

Step-by-step elimination of monomials from f :

ϕ`(z) =

{
az, a 6= 1,

z + cz`, ` ∈ N
↔ ϕ̂(z) = az +

∑∞
k=2 ckz

k ∈ C[[z]]

(formal changes of variables)

⇒ (k, ρ), k ∈ N, ρ ∈ C . . . formal invariants for f .



Historical results - germs of analytic diffeomorphisms

• Is f analytically embeddable, or just formally?
↔ Does ϕ̂ converge to an analytic function at 0?

Leau-Fatou flower theorem (1987):
? 2k analytic conjugacies ϕi of f to f0, all expanding in ϕ̂
? defined on 2k petals invariant under local discrete dynamics

? k attracting directions: (−a1)−
1
k ; k repelling directions: a

− 1
k

1

k = 3 → 6 petals, f(z) = z + z4 + . . .

→ in general, analytic embedding in a flow only on open sectors
→ the analytic class of f in direct relation with this question



FORMAL CLASSIFICATION OF DULAC GERMS



Formal embedding into flows for Dulac germs
(non-analytic at 0)
• elimination term-by-term by an adapted ’sequence’ of
non-analytic elementary changes of variables:

ϕ(z) = az; ϕα,m(z) = z+czα`m, m ∈ Z, α > 0, (α,m) � (1, 0).

Example (MRRZ, 2016)

0. f(z) = z − z2`−1 + z2 + z3,

1. ϕ1(z) = z + c1z`, c1 ∈ C,
f1(z) = ϕ−1

1 ◦ f ◦ ϕ1(z) = z − z2`−1 + a1z
2` + h.o.t,

2. ϕ2(z) = z + c2z`
2, c2 ∈ R,

f2(z) = ϕ−1
2 ◦ f ◦ ϕ2(z) = z + z2`−1 + a2z

2`2 + h.o.t,

3. ϕ3(z) = z + c3z`
3, c3 ∈ R,

f3(z) = ϕ−1
3 ◦ f ◦ ϕ3(z) = z + z2`−1 + a2z

2`3 + h.o.t,

...

` := − 1
log z



The visualisation of the reduction procedure



The description of the formal change of variables

• more than just a formal series composition of changes of
variables: a transfinite composition, → produces a transseries ϕ̂:

? in the process, prove that every change has its successor change

? prove the formal convergence of composition of changes of
variables: by transfinite induction1 in the formal topology2

1 a generalization of the mathematical induction from N to ordinal
numbers: existence of a successor element and a limit element,
2 i.e. in each step of composition the support remains well-ordered; the
coefficient of each monomial in the support stabilizes in the course of
composition.



A broader class closed to embeddings: the class of

power-log transseries L̂

...contains both the Dulac germ expansions f 7→ f̂ and the formal
changes of variables

L̂ . . . f̂(z) =
∑
α∈S

∞∑
k=Nα

aα,kz
α`k, aα,k ∈ R, Nα ∈ Z,

S ⊆ (0,∞) well-ordered (here: finitely gen.)

Similarly we define L̂2, L̂3, etc. and

L̂ := ∪k∈NL̂k.

(iterated logarithms admitted!)



Theorem (Formal embedding theorem for Dulac germs, MRRZ
2016)

f̂(z) = z−azα`m +h.o.t. parabolic Dulac, a > 0, α > 1, m ∈ N−.
⇒ formally in L̂ conjugated to:

f0(z) = exp
( −zα`m

1− α
2 z

α−1`k +
(
k
2 − ρ

)
zα−1`k+1

d

dz

)
.id =

=z − zα`m + ρz2α−1`2m+1 + h.o.t.

? (α,m, ρ), ρ ∈ R . . . formal invariants for Dulac germ

? f0(z) a time-one map of an analytic vector field on SQD (Q+)



Example continued

Example (continued)

f0(z) = exp
(
− z2`−1

1− z`−1 +
(
b− 1

2

)
z

)
.id =

= z − z2`−1 + bz3`−1 + h.o.t.,

f0 = ϕ̂−1 ◦ f̂ ◦ ϕ̂, ϕ̂ ∈ L̂ – a transfinite change of variables



ANALYTIC CLASSIFICATION OF DULAC GERMS



Choice of analytic conjugacy - analytic on standard
quadratic domain

Definition [MRR, in progress] f and g Dulac on SQD Q are
analytically conjugated if there exists

I ϕ(z) = z + o(z) analytic on Q

I g = ϕ−1 ◦ f ◦ ϕ on Q.

