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Abstract. Let U be a unital in a projective plane P. Given a point
P ∈ P \ U , the points F ∈ U such that FP is tangent to U are the feet
of P , and the set of all such points is the pedal set of P . In this paper
we study pedal sets of unitals embedded in projective planes of order 9
and 16.

1. Introduction

A finite projective plane of order q can be defined as a block design with
parameters (q2 + q + 1, q + 1, 1); that is, a finite incidence structure with
q2+ q+1 points, q+1 points on every line, and a unique line through every
pair of points. Similarly, a unital of order q is a (q3+1, q+1, 1) block design.
For more on finite projective planes we refer to the book [10], and for unitals
to [2].

The most interesting unitals are the ones embedded in a projective plane
P of order q2. In this setting a unital U is a set of q3 + 1 points of P with
the property that every line of P meets U either in one point, or in q + 1
points. In the first case the line is tangent to U , and in the second case it
is secant. The set of all tangents is a unital in the dual plane P∗, called the
dual unital and denoted by U∗.

Through any point P ∈ U there is a unique tangent and q2 secant lines.
If P is a point of P \ U , there are q+1 tangents and q2 − q secants through
P [2, Theorem 2.3]. For every tangent t there is a single point F ∈ t ∩ U ;
such points F are the feet of P , and the set of all feet is called the pedal set
of P . Thus, the pedal set of a point P ∈ P \ U consists of q+1 points of U .

If P is the desarguesian projective plane PG(2, q2), a unital U can be
obtained from a unitary polarity of P as the set of absolute points, i.e.
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points that are incident with their polars. This is the hermitian unital of
PG(2, q2). A point P ∈ P \ U is not incident with its polar ℓ = P ∗. By
the definition of a polarity, the polar of a point on ℓ is a line through P .
Therefore, the polar of an absolute point F ∈ ℓ is the line FP , and the pedal
set of P is ℓ∩U . In fact, the property that pedal sets are collinear holds for
any unital arising from a unitary polarity, not just for the hermitian unitals
in PG(2, q2). We shall refer to unitals obtained from unitary polarities as
classical.

There are many non-classical unitals, and in this case the pedal sets need
not be collinear. The most general known constructions of unitals are due
to Buekenhout [4]. They apply to translation planes and utilize the Bruck-
Bose representation [3] (discovered earlier by André [1] in a group-theoretic
setting). Briefly, a translation plane of order q2 is represented in the projec-
tive space PG(4, q) by a hyperplane Σ∞ ∼= PG(3, q) and a spread S of Σ∞.
Unitals are obtained either from nonsingular quadrics of PG(4, q) meeting
Σ∞ in a regulus contained in S (these are the hyperbolic Buekenhout uni-
tals, or nonsingular Buekenhout unitals as they are called in [2]), or from
ovoidal cones tangent to Σ∞ in a line of S (called the parabolic Buekenhout
unitals, or ovoidal-Buekenhout-Metz unitals in [2]). A detailed treatment of
Buekenhout’s constructions is given in [2].

Dover [6] showed that for parabolic Buekenhout unitals the points on the
tangent ℓ∞, corresponding to Σ∞ in the Bruck-Bose representation, have
collinear pedal sets. Not many other general results about pedal sets of
non-classical unitals are known. The goal of this paper is to study pedal
sets of unitals embedded in projective planes of order 9 and 16.

We shall call points of P \ U with collinear pedal sets special points.
A tangent with q2 special points, such as the tangent ℓ∞ of a parabolic
Buekenhout unital, will be called a special tangent. Dover [6] also showed
that special points give rise to parallel classes (spreads) of the unital, and
special tangents to resolutions (packings). Therefore, we shall pay attention
to the distribution of special points in the unitals under consideration.

2. Unitals in the planes of order 9

By [12], there are exactly four projective planes of order 9: the desargue-
sian plane PG(2, 9), the Hall plane and its dual, and the self-dual Hughes
plane. We will denote them by PG(2,9), HALL, HALL∗ and HUGH. Penttila
and Royle [14] classified all unitals in these planes. Up to equivalence, there
are two unitals in PG(2,9), four unitals in HALL and HALL∗, and eight
unitals in HUGH. Unitals are equivalent if they can be mapped onto each
other by a collineation of the ambient plane. The unitals will be denoted
by PG(2,9).1, PG(2,9).2, HALL.1,. . . , HALL.4, etc. Since they are not
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reproduced in [14], we repeated the classification and got the same num-
bers of unitals. The graph isomorphism program nauty [13] was used to
check equivalence of (partial) unitals. The unitals can be downloaded from
http://web.math.hr/~krcko/results/steiner.html.

