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Abstract

In this paper idempotent medial quasigroups satisfying the identity (ab · a)a = b are
studied. An example are the complex numbers with multiplication defined by a · b =

(1 − q)a + qb, where q is a solution of q3 − 2q2 + q − 1 = 0. The positive root of this
cubic equation can be viewed as a generalization of the golden ratio. It turns out that
the quasigroups under consideration have many similar properties to the so-called golden
section quasigroups.

1 Introduction

Let q 6= 0, 1 be a complex number and define a binary operation on C by
a ·b = (1−q)a+qb. It is known that (C, ·) is an IM-quasigroup, i.e. satisfies
the laws of idempotency and mediality :

a · a = a, (1)

ab · cd = ac · bd. (2)

Immediate consequences are the identities known as elasticity, left and right
distributivity :

ab · a = a · ba, (3)

a · bc = ab · ac, (4)

ab · c = ac · bc. (5)
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This quasigroup will be denoted by C(q). For some special values of q, the
quasigroup satisfies additional identities. If q = 1+

√
5

2 is the golden ratio,
C(q) is a representative example of the golden section or GS-quasigroups.
GS-quasigroups were defined in [8] as idempotent quasigroups satisfying
the (equivalent) identities a(ab · c) · c = b, a · (a · bc)c = b; see also [2],
[3], [4] and [10]. An alternative definition would be as IM-quasigroups with
the simpler identity a(ab · b) = b. In this paper we study IM-quasigroups
satisfying a similar identity:

(ab · a)a = b. (6)

Representative examples are the quasigroups C(q) with q a root of q3−
2q2+q−1 = 0. Denote by r1,2 = 3

√
25±√69

2 . The roots of this cubic equation
are q1 = 1

3 (2 + r1 + r2) ≈ 1.755 and q2,3 = 1
6

(
4− r1 − r2 ± i

√
3 (r1 − r2)

) ≈
0.123 ± 0.745 i. The number q1 is a Pisot number, i.e. an algebraic inte-
ger greater than 1 whose algebraic conjugates q2,3 have absolute values less
than 1. This number was considered in [5] as a generalization of the golden
ratio and was called the second upper golden ratio. Therefore, we will refer
to IM-quasigroups satisfying the identity (6) as G2-quasigroups.

In the context of [5], the second lower golden ratio was the positive root
of p3 − p− 1 = 0. This is the smallest Pisot number p1 ≈ 1.325; note that
q1 = p2

1. For more details about Pisot numbers see [1].
In this paper it is shown that G2-quasigroups have many properties sim-

ilar to those of GS-quasigroups. For example, they allow a simple definition
of parallelograms using an explicit formula for the fourth vertex. In the last
section G2-quasigroups are characterized in terms of Abelian groups with a
certain type of automorphism.

2 Basic properties and further identities

The following lemma will be used quite often.

Lemma 2.1. In an IM-quasigroup, identity (6) is equivalent with either of
the identities

(a · ba)a = b, (7)

a(ba · a) = b. (8)

Proof. By using elasticity we get (ab · a)a (3)= (a · ba)a (3)= a(ba · a).
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Note that the equivalence holds even in a groupoid satisfying (1) and (2).
Elasticity follows directly from idempotency and mediality, without using
solvability or cancellativity. Consequently, the definition of G2-quasigroups
can be relaxed to the identities alone.

Proposition 2.2. Any groupoid satisfying (1), (2) and (6) is necessarily a
quasigroup.

Proof. Given a and b define x = ab · a and y = ba · a. From (6) and (8) we
see that xa = b and ay = b, i.e. the groupoid is left and right solvable. Now

assume ax1 = ax2 and y1a = y2a. Then, x1
(6)= (ax1 ·a)a = (ax2 ·a)a (6)= x2

and y1
(8)= a(y1a · a) = a(y2a · a) (8)= y2, so the groupoid is left and right

cancellative.

The next proposition is similar to [8, Theorem 5].

Proposition 2.3. In a G2-quasigroup, any two of the equalities ab = c,
ca = d and da = b imply the third.

Proof. Denote the equalities by (i), (ii) and (iii), respectively. Then we
have:

(i), (ii) ⇒ (iii) : da
(ii)= ca · a (i)= (ab · a)a (6)= b,

(i), (iii) ⇒ (ii) : ca
(i)= ab · a (iii)= (a · da)a (7)= d,

(ii), (iii) ⇒ (i) : ab
(iii)= a · da

(ii)= a(ca · a) (8)= c.

