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STEINER 2-DESIGNS S(2, 4, 28) WITH NONTRIVIAL
AUTOMORPHISMS
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Abstract. In this article designs with parameters S(2, 4, 28) and
nontrivial automorphism groups are classified. A total of 4466 designs
were found. Together with some S(2, 4, 28)’s with trivial automorphism
groups found by A.Betten, D.Betten and V.D.Tonchev this sums up to
4653 nonisomorphic S(2, 4, 28) designs.

1. Introduction

A Steiner 2-design is a finite incidence structure with v points and b
lines, with k points on every line and a unique line through any pair of points.
Lines can be identified with k-element point sets and incidence with inclusion.
Line-degrees in a Steiner 2-design are constant by definition. Point-degrees
also turn out to be constant, i.e. there are r lines through every point. The
integers v, b, k and r are not independent; they satisfy v − 1 = r(k − 1) and
bk = vr. Usually v and k are taken as independent parameters and written
in the form S(2, k, v) or 2− (v, k, 1).

Thus, a S(2, 4, 28) design is a finite incidence structure with v = 28
points and b = 63 lines, with k = 4 points on any line, r = 9 lines through
any point and a unique line through any pair of points. These designs belong
to an important family, the unitals. Unitals are simply Steiner 2-designs with
parameters S(2, q+1, q3+1). The classical (or Hermitian) unitals are obtained
as absolute points and nonabsolute lines of a unitary polarity in the projective
plane PG(2, q2). Another family of unitals is associated with the simple Ree
groups (see [9]). Both constructions give rise to S(2, 4, 28) designs. We will
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refer to them as the classical and the Ree S(2, 4, 28). A detailed analysis of
the two designs appears in [2].

An automorphism of a Steiner 2-design D is a permutation of points map-
ping lines on lines (here lines are taken to be k-element sets of points). The
set of all automorphisms forms a group under composition, the full automor-
phism group AutD. Automorphisms are used for the construction of designs.
By assuming a certain automorphism group G ≤ AutD the number of objects
to look for is reduced and a computer search may become feasible.

The purpose of this article is to find all S(2, 4, 28) designs with nontrivial
automorphisms. Clearly it suffices to look for designs with automorphisms of
prime order. In section 2 actions of such automorphisms on the points and
lines of a S(2, 4, 28) are studied. In section 3 the classification algorithm is
described and the results are presented. Finally, in section 4 the designs are
analysed. We look at resolvability, subdesigns, associated codes and other
properties.

2. On Prime Order Automorphisms

Let α be an automorphism of prime order p of a S(2, 4, 28) design. Two
questions are of interest:

1. What are the possible values of p?
2. How many points and lines does α keep fixed and what configuration

do they form?
The next two lemmas about Steiner 2-designs will be helpful.

Lemma 2.1. If a S(2, k, v) design possesses a S(2, k, v′) subdesign with
v′ < v, then v ≥ k(k2 − 2k + 2).

Proof. Consider a point P not belonging to the subdesign. Any line
through P contains at most one point of the subdesign, hence r ≥ v′. Fisher’s
inequality applied to the subdesign yields v′ ≥ k2 − k + 1 and consequently
r ≥ k2 − k + 1. The inequality now follows from r = v−1

k−1 .

Lemma 2.2. Let α be an automorphism of prime order p of a S(2, k, v)
design. If v < k(k2− 2k +2) and p ≥ k− 1, then α either has no fixed points,
or has a single fixed point, or keeps fixed k points on a line.

Proof. A line joining two fixed points is necessarily fixed pointwise, since
non-fixed points lie in orbits of size p > k−2. If the set of points kept fixed by α
were to contain a triangle, it would form a S(2, k, v′) subdesign, contradicting
lemma 2.1. Hence, all fixed points are collinear and their number is easily
seen to be 0, 1 or k.

The following known results easily follow from lemma 2.2.

Proposition 2.3. If a S(2, 4, 28) design admits an automorphism of
prime order p, then p = 2, 3 or 7.
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Proposition 2.4. Automorphisms of order 7 act fixed point- and line-free
on S(2, 4, 28) designs.