⇒ ϕ admits asymptotic expansion in L̂
⇒ f and g formally conjugated in L̂ ⇒ expansion in L̂ ⊂ L̂.

Another possible classification: ϕ ∈ R{z} (non-ramified)



The (formal) Fatou coordinate and Abel equation ” = ”
(formal) embedding in a vector field

’Equivalent’ problems:

1. (formal) conjugation of f to f0 (time-one map of an analytic
vector field)

2. (formal) Fatou coordinate for f

Ψ(f(z))−Ψ(z) = 1 (Abel equation)
Ψ̂(f̂(z))− Ψ̂(z) = 1 (formal Abel equation)

Ψ = Ψ0 ◦ ϕ, Ψ̂ = Ψ0 ◦ ϕ̂



Historical results - construction of the Ecalle-Voronin
moduli of analytic classification for Diff(C, 0)

? simplest formal class (k = 1, ρ = 0);
f0(z) = Exp(z2 d

dz ) = z
1−z

? f ∈ Diff(C, 0), f(z) = z + z2 + z3 + o(z3)

Ψ(f(z))−Ψ(z) = 1 (Abel equation)

Fatou, 1919:

I unique (up to aditive constant) formal solution
Ψ̂(z) ∈ −1/z + zC[[z]],

I unique (up to aditive constant) analytic solutions Ψ±(z) on
petals V±

I Ψ± admit Ψ̂(z) as asymptotic expansion

→ Fatou coordinates, sectorial trivialisations



Ecalle-Voronin moduli of analytic classification for
Diff(C, 0)

Ecalle, Voronin: spaces of attr./repelling orbits (spheres!) ”glued”
at closed orbits (poles!) by 2 germs of diffeomorphisms:

ϕ0(t) := e−2πiΨ−◦(Ψ+)−1(− log t
2πi

), t ≈ 0,

ϕ∞(t) := e−2πiΨ+◦(Ψ−)−1(− log t
2πi

), t ≈ ∞



Ecalle-Voronin moduli of analytic classification for
Diff(C, 0)

Identifications:(
ϕ0(t), ϕ∞(t)

)
≡
(
aϕ0(bt),

1

b
ϕ∞(

t

a
)
)
, a, b ∈ C∗

(choice of constant in Ψ±, i.e. coordinates on spheres)

Theorem Ecalle-Voronin: After identifications, (ϕ0, ϕ∞) are
analytic invariants.

Realisation theorem: Each pair (ϕ0, ϕ∞) tangent to identity can
be realized as E-V modulus of a germ from the model formal class.

Trivial modulus (id, id) ↔ analytically embeddable germs



Invariant domains (petals) for the local dynamics of a
parabolic Dulac germ

L-F-like theorem, Dulac germs [MRR, in progress].

f(z) = z + azα`m + . . . Dulac germ on a SQD Q, a ∈ R, α > 1,
m ∈ N−.

⇒ countably many overlapping attracting/repelling petals
V ±i , i ∈ Z, of opening 2π

α−1

⇒ centered at complex directions

(−sgn(a))
1

α−1 (attracting), (sgn(a))
1

α−1 (repelling)

(invariant lines for f tangential to these directions at 0)

Sketch of the proof. In the chart w = − 1
a(α−1)

z−α+1`−m f almost translation by 1,

easier construction of invariant domain.



Dynamics of a Dulac germ (logarithmic chart)

f(z) = z + azα`m + . . . , a < 0



(Formal) Fatou coordinate of a Dulac germ

Theorem [MRRZ2 (2019), MRRp (in progress)]

f Dulac on SQD Q, f̂ its Dulac expansion.

I unique (up to an additive constant) formal Fatou coordinate
Ψ̂ for f̂ in class L̂ (in L̂2)

I unique (up to additive constants) analytic Fatou coordinates
Ψ±j , j ∈ Z, on attracting/repelling petals V ±j

I Ψ±j admit Ψ̂ as transserial asymptotic expansion with respect

to integral sums on limit ordinal steps as z → 0 on V ±j

Caution! Transserial asymptotic expansion is not well-defined
(unique), if we do not prescribe a canonical summation method on
limit ordinal steps (dictated here by Abel equation)!



Non-uniqueness of asymptotic expansion of a germ in L̂
→ ambiguity: choice of the sum in ` at limit ordinal steps

Example

f(z) = z + z2 `
1−` + z5

Some possible asymptotic expansions:

f̂1(z) = z + z2(` + `2 + `3 + . . .) + z5

f̂2(z) = z + z2(` + `2 + `3 + . . .)− z3 + z5, etc.