We list some more identities valid in G2-quasigroups. They are ac-
companied by pictures illustrating the example of the complex plane with
multiplication defined by a · b = (1− q1)a + q1b.

Proposition 2.4. The following identity holds in any G2-quasigroup:

(a · ab)c · a = ac · b. (9)

Proof. (a · ab)c · a (5)= (a · ab)a · ca (5)= (a · ab)(ca) · (a · ca) (3)= (a · ab)(ca) ·
(ac · a) (2)= (ac)(ab · a) · (ac · a) (4)= ac · (ab · a)a (6)= ac · b.
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c

Figure 1: Identity (9) in the complex plane.

Proposition 2.5. The following identity holds in any G2-quasigroup:

(ab · a)c · b = (ab · c)a. (10)

Proof. (ab·a)c·b (5)= (ab·b)(ab)·cb (3)= (ab)(b·ab)·cb (2)= (ab·c)·(b·ab)b (7)= (ab·
c)a.

a b

c

Figure 2: Identity (10) in the complex plane.

Proposition 2.6. The following identity holds in any G2-quasigroup:

a · (ba · c)d = b(ac · d). (11)

Proof. a · (ba · c)d (5)= a · (ba ·d)(cd) (4)= (a · ba)(ad) · (a · cd) (2)= (a · ba)a · (ad ·
cd) (7)= b(ad · cd) (5)= b(ac · d).
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Figure 3: Identity (11) in the complex plane.

3 Parallelograms and other geometric concepts

The points a, b, c, d of a medial quasigroup are said to form a parallelogram,
denoted by Par(a, b, c, d), if there are points p, q such that pa = qb and
pd = qc. In [7] it was proved that this relation satisfies the axioms of
parallelogram space:

1. For any three points a, b, c there is a unique point d such that
Par(a, b, c, d).

2. Par(a, b, c, d) implies Par(e, f, g, h), where (e, f, g, h) is any cyclic per-
mutation of (a, b, c, d) or (d, c, b, a).

3. Par(a, b, c, d) and Par(c, d, e, f) imply Par(a, b, f, e).

In an IM-quasigroup, the unique point d of axiom 1 satisfies the following
equation [9, Theorem 12]:

ab · dc = ac. (12)

This equation can be explicitly solved for d in GS-quasigroups: d = a·b(ca·a)
[8, Theorem 6]. Here we prove a similar result for G2-quasigroups.

Proposition 3.1. In a G2-quasigroup, for any a, b, c we have

Par(a, b, c, (ba · cb)b).

Proof. By substituting d = (ba · cb)b into the equation (12) we get

ab · [(ba · cb)b · c] = ac.
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It suffices to show that this is a valid identity in any G2-quasigroup:

ab · [(ba · cb)b · c] (5)= ab · [(ba · c)(cb · c) · bc] (2)= ab · [(ba · c)b · (cb · c)c] =
(6)= ab · [(ba · c)b · b] (5)= ab · [(ba · b) · cb]b (5)= ab · [(ba · b)b · (cb · b)] =

(6)= ab · a(cb · b) (4)= a · b(cb · b) (8)= ac.

Now we have a direct definition of parallelograms in G2-quasigroups,
without using auxiliary points:

Par(a, b, c, d) ⇐⇒ d = (ba · cb)b. (13)

Using the parallelogram relation geometric concepts such as midpoints, vec-
tors and translations can be introduced. Of course, in the special case of
the quasigroups C(q) the concepts agree with the usual definitions of plane
geometry. Thus, geometric theorems can be proved by formal calculations
in a quasigroup. We give an example particular to G2-quasigroups (Theo-
rem 3.4).

In any medial quasigroup, b is said to be the midpoint of the pair of
points a, c if Par(a, b, c, b) holds. This is denoted by M(a, b, c). The follow-
ing proposition provides a characterization in G2-quasigroups.

Proposition 3.2. In a G2-quasigroup, M(a, b, c) is equivalent with

c = (ab · ba)a. (14)

Proof. By axiom 2 of parallelogram spaces, M(a, b, c) is equivalent with
Par(b, a, b, c), and the claim follows from (13).

To facilitate notation, we introduce a new binary operation:

a ∗ b = (ba · a)b. (15)

Starting from the quasigroup C(q1), this defines the binary operation in the
quasigroup C(p1), i.e. a ∗ b = (1− p1)a + p1b. If ab = c (resp. a ∗ b = c), we
say that b divides the pair of points a, c in the second upper (resp. lower)
golden ratio. Here are some properties of the new binary operation. It is
assumed that the original binary operation has higher priority than ‘∗’, e.g.
a ∗ bc means a ∗ (bc).
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a bba ba.a a*b

Figure 4: A new binary operation defined by (15).

