Noncommutative branched coverings

Ilja Gogić

Trinity College Dublin

Analysis Seminar Trinity College Dublin January 27, 2015

joint work with Etienne Blanchard (Paris)

A C^* -algebra is a complex Banach algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

A C^* -algebra is a complex Banach algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

• A is a Banach algebra over the field \mathbb{C} .

A C^* -algebra is a complex Banach algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra over the field C.
- A is equipped with an involution, i.e. a map $*: A \rightarrow A$, $a \mapsto a^*$ satisfying the properties:

A C^* -algebra is a complex Banach algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra over the field C.
- A is equipped with an involution, i.e. a map $*: A \rightarrow A$, $a \mapsto a^*$ satisfying the properties:

$$(\alpha \mathsf{a} + \beta \mathsf{b})^* = \overline{\alpha} \mathsf{a}^* + \overline{\beta} \mathsf{b}^*, \quad (\mathsf{a} \mathsf{b})^* = \mathsf{b}^* \mathsf{a}^*, \quad \text{and} \quad (\mathsf{a}^*)^* = \mathsf{a},$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

A C^* -algebra is a complex Banach algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra over the field C.
- A is equipped with an involution, i.e. a map $*: A \rightarrow A$, $a \mapsto a^*$ satisfying the properties:

$$(\alpha \mathsf{a} + \beta \mathsf{b})^* = \overline{\alpha} \mathsf{a}^* + \overline{\beta} \mathsf{b}^*, \quad (\mathsf{a} \mathsf{b})^* = \mathsf{b}^* \mathsf{a}^*, \quad \text{and} \quad (\mathsf{a}^*)^* = \mathsf{a},$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

• Norm || · || satisfies the C*-identity, i.e.

$$||a^*a|| = ||a||^2$$

for all $a \in A$.

Remark

The C^* -identity is a very strong requirement. For instance, together with the spectral radius formula, it implies that the C^* -norm is uniquely determined by the algebraic structure: For all $a \in A$ we have

$$||a||^2 = ||a^*a|| = \sup\{|\lambda| : \lambda \in \sigma(a^*a)\},$$

where

$$\sigma(x) := \{ \lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible} \}$$

is the spectrum of an element $x \in A$.

Remark

The C^* -identity is a very strong requirement. For instance, together with the spectral radius formula, it implies that the C^* -norm is uniquely determined by the algebraic structure: For all $a \in A$ we have

$$||a||^2 = ||a^*a|| = \sup\{|\lambda| : \lambda \in \sigma(a^*a)\},$$

where

$$\sigma(x) := \{ \lambda \in \mathbb{C} : \lambda 1 - a \text{ is not invertible} \}$$

is the spectrum of an element $x \in A$.

In the category of C^* -algebras, the natural morphisms are the *-homomorphisms, i.e. the algebra homomorphisms which preserve the involution. They are automatically contractive.

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

In fact, every unital commutative C^* -algebra A arises in this fashion:

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

In fact, every unital commutative C^* -algebra A arises in this fashion:

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

In fact, every unital commutative C^* -algebra A arises in this fashion:

Let A be a unital commutative Banach algebra.

• Let X = X(A) be the set of all characters of A, i.e. non-zero multiplicative linear functionals on A.

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

In fact, every unital commutative C^* -algebra A arises in this fashion:

- Let X = X(A) be the set of all characters of A, i.e. non-zero multiplicative linear functionals on A.
- Then X is a weak*-closed, subspace of $Ball(A^*)$. In particular, by the Banach-Alaoglu theorem, X is compact.

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

In fact, every unital commutative C^* -algebra A arises in this fashion:

- Let X = X(A) be the set of all characters of A, i.e. non-zero multiplicative linear functionals on A.
- Then X is a weak*-closed, subspace of $Ball(A^*)$. In particular, by the Banach-Alaoglu theorem, X is compact.
- For each $a \in A$ let $\hat{a}: X \to \mathbb{C}$ be a function defined by $\hat{a}(\chi) := \chi(a)$. Then $\hat{a} \in C(X)$ and $\hat{a}(X) = \sigma(a)$ for all $a \in A$.