I f̂1: canonical (convergent sum) at the first limit ordinal step:

` + `2 + `3 + . . . 7→ `

1− `

I f̂2: ` + `2 + `3 + . . . 7→ `
1−` + e−

3
`

(
z = e−1/`

)
Moreover: (?) canonical choice if series in ` was divergent (the
case in the Fatou coordinate)



Sketch of the proof / method of summation
f(z) ∼ f̂(z) = z + zα1P1(− log z) + zα2P2(− log z) + . . .

I solve (formal) Abel equation by blocks

Ψ̂(z + zα1P1(`−1) + . . .)− Ψ̂(z) = 1

I Ψ̂(z) :=
∑
zβi T̂i(`)

I In each step, T̂i obtained solving one differential equation:

d

dz

(
zβi T̂i(`)

)
:= zβi−1R(`),

(∗) T̂i(`) = z−βi
∫
zβi−1R(`)dz,

βi a finite combination of αi; R a rational function in `.

I (∗) solvable analytically (Ti analytic on Q) as well as formally
(T̂i ∈ C[[z]]) by partial integration
→ principle of summation at limit ordinal steps: T̂i 7→ Ti
(integral sum)



I Ψ̂ := Ψ∞ + R̂, where Ψ∞ contains only finitely many infinite
blocks

I analytic Fatou coordinate on petals:
iterative summation of the Abel equation along the orbit of
f/f−1, after subtracting sufficiently many blocks:

R(f(z))−R(z) = δ(z),

δ(z) of arbitrarily small order.

⇒ Rj±(z) := −
∞∑
k=0

δ(f◦(±)k(z)), j ∈ Z.

Converges locally uniformly on petals V j
±.

Q.E.D.



Example of blocks computation in the Fatou coordinate of
a Dulac germ

Example

f(z) = z + z2`−1 + z3 ⇒ Ψ(z + z2`−1 + z3)−Ψ(z) = 1. (∗)

Computation of the first block of Ψ by formal T. expansion of (∗):

Ψ′0(z)z2`−1 = 1 ⇒ Ψ0(z) =

∫
z−2` dz

I Integration by parts: Ψ̂0(z) = z−1
∑

n∈N n!`n

(divergent series in ` in the first block!)

I Analytic integration on SQD: Ψ0(z) =
∫ z
∗ y
−2`(y) dy

? appropriate sum of divergent series above ? integral sum

∑
n

n!`n 7→
∫ z
∗ y
−2`(y) dy

z−1
.



Ecalle-Voronin moduli for Dulac germs
I infinitely many attracting/repelling petals indexed by Z
I neighboring spheres glued at closed orbits by a germ of a

diffeomorphism
I infinite necklace of spheres (spaces of orbits on petals), not

closed



Ecalle-Voronin moduli for Dulac germs
Theorem E-V for Dulac maps (MRRp)
f and g Dulac in the same L̂-formal class (α,m, ρ).

I analytic invariants given by a sequence of diffeomorphisms of
0 and ∞ tangent to the identity, up to identifications (∗)

ϕi0(t) := e−2πiΨi−1
+ ◦(Ψi−)−1(− log t

2πi
), t ≈ 0

ϕi∞(t) := e−2πiΨi−◦(Ψi+)−1(− log t
2πi

), t ≈ ∞, i ∈ Z
I radii of definition (at least)

|t| < Ri ∼ K1e
−KeC

√
i
, i→∞ (SQD)

I identifications (∗)
(ϕi0, ϕ

i
∞; Ri)i∈Z ≡ (ψi0, ψ

i
∞; R̃i)i∈Z

if Ri, R̃i bounded as above (possibly different constants) and
there exist sequences (ai)i∈Z, (bi)i∈Z in C∗ such that

ϕi0(t) = ai−1 · ψi0
( t
bi

)
, ϕi∞(t) = bi · ψi∞

( t
ai

)
, i ∈ Z.



I necklace symmetric w.r.t. R+-axis
Proof: Schwarz’s reflection lemma,
f(R+) ⊆ R+ ⇒ f(z) = f(z).

? f embeddable analytically on SQD in a vector field ↔ modulus
trivial, (. . . , id, id, . . .)



Perspectives and comments

I realization of moduli in wider generalized Dulac class

I what can be realized really by Dulac corner maps of one
saddle or by first return maps of more saddle polycycles
(expected: periodicity of modules after finitely many)
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Thank you for the attention!
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