It is also not difficult to answer question 2 for p = 3.

Proposition 2.5. Let α be an automorphism of order 3 of a S(2, 4, 28)
design. The set of points and lines kept fixed by α is one of the following:
(a) a single point and g lines through it, where g = 0, 3, 6 or 9,
(b) four points on a line and two more lines through each of the points.

Proof. The number of fixed lines through a fixed point is clearly 0, 3, 6
or 9. Dually, on a fixed line there is a single fixed point or 4 fixed points. The
automorphism keeps at least one point fixed, because v = 28 ≡ 1(mod 3).
According to lemma 2.2 this point is either unique or there are four fixed
points on a line `. The first case amounts to the configurations described
in (a). In the second case through any of the fixed points there is a fixed
line (`) and consequently at least two more fixed lines. Since 8 fixed lines
and ` already cover 28 points, there can be no more than three fixed lines
through a fixed point. Thus, in the second case the fixed points and lines
form configuration (b).

Automorphisms of order p = 2 need to be considered separately.
Lemma 2.2 does not apply here; non-collinear sets of fixed points are pos-
sible.

Theorem 2.6. Let α be an automorphism of order 2 of a S(2, 4, 28)
design. The set of points and lines kept fixed by α is one of the following:
(a) seven lines and f points on one of the lines, where f = 0, 2, or 4,
(b) four points in general position (no three collinear), six lines joining pairs
of points and three more lines not incident with any of the points,
(c) six points, four of them on a line; nine lines joining pairs of points and
one more line not incident with any of the points.

Configurations (b) and (c) are shown in figure 1.

(b) (c)

Figure 1. Configurations (b) and (c) of theorem 2.6.
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Proof. Denote by m and n the number of point and line orbits of size
two, respectively. Then the number of fixed points is f = 28 − 2m and the
number of fixed lines g = 63− 2n. Furthermore, let Bi be the set of all lines
incident with i fixed points and bi = |Bi|, for i = 0, . . . , 4. The set B3 is
obviously empty and hence b3 = 0. Lines in B2 and B4 are fixed; lines in B1

are not fixed and lines in B0 can be either. Denote by b′0 the number of fixed
lines in B0 and by b′′0 the number of non-fixed lines in B0. The total number
of lines and the number of fixed lines can now be expressed as:

(2.1) b′0 + b′′0 + b1 + b2 + b4 = b = 63

(2.2) b′0 + b2 + b4 = g = 63− 2n

Every line in B2 contains a point orbit of size two, and fixed lines in B0 contain
two point orbits of size two each:

(2.3) 2b′0 + b2 = m

By counting pairs of fixed points and pairs of non-fixed points we get the next
two equations:

(2.4) b2 + 6b4 =
f(f − 1)

2
= (14−m)(27− 2m)

(2.5) 6(b′0 + b′′0) + 3b1 + b2 = m (2m− 1)

The system of equations (1)–(5) has a unique solution in terms of m and n.

b′0 =
m(m− 25)

2
+ 3n

b′′0 = 16m− 6n

b1 = −16m + 8n

b2 = m(26−m)− 6n

b4 = 63 +
m(m− 27)

2
+ n

Only nine pairs (m, n) ∈ {1, . . . , 14} × {1, . . . , 31} yield non-negative values
for the bi’s, as reported in table 1. The top three rows obviously correspond
to configurations (a). Row 4 corresponds to configuration (b) and row 5 to
configuration (c). It remains to be shown that rows 6 – 9 of table 1 describe
impossible configurations.