In a plane of order 9, pedal sets consist of 4 points of U . There are three
possible configurations of 4 points: either they are collinear, or 3 points
are on a line and the fourth point is not on this line, or no 3 of the 4
points are collinear and the configuration is an arc. We shall denote these
configurations by giving sizes of their intersections with lines, i.e. by (4),
(3, 23) and (26), respectively. They are depicted in Figure 1.

(4) (3, 23) (26)

Figure 1. Configurations of 4 points in a unital of order 3.

Interestingly, all three configurations occur as pedal sets. In Table 1, we
report numbers of pedal sets of each type for unitals in the planes of order 9.
The dual unitals have identical pedal set counts, therefore the plane HALL∗

is omitted.
Some of unitals can be identified from the numbers in Table 1: PG(2,9).1

is clearly the hermitian unital, and PG(2,9).2 is the (non-classical) orthog-
onal Buekenhout-Metz unital [2, Theorem 4.18]. The computer algebra
system GAP [8] was used to identify some other unitals: HALL.1 is a hy-
perbolic Buekenhout unital, HALL.2 is a parabolic Buekenhout unital, and
HALL.3 and HALL.4 are not Buekenhout unitals. HUGH.1 is the classical-
Rosati unital [16]. Wantz [19] found a more general class of unitals in the
Hughes plane of order q2, but for q = 3 it comprises only HUGH.1.

As already mentioned, all tangents of the hermitian unital PG(2,9).1 are
special. Among the remaining unitals, only the parabolic Buekenhout uni-
tals PG(2,9).2 and HALL.2 posses a special tangent ℓ∞. For PG(2,9).2 there
are no special points outside ℓ∞, and for HALL.2 the six special points out-
side ℓ∞ lie on a secant through P∞ = ℓ∞ ∩ U .

The 31 special points of the hyperbolic Buekenhout unital HALL.1 form
an interesting configuration with the tangents. Through every special point
there are exactly four tangents. Four of the 28 tangents contain one special
point, while each of the remaining 24 tangents contains 5 special points.

The 15 special points of the classical-Rosati unital HUGH.1 form a trian-
gle. The sides of the triangle are three secant lines of HUGH.1, containing
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Unital Pedal set

(4) (3, 23) (26)

PG(2,9).1 63 0 0
PG(2,9).2 9 0 54

HALL.1 31 32 0
HALL.2 15 0 48
HALL.3 1 32 30
HALL.4 1 8 54

HUGH.1 15 24 24
HUGH.2 7 8 48
HUGH.3 4 17 42
HUGH.4 4 17 42
HUGH.5 3 18 42
HUGH.6 1 28 34
HUGH.7 1 0 62
HUGH.8 1 0 62

Table 1. Pedal sets of unitals in the planes of order 9.

six special points each. For HUGH.2, six of the seven special points lie on
a secant line. Similarly, three of the four special points of HUGH.3 and
HUGH.4 are on a secant line, while the three special points of HUGH.5 are
not collinear.

We noticed that all parallel classes of unitals embedded in planes of order
9 arise from special points, and all resolutions arise from special tangents.
This is not the case with unitals in planes of order 16, as we shall see
in the next section. Thus, PG(2,9).1, PG(2,9).2, HALL.2, and HALL.2∗

are resolvable, and the remaining unitals in the planes of order 9 are not
resolvable. There are two more resolvable 2-(28, 4, 1) designs, one of which
is the (non-embedable) Ree unital of order 3; see [11].

3. Unitals in the planes of order 16

There are 22 known projective planes of order 16. They are described
in [15] and are available for download from Gordon Royle’s web page [17].
We will use the same names for the planes as in [15]: PG(2,16), SEMI2,
SEMI4, HALL, LMRH, JOWK, DSFP, DEMP, BBH1, BBH2, JOHN, BBS4,
and MATH. The first eight are translation planes, and this list is known
to be complete [5]. The planes PG(2,16), SEMI2, SEMI4, and BBH1 are
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self-dual, while the remaining planes have non-isomorphic duals HALL∗,
LMRH∗, JOWK∗, DSFP∗, DEMP∗, BBH2∗, JOHN∗, BBS4∗, and MATH∗.

Stoichev and Tonchev [18] performed a non-exhaustive search for unitals
in the known planes of order 16. They found 38 examples, which are ex-
plicitly listed in [18] and are denoted by PG(2,16).1, PG(2,16).2, SEMI2.1,
etc. The same notation is used in this paper. We noticed that the set of
points HALL.4 represents a unital not only in the Hall plane, but also in the
plane SEMI4. This unital is not equivalent to SEMI4.1 and will be denoted
by SEMI4.2. Similarly, SEMI4.1 represents a unital in the Hall plane, but
it is equivalent to HALL.4. Moreover, the dual set SEMI2.2∗ represents a
unital in two dual planes, SEMI2∗ and LMRH∗. By dualizing SEMI2.2∗ in
LMRH∗, we get another unital in LMRH. It will be denoted by LMRH.2
and is reproduced in Table 2 according to [18, Table 2]. Two more unitals
in HALL, not listed in [18], are given in Table 2. They will be described
shortly.