Lemma 3.3. The operation defined by (15) in a G2-quasigroup satisfies the
following identities:

a ∗ a = a, (16)

ab ∗ cd = (a ∗ c)(b ∗ d), (17)

(a ∗ (a ∗ b)c)c = b. (18)

Proof. Idempotency of the new operation (16) follows directly from (1).
Identity (17) follows by repeated application of mediality:

ab ∗ cd
(15)= (cd · ab)(ab) · cd (2)= (ca · db)(ab) · cd (2)= (ca · a)(db · b) · cd =
(2)= (ca · a)c · (db · b)d (15)= (a ∗ c)(b ∗ d).

Here is the proof of identity (18):

(a ∗ (a ∗ b)c)c (15)= {[(ba · a)b · c]a · a}[(ba · a)b · c] · c =
(2)= {[(ba · a)b · c]a · (ba · a)b}(ac) · c =
(2)= {[(ba · a)b · c](ba · a) · ab}(ac) · c =
(2)= {[(ba · a)b · ba](ca) · ab}(ac) · c =
(5)= {[(ba · b)(ab) · ba](ca) · ab}(ac) · c =
(2)= {[(ba · b)b · (ab · a)](ca) · ab}(ac) · c =
(6)= {[a(ab · a) · ca](ab) · ac}c (2)= {[ac · (ab · a)a](ab) · ac}c =
(6)= [(ac · b)(ab) · ac]c (5)= [(ac · a)b · ac]c (2)= [(ac · a)a · bc]c =
(6)= (c · bc)c (7)= b.

Identity (17) could be called mutual mediality of the two binary oper-
ations. By identifying two factors various kinds of distributivities follow:
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a ∗ bc = (a ∗ b)(a ∗ c), a(b ∗ c) = ab ∗ ac and their right counterparts. Iden-
tity (18) is an analogue of the defining identity for GS-quasigroups [8]. It
is used in the proof of the following theorem.

Theorem 3.4. In a G2-quasigroup, suppose that a ∗ e = c, a ∗ f = b and
cg = f . Then, bg = e. Furthermore, suppose M(a, h, g) and h ∗ g = d.
Then, dh = a and M(b, d, c).

Proof. The first claim follows by substitution:

bg = (a ∗ f)g = (a ∗ cg)g = (a ∗ (a ∗ e)g)g (18)= e.

If, in addition, M(a, h, g) and h ∗ g = d hold, we get g = (ah · ha)a by (14),
and the remaining claims follow by tedious, but straightforward computa-
tions:

dh = (h ∗ g)h = [h ∗ (ah · ha)a]h (15)= {[(ah · ha)a · h]h · (ah · ha)a}h =
(2)= {[(ah · ha)a · h](ah · ha) · ha}h (2)= {[(ah · ha)a · ah](h · ha) · ha}h =
(5)= {[(ah · a)(ha · a) · ah](h · ha) · ha}h =
(2)= {[(ah · a)a · (ha · a)h](h · ha) · ha}h =
(6)= {[h · (ha · a)h](h · ha) · ha}h (4)= {h[(ha · a)h · ha] · ha}h =
(5)= {h[(ha · h)(ah) · ha] · ha}h (2)= {h[(ha · h)h · (ah · a)] · ha}h =
(6)= [h · a(ah · a)](ha) · h (4)= h[a(ah · a) · a] · h (3)= h[a · (ah · a)a] · h =
(6)= (h · ah)h (7)= a.

To prove M(b, d, c), we utilize (14) once more:

(bd · db)b (4)= (bd · d)(bd · b) · b (5)= (bd · d)b · (bd · b)b (6)= (bd · d)b · d =

= (bd · d)b · (h ∗ g) (15)= (bd · d)b · (gh · h)g =
(2)= (bd · d)(gh · h) · bg (2)= (bd · gh)(dh) · bg =
(2)= (bg · dh)(dh) · bg = (ea · a)e (15)= a ∗ e = c.

In the special case of the quasigroup C(q1), Theorem 3.4 proves:
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Corollary 3.5. Let ABC be a triangle and suppose the points E and F
divide AC and AB in the second lower golden ratio, respectively. Then the
cevians BE and CF intersect in a point G that divides them in the second
upper golden ratio. Furthermore, the midpoint H of AG divides the third
cevian AD in the second upper golden ratio.

a

b cd

ef
g

h

Figure 5: Geometric interpretation of Theorem 3.4.