In row 6 we have b4 = 2, i.e. there are two lines containing four fixed
points each. These two lines meet in at most one point, so there should be at
least 7 fixed points. However, we have f = 6 in row 6. Similarly, three or more
B4-lines require at least 9 fixed points, while we have f = 8 in rows 7 and 8.
To prove row 9 impossible consider the incidence structure formed by the 10
fixed points and six B4-lines. Denote the point degrees in this configuration
r1, . . . , r10. The total number of incidences is 24, hence r1 + . . . + r10 = 24.
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No. m n b′0 b′′0 b1 b2 b4 f g
1 14 28 7 56 0 0 0 0 7
2 13 28 6 40 16 1 0 2 7
3 12 28 6 24 32 0 1 4 7
4 12 27 3 30 24 6 0 4 9
5 11 26 1 20 32 9 1 6 11
6 11 27 4 14 40 3 2 6 9
7 10 26 3 4 48 4 4 8 11
8 10 25 0 10 40 10 3 8 13
9 9 24 0 0 48 9 6 10 15

Table 1. Pairs (m,n) yielding non-negative values for the bi’s.

The number of triples (P, `1, `2), where `1 and `2 are two lines through a
point P is clearly

10∑

i=1

(
ri

2

)
=

10∑

i=1

ri(ri − 1)
2

Under the constraint r1 + . . . + r10 = 24 this quadratic function reaches
minimal value 16.8 when r1 = . . . = r10 = 2.4; hence there are at least 17
triples. However, because any two lines meet in at most one point there can
be no more than

(
6
2

)
= 15 triples. Thus configurations corresponding to row 9

of table 1 are not possible, too.

3. The Classification

A construction method for block designs with automorphism groups was
developed in the 1980s and used by many authors throughout the 1980s and
1990s (see, for example, [3], [6], [7], [13] and [17]). It is based on the notion of
an orbit matrix. Let D be a Steiner 2-design with parameters v, b, k, r and
automorphism group G ≤ Aut D. Denote the point and line orbits P1, . . . ,Pm

and L1, . . . ,Ln, respectively. The orbits form a tactical decomposition, i.e.
the number aij =

∣∣{` ∈ Lj

∣∣ P ∈ `
}∣∣ of lines from Lj incident with a point

P ∈ Pi does not depend on the choice of P . If νi = |Pi| and βj = |Lj | are the
orbit sizes, the matrix A = [aij ] has following properties:

(1)
n∑

j=1

aij = r, for 1 ≤ i ≤ m,

(2)
m∑

i=1

νi

βj
aij = k, for 1 ≤ j ≤ n,
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(3)
n∑

j=1

νi

βj
aijai′j =

{
νi, if i 6= i′

νi + r − 1, if i = i′ , for 1 ≤ i, i′ ≤ m.

Any such matrix is called an orbit matrix. The first step of the classification
is to find all orbit matrices.

Matrices equivalent under rearrangements of rows and columns can be
identified. More precisely, orbit matrices A = [aij ] and B = [bij ] are said to
be isomorphic provided there is a pair of permutations (π, σ) ∈ Sm×Sn such
that νi = νπ(i), βj = βσ(j) and bij = aπ(i) σ(j), for i = 1, . . . , m, j = 1, . . . , n.
The task is to find all orbit matrices up to isomorphism.

In the next step, usually called indexing, orbit matrices are transformed
to incidence matrices of the designs. The (i, j)-entry of an orbit matrix is
replaced by a νi × βj zero-one matrix having aij ones in each row and being
invariant under the action of G.

Not every orbit matrix gives rise to designs. On the other hand, a single
orbit matrix may produce several nonisomorphic designs. Thus, as the final
step incidence matrices of the designs need to be checked for isomorphism.

Turning now to S(2, 4, 28) designs, the first step of the classification
proved to be computationally most difficult. This is due to a large num-
ber of nonisomorphic orbit matrices for p = 2 and p = 3. A classification
algorithm used by E.Spence in [14], [15] and [16] was adapted to find orbit
matrices.

The set of all orbit matrices needs to be totally ordered; we use lexico-
graphical ordering on vectors obtained by concatenating the rows. A matrix
is said to be canonical if it is the greatest among all isomorphic matrices. The
algorithm produces canonical orbit matrices by adjoining a row and eliminat-
ing non-canonical matrices in each step. To see that this will indeed produce
a canonical representative of each orbit matrix note that a canonical matrix
with last row deleted remains canonical.