Thus, Stoichev’s and Tonchev’s data together with Table 2 represents 42
unitals in the projective planes of order 16 (not counting the dual unitals).
These unitals are also available from our web page. Notice that each of the

Solution Unital

LMRH.2 2 5 12 13 19 20 25 31 34 37 44 45 48
49 55 62 67 68 73 79 80 81 87 94 99 100
105 111 114 117 124 125 134 136 138 139 144 145 151
158 162 165 172 173 176 177 183 190 192 193 199 206
210 213 220 221 227 228 233 239 243 244 249 255 272

HALL.5 0 1 8 13 15 18 21 24 30 31 37 49 57
59 60 61 65 71 72 76 78 81 110 112 114 117
121 125 130 138 139 140 143 149 151 153 155 158 160
164 167 168 169 189 194 198 200 201 204 208 211 215
219 223 224 225 226 235 238 245 247 252 253 255 258

HALL.6 0 3 8 10 11 18 20 22 25 31 37 38 39
42 44 51 57 58 60 63 72 81 83 84 87 92
96 98 99 100 110 121 130 135 136 138 143 148 150
151 152 155 160 164 168 172 175 176 178 182 186 189
192 198 201 203 204 210 211 215 217 219 235 255 258

Table 2. Some new unitals in the Hall plane and Lorimer-
Rahilly plane of order 16.
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planes contains at least one unital. To date, no projective plane of square
order without unitals is known.

Pedal sets of unitals in planes of order 16 consist of 5 points. Possible
configurations are (5), (4, 24), (32, 24), (3, 27), and (210); see Figure 2. The
number of points P ∈ P \ U for which the pedal set forms each of these
configurations is given in Table 3. For 30 of the 42 unitals, the duals have
identical pedal set counts. The remaining 12 dual unitals are reported in
Table 4.

(5) (4, 24) (32, 24)

(3, 27) (210)

Figure 2. Configurations of 5 points in a unital of order 4.

The unital PG(2,16).1 is hermitian, and PG(2,16).2 is the non-classical
Buekenhout-Metz unital. According to [18], HALL.1 is the Grüning uni-
tal [9], HALL.2 is another hyperbolic Buekenhout unital, HALL.3 is the
(non-Buekenhout) Dover unital [7], and HALL.4 is a parabolic Buekenhout
unital. Using GAP [8], we investigated Buekenhout unitals in HALL and
found two more parabolic unitals HALL.5 and HALL.6.

In the Bruck-Bose representation, the desarguesian plane arises from a
regular spread of Σ∞. The Hall plane arises from a regular spread with one
regulus replaced by the opposite regulus. We shall call this transformation
“switching of a regulus”. The unital HALL.1 corresponds to a nonsingular
quadric of PG(4, 4) intersecting Σ∞ in the switched regulus; see [2, Theo-
rem 5.1]. If the intersection is a regulus disjoint from the switched regulus,
a unital equivalent to HALL.2 is obtained [2, Theorem 5.2]. The unital
HALL.4 corresponds to an ovoidal cone of PG(4, 4) tangent to Σ∞ in a line
belonging to the switched regulus. The unitals HALL.5 and HALL.6 are
associated with ovoidal cones tangent to Σ∞ in a spread line not belonging
to the switched regulus [2, Theorem 5.4]. HALL.5 comes from a cone that
would yield PG(2,16).1 if a regular spread was used, and HALL.6 from a
cone that would yield PG(2,16).2. In [2, Chapter 5.1] it is remarked that
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there are exactly five inequivalent Buekenhout unitals in the Hall plane of
order 16; thus, we have found all such unitals (however, there could be more
non-Buekenhout unitals in HALL).