Let X be a CH (compact Hausdorff) space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C^* -algebra with respect to the pointwise operations, involution $f^*(x) := \overline{f(x)}$, and max-norm $\|f\|_{\infty} := \sup\{|f(x)| : x \in X\}$. Obviously, C(X) is a unital commutative C^* -algebra.

In fact, every unital commutative C^* -algebra A arises in this fashion:

- Let X = X(A) be the set of all characters of A, i.e. non-zero multiplicative linear functionals on A.
- Then X is a weak*-closed, subspace of $Ball(A^*)$. In particular, by the Banach-Alaoglu theorem, X is compact.
- For each $a \in A$ let $\hat{a}: X \to \mathbb{C}$ be a function defined by $\hat{a}(\chi) := \chi(a)$. Then $\hat{a} \in C(X)$ and $\hat{a}(X) = \sigma(a)$ for all $a \in A$.
- The **Gelfand transform** of A is a map $\mathcal{G}_A : A \to C(X)$ defined by $\mathcal{G}(a) := \hat{a}$.

• Let **CH** be the category whose objects are compact Hausdorff spaces, with continuous functions for morphisms.

- Let **CH** be the category whose objects are compact Hausdorff spaces, with continuous functions for morphisms.
- Let **UCC*** be the category whose objects are unital commutative C^* -algebras with unital *-homomorphisms for morphisms.

- Let **CH** be the category whose objects are compact Hausdorff spaces, with continuous functions for morphisms.
- Let **UCC*** be the category whose objects are unital commutative C^* -algebras with unital *-homomorphisms for morphisms.
- We define two contravariant functors

$$X : \mathbf{CH} \leadsto \mathbf{UCC}^*$$
 and $C : \mathbf{UCC}^* \leadsto \mathbf{CH}$

as follows:

- Let CH be the category whose objects are compact Hausdorff spaces, with continuous functions for morphisms.
- Let **UCC*** be the category whose objects are unital commutative C^* -algebras with unital *-homomorphisms for morphisms.
- We define two contravariant functors

$$X : \mathbf{CH} \leadsto \mathbf{UCC}^*$$
 and $C : \mathbf{UCC}^* \leadsto \mathbf{CH}$

as follows:

▶ The functor C sends a CH space X to the unital commutative C^* -algebra C(X), and a continuous function $F: X \to Y$ to the unital *-homomorphism $C(F): C(Y) \to C(X), C(F)(f) := f \circ F$.

- Let **CH** be the category whose objects are compact Hausdorff spaces, with continuous functions for morphisms.
- Let **UCC*** be the category whose objects are unital commutative C^* -algebras with unital *-homomorphisms for morphisms.
- We define two contravariant functors

$$X : \mathbf{CH} \leadsto \mathbf{UCC}^*$$
 and $C : \mathbf{UCC}^* \leadsto \mathbf{CH}$

as follows:

- ▶ The functor C sends a CH space X to the unital commutative C^* -algebra C(X), and a continuous function $F: X \to Y$ to the unital *-homomorphism $C(F): C(Y) \to C(X), C(F)(f) := f \circ F$.
- ▶ The functor X sends a unital commutative C^* -algebra A to the space of characters X(A), and a unital *-homomorphism $\phi: A \to B$ to the continuous function $X(\phi): X(B) \to X(A), X(\phi)(\chi) := \chi \circ \phi$.

Commutative Gelfand-Naimark theorem, 1943

 $X \circ C \cong \mathrm{id}_{\mathbf{CH}}$ i $C \circ X \cong \mathrm{id}_{\mathbf{UCC}^*}$ (natural isomorphism of functors). In particular, the categories \mathbf{CH} and \mathbf{UCC}^* are dual.

Commutative Gelfand-Naimark theorem, 1943

 $X \circ C \cong \mathrm{id}_{\mathbf{CH}}$ i $C \circ X \cong \mathrm{id}_{\mathbf{UCC}^*}$ (natural isomorphism of functors). In particular, the categories \mathbf{CH} and \mathbf{UCC}^* are dual.

In other words: By passing from the space X the function algebra C(