The statement of Corollary 3.5 remains true if every instance of the sec-
ond lower/upper golden ratio is replaced by the corresponding n-th golden
ratio (for a definition see [5]). For n = 1, both the lower and the upper
golden ratio are equal to 1+

√
5

2 and we get the geometric interpretation
of [8, Theorem 15].

4 Representation theorems

Let (G,+) be an Abelian group with an automorphism ϕ such that the
following equality holds for every x ∈ G:

ϕ3(x)− 2ϕ2(x) + ϕ(x)− x = 0. (19)

Define another binary operation on G by the formula

a · b = a + ϕ(b− a). (20)
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It is easy to verify that G is an IM-quasigroup with this new operation.
Furthermore, the identity (6) follows from (19):

(ab · a)a = ab · a + ϕ(a)− ϕ(ab · a)

= ab + ϕ(a)− ϕ(ab) + ϕ(a)− ϕ(ab)− ϕ2(a) + ϕ2(ab)

= 2ϕ(a)− ϕ2(a) + ab− 2ϕ(ab) + ϕ2(ab)

= 2ϕ(a)− ϕ2(a) + (id− 2ϕ + ϕ2)(a + ϕ(b)− ϕ(a))

=
[
a− ϕ(a) + 2ϕ2(a)− ϕ3(a)

]
+

[
ϕ3(b)− 2ϕ2(b) + ϕ(b)− b

]
+ b

(19)= b.

Therefore, (G, ·) is a G2-quasigroup. The purpose of this section is to show
that any G2-quasigroup can be obtained in this way.

Theorem 4.1. Let (G, ·) be a G2-quasigroup. Choose an arbitrary o ∈ G
and define a new binary operation on G by the formula

a + b = (oa · bo)o. (21)

Then, (G,+) is an Abelian group with neutral element o.

Proof. We first prove associativity, commutativity and that o is the neutral
element:

(a + b) + c
(21)= [o · (oa · bo)o](co) · o (5)= [o · (oa · bo)o]o · (co · o) =
(7)= (oa · bo)(co · o) (2)= (ob · ao)(co · o) (2)= (ob · co)(ao · o) =
(7)= [o · (ob · co)o]o · (ao · o) (5)= [o · (ob · co)o](ao) · o =
(2)= (oa)[(ob · co)o · o] · o (21)= a + (b + c),

a + b
(21)= (oa · bo)o (2)= (ob · ao)o (21)= b + a,

a + o
(21)= (oa · oo)o (1)= (oa · o)o (6)= a.

For any a ∈ G define −a = o · (o · oa)a. This is the inverse of a:

a + (−a) (21)= {oa · [o · (o · oa)a]o}o (5)= (oa · o){[o · (o · oa)a]o · o} =
(6)= (oa · o) · (o · oa)a (2)= (oa)(o · oa) · oa (7)= o.
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Theorem 4.2. The mappings ϕ : x 7→ ox and ψ : x 7→ xo are automor-
phisms of the group (G,+) of Theorem 4.1 and satisfy the identity

ψ(a) + ϕ(b) = ab. (22)

Proof. The following shows that ϕ is an automorphism:

ϕ(a) + ϕ(b) = oa + ob
(21)= (o · oa)(ob · o) · o (3)= (o · oa)(o · bo) · o =

(4)= o(oa · bo) · o (3)= o · (oa · bo)o (21)= o(a + b) = ϕ(a + b).

The proof that ψ is an automorphism is similar. Finally,

ψ(a) + ϕ(b) = ao + ob
(21)= (o · ao)(ob · o) · o (3)= (o · ao)(o · bo) · o =

(4)= o(ao · bo) · o (5)= o(ab · o) · o (7)= ab.

Theorem 4.3. Equations (19) and (20) are satisfied in the setting of the
previous two theorems.

Proof. As a special case of (22), we see that ψ(x) + ϕ(x) = xx
(1)= x, i.e.

ψ(x) = x− ϕ(x). Now equation (20) follows directly from (22):

ab = ψ(a) + ϕ(b) = a− ϕ(a) + ϕ(b) = a + ϕ(b− a).

To prove equation (19), note that

ψ2(x) = ψ(x− ϕ(x)) = x− ϕ(x)− ϕ(x− ϕ(x)) = ϕ2(x)− 2ϕ(x) + x.

Therefore, ϕ3(x)− 2ϕ2(x) + ϕ(x) = ϕ(ψ2(x)) = o(xo · o) (8)= x.

This is a direct proof of a G2-version of Toyoda’s representation theorem
for medial quasigroups [6].
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