The second step of the classification, indexing, proceeded at a much faster
pace; a straightforward backtracking algorithm was used. To eliminate iso-
morphic designs B.D.McKay’s nauty [11] was used, and proved to be very
efficient.

Seven nonisomorphic orbit matrices corresponding to automorphisms of
order 7 were found. Five of the matrices could be indexed and they gave rise
to 11 nonisomorphic S(2, 4, 28) designs. Thus we can conclude:

Theorem 3.1. There are 11 designs S(2, 4, 28) with automorphisms of
order 7.

Brouwer [2] gives 8 as the number of S(2, 4, 28)’s with automorphisms of
order 7. By comparing the table in section C of [2] with table 4 we conclude
that he missed two designs with full automorphism group of order 21 and one
with full automorphism group of order 7.
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Type of aut. # of orbit mat. # of designs
(a), g = 0 13083 1635
(a), g = 3 9017 297
(a), g = 6 267 0
(a), g = 9 11 8

(b) 29 43

Table 2. Designs with automorphisms of order 3.

Classification of S(2, 4, 28) designs with automorphisms of order 3 in-
volved much more computation. An automorphism of order 3 keeps fixed one
of five different configurations (proposition 2.5), i.e. there are five types of or-
bit matrices. Matrices of each type were classified separately; the results are
summarised in table 2. Since a single design may well have several automor-
phisms fixing different configurations, the total number of S(2, 4, 28)’s with
automorphisms of order 3 cannot be determined simply by summing up num-
bers in the last column of table 2. Lists of representatives were concatenated
and nauty was used to eliminate isomorphic copies; 1978 designs remained.

Theorem 3.2. There are 1978 designs S(2, 4, 28) with automorphisms of
order 3.

The search for S(2, 4, 28) designs with automorphisms of order 2 was even
more involved. Five cases corresponding to fixed structures of theorem 2.6
had to be examined. Results are presented in table 3. The total number of
designs with automorphisms of order 2 was determined with nauty.

Theorem 3.3. There are 2590 designs S(2, 4, 28) with automorphisms of
order 2.

Our main result was obtained by concatenating lists of representatives for
p = 2, 3 and 7 and applying nauty once more; 4466 nonisomorphic designs
remained.

Type of aut. # of orbit mat. # of designs
(a), f = 0 52281 121
(a), f = 2 58538 226
(a), f = 4 3513 788

(b) 28835 473
(c) 16259 1333

Table 3. Designs with automorphisms of order 2.
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Theorem 3.4. There are 4466 designs S(2, 4, 28) with nontrivial auto-
morphisms.

The complete list of representatives is far too big to be reproduced here,
but it can be downloaded from the author’s Web page

http://www.math.hr/~krcko

The CRC Handbook of Combinatorial designs [4] gives 145 as a lower bound
for the number of nonisomorphic S(2, 4, 28) designs. Recently A.Betten,
D.Betten and V.Tonchev [1] constructed 909 nonisomorphic S(2, 4, 28)’s by
considering tactical decompositions defined by vectors from the dual code
associated with the designs. Among them are 187 designs with trivial auto-
morphism groups, hence there are at least 4653 unitals S(2, 4, 28). Brouwer [2]
also found 26 unitals with trivial automorphism groups but it is difficult to
assess if they are different from those constructed in [1].

There are probably many more S(2, 4, 28)’s with trivial automorphism
groups. Considering recent advances in computer hardware a complete clas-
sification may soon be coming within reach.

4. Properties of the designs

In this section properties of the 4466 constructed designs are briefly ex-
amined. First we give the distribution by order of full automorphism group
(table 4). The classical S(2, 4, 28) has PΓU(3, 9) (of order 12096) as its full
automorphism group, while the Ree S(2, 4, 28) has PΓL(2, 8) (of order 1512).
Both groups act doubly transitively on the points. These are the only transi-
tive S(2, 4, 28) designs.

