Ljiljana Arambašić: On three concepts of orthogonality in Hilbert C^{*}-modules

In this talk we consider three concepts of orthogonality in a Hilbert C^{*} module V over a C^{*}-algebra \mathscr{A} : the Birkhoff-James orthogonality \perp_{B}, the strong Birkhoff-James orthogonality \perp_{B}^{s}, and the orthogonality with respect to the \mathcal{A}-valued inner product on V. If x and y are elements of a normed linear space X, then x is orthogonal to y in the BirkhoffJames sense if

$$
\|x\| \leq\|x+\lambda y\|, \quad \lambda \in \mathbb{C} .
$$

It is easy to see that in an inner product space the Birkhoff-James orthogonality becomes the usual one.

Hilbert C^{*}-modules generalize Hilbert spaces by allowing inner products to take values in an arbitrary C^{*}-algebra instead of the C^{*}-algebra of complex numbers. Therefore, a concept of orthogonality in a Hilbert C^{*}-module can be defined with respect to the C^{*}-valued inner product in a natural way, that is, two elements x and y of a Hilbert C^{*}-module V over a C^{*}-algebra \mathscr{A} are orthogonal if $\langle x, y\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the \mathscr{A}-valued inner product on V.

When x and y are elements of a Hilbert \mathscr{A}-module V, we say that x is orthogonal to y in the strong Birkhoff-James sense if

$$
\begin{equation*}
\|x\| \leq\|x+y a\|, \quad a \in \mathscr{A} \tag{0.1}
\end{equation*}
$$

i.e., if the distance from x to $\overline{y \mathscr{A}}$, the \mathscr{A}-submodule of V generated by y, is exactly $\|x\|$.

We characterize the classes of Hilbert C^{*}-modules in which any two of these three types of orthogonalities coincide.

References

[1] Lj. Arambašić, R. Rajić, On three concepts of orthogonality in Hilbert C^{*} modules, Linear and Multilinear Algebra 63 (7) (2015), 1485-1500.