Regarding special points and special tangents, the most interesting unital
is HALL.1. All of its pedal sets are collinear, despite the fact that it does
not arise from a unitary polarity (recall that the Hall plane is not self-
dual). Except this unital and the two unitals in PG(2, 16), other unitals
with a special tangent are SEMI2.1, SEMI2.2, SEMI4.1, SEMI4.2, HALL.4,
HALL.5, HALL.6, LMRH.1, LMRH.2, BBH1.1, BBH1.2, BBH2.2, JOHN.2,
MATH.1, MATH.2, and MATH.3. The following unitals have exactly 16
special points, but they do not lie on a special tangent: HALL.3, JOWK.1,
JOWK.2, JOWK.3, DSFP.1, DSFP.2, BBH1.3, BBH2.4, JOHN.1, JOHN.3,
and JOHN.5. Instead, for these unitals the 16 special points constitute
an affine plane of order 4, i.e. a 2-(16, 4, 1) subdesign of the ambient plane.
Such subdesigns also occur for some of the unitals with more than 16 special
points, e.g. half of the 32 special points of HALL.4 form a special tangent,
and the other half an affine plane of order 4.

Many unitals in the planes of order 16 admit more parallel classes than
there are special points. Resolutions not associated with special tangents
are also possible. For example, the unital BBH1.2 has 68 special points
and one special tangent. Regarded as a design, BBH1.2 admits 138 parallel
classes and two resolutions.

4. Some questions

We end this paper with some questions about pedal sets of unitals. Some
of them may be addressed in future works.

In our opinion, a question worth further exploration is the relationship
between pedal sets of a unital U and the dual unital U∗. For all unitals in
the planes of order 9 and for many unitals in the planes of order 16, the
numbers of pedal sets of each type in U and U∗ agree. However, for the
unitals in Table 4 the pedal set counts of U and U∗ are different.

The number of collinear pedal sets, i.e. the number of special points,
always seems to agree for U and U∗. Presently we do not know whether
this holds in general, or just for the unitals considered in this paper. All
considered unitals have at least one special point. Are there unitals without
special points?

For the classical unitals all points outside U are special, but the non-
classical unital HALL.1 also has this property. Are there more examples,
and what can be said about unitals with the property that all points outside
U have collinear pedal sets?



262 VEDRAN KRČADINAC AND KSENIJA SMOLJAK

Unital Pedal set

(5) (4, 24) (32, 24) (3, 27) (210)

PG(2,16).1 208 0 0 0 0
PG(2,16).2 16 0 0 0 192

SEMI2.1 16 0 0 192 0
SEMI2.2 16 0 32 32 128
SEMI2.3 4 48 12 96 48

SEMI4.1 20 16 0 96 76

SEMI4.2 16 0 0 192 0

HALL.1 208 0 0 0 0
HALL.2 48 0 50 100 10
HALL.3 16 0 12 0 180
HALL.4 32 32 0 96 48
HALL.5 68 0 0 120 20
HALL.6 16 24 0 112 56

LMRH.1 16 0 0 0 192
LMRH.2 16 0 40 16 136

JOWK.1 16 0 12 0 180
JOWK.2 16 0 12 72 108
JOWK.3 16 8 12 100 72
JOWK.4 13 7 0 76 112

DSFP.1 16 24 24 84 60
DSFP.2 16 12 0 84 96

DEMP.1 4 12 24 120 48
DEMP.2 8 24 28 88 60

BBH1.1 32 32 0 64 80
BBH1.2 68 0 0 104 36
BBH1.3 16 0 24 88 80

BBH2.1 68 0 60 80 0
BBH2.2 16 16 0 112 64
BBH2.3 48 0 50 80 30
BBH2.4 16 32 28 88 44
BBH2.5 52 16 8 120 12
BBH2.6 18 0 30 76 84

JOHN.1 16 0 12 48 132

Table 3. Pedal sets of unitals in planes of order 16.
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Unital Pedal set

(5) (4, 24) (32, 24) (3, 27) (210)

JOHN.2 32 0 0 112 64
JOHN.3 16 0 24 24 144
JOHN.4 24 0 28 88 68
JOHN.5 16 24 16 76 76

BBS4.1 24 24 16 84 60

MATH.1 16 64 0 128 0
MATH.2 16 0 0 128 64
MATH.3 16 32 0 64 96
MATH.4 4 0 28 96 80

Table 3. Pedal sets of unitals in planes of order 16 (continued).

Unital Pedal set

(5) (4, 24) (32, 24) (3, 27) (210)

SEMI2.2∗ 16 0 0 96 96

LMRH.2∗ 16 0 8 80 104

JOWK.2∗ 16 0 36 24 132
JOWK.3∗ 16 8 20 84 80
JOWK.4∗ 13 7 8 60 120

DEMP.1∗ 4 12 48 72 72

BBH1.3∗ 16 0 16 104 72

BBH2.4∗ 16 32 12 120 28
BBH2.6∗ 18 0 32 72 86

JOHN.2∗ 32 0 16 80 80
JOHN.5∗ 16 24 28 52 88

MATH.4∗ 4 0 12 128 64

Table 4. Pedal sets of the dual unitals in planes of order 16.
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