Six of the designs are resolvable, among them both the classical and the
Ree S(2, 4, 28). The Ree unital admits two nonisomorphic resolutions, hence
there are 7 different resolutions of S(2, 4, 28)’s with nontrivial automorphisms.

It can be shown that only designs with parameters S(2, 3, 7) (Fano
planes) and S(2, 3, 9) (affine planes of order 3) can appear as subdesigns in

|Aut| # |Aut| # |Aut| # |Aut| #
12096 1 48 12 18 1 6 60
1512 1 42 1 16 10 4 374
216 1 32 2 12 12 3 1849
192 2 27 1 9 18 2 2028
72 1 24 12 8 71
64 1 21 6 7 2

Table 4. Distribution by order of full automorphism group.
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S(2, 4, 28)’s. Of our 4466 designs 39 (all with full automorphism group of
order 3) possess both kinds of subdesigns; 1511 possess only Fano subplanes,
and 89 only S(2, 3, 9) subdesigns. Neither the classical nor the Ree S(2, 4, 28)
have any subdesigns.

Finally, we look at codes spanned by incidence vectors of the lines. Only
binary codes are of interest. Brouwer [2] notes that only vectors of weights
0, 10, 12, 14, 16, 18 and 28 can occur in the dual code. Since it contains the
all-one vector j, the weight enumerator W (x) =

∑28
i=0 aix

i of the dual code is
completely determined by a10, a12 and a14. The weight enumerator of the code
itself can then be computed from MacWilliams’ relation; 45 different weight
enumerators occurred. Distribution of the designs by 2-rank and (a10, a12, a14)
is given in table 5.

The design of 2-rank 19 is the Ree unital. It was proved in [10] that 19 is
the lowest possible 2-rank of a S(2, 4, 28) and that it is attained only for the
Ree unital. Furthermore, in [5] it was proved that there are no S(2, 4, 28)’s of
2-rank 20 and precisely four of 2-rank 21 (the classical unital and three more
unitals with automorphism groups of size 192, 24 and 6).

dim (a10, a12, a14) # dim (a10, a12, a14) # dim (a10, a12, a14) #
19 (84, 63, 216) 1 23 (6, 7, 4) 8 24 (4, 3, 0) 32
21 (0, 63, 0) 1 23 (7, 3, 10) 3 24 (5, 1, 2) 7
21 (20, 31, 24) 1 23 (8, 3, 8) 9 24 (6, 1, 0) 2
21 (24, 15, 48) 2 23 (8, 7, 0) 5 25 (0, 0, 6) 28
22 (8, 15, 16) 1 23 (9, 3, 6) 3 25 (0, 1, 4) 68
22 (12, 7, 24) 4 24 (0, 1, 12) 9 25 (0, 3, 0) 87
22 (12, 15, 8) 4 24 (0, 3, 8) 30 25 (1, 0, 4) 21
22 (14, 7, 20) 3 24 (0, 7, 0) 19 25 (1, 1, 2) 106
23 (0, 3, 24) 7 24 (1, 1, 10) 9 25 (2, 0, 2) 16
23 (0, 15, 0) 3 24 (1, 3, 6) 14 25 (2, 1, 0) 179
23 (3, 3, 18) 2 24 (2, 1, 8) 3 25 (3, 0, 0) 47
23 (4, 3, 16) 3 24 (2, 3, 4) 58 26 (0, 0, 2) 174
23 (4, 7, 8) 11 24 (3, 1, 6) 29 26 (0, 1, 0) 249
23 (5, 3, 14) 5 24 (3, 3, 2) 25 26 (1, 0, 0) 532
23 (6, 3, 12) 15 24 (4, 1, 4) 23 27 (0, 0, 0) 2608

Table 5. Distribution by 2-rank and weight enumerator.
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References

[1] A. Betten, D. Betten, V. D. Tonchev, Unitals and Codes, to appear in Discrete
Math.

[2] A. E. Brouwer, Some unitals on 28 points and their embeddings in projective planes
of order 9, Geometries and Groups, Proc. Colloq. Berlin 1981, Lecture Notes in
Math. 893 (1981), 183–188.
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