Ljiljana Arambašić: On three concepts of orthogonality in Hilbert C^* -modules

In this talk we consider three concepts of orthogonality in a Hilbert C^* module V over a C^* -algebra \mathscr{A} : the Birkhoff–James orthogonality \perp_B , the strong Birkhoff–James orthogonality \perp_B^s , and the orthogonality with respect to the \mathcal{A} -valued inner product on V. If x and y are elements of a normed linear space X, then x is orthogonal to y in the Birkhoff– James sense if

$$||x|| \le ||x + \lambda y||, \quad \lambda \in \mathbb{C}.$$

It is easy to see that in an inner product space the Birkhoff–James orthogonality becomes the usual one.

Hilbert C^* -modules generalize Hilbert spaces by allowing inner products to take values in an arbitrary C^* -algebra instead of the C^* -algebra of complex numbers. Therefore, a concept of orthogonality in a Hilbert C^* -module can be defined with respect to the C^* -valued inner product in a natural way, that is, two elements x and y of a Hilbert C^* -module V over a C^* -algebra \mathscr{A} are orthogonal if $\langle x, y \rangle = 0$, where $\langle \cdot, \cdot \rangle$ denotes the \mathscr{A} -valued inner product on V.

When x and y are elements of a Hilbert \mathscr{A} -module V, we say that x is orthogonal to y in the strong Birkhoff-James sense if

$$\|x\| \le \|x + ya\|, \quad a \in \mathscr{A}, \tag{0.1}$$

i.e., if the distance from x to $\overline{y\mathscr{A}}$, the \mathscr{A} -submodule of V generated by y, is exactly ||x||.

We characterize the classes of Hilbert C^* -modules in which any two of these three types of orthogonalities coincide.

References

 Lj. Arambašić, R. Rajić, On three concepts of orthogonality in Hilbert C^{*}modules, Linear and Multilinear Algebra 63 (7) (2015), 1485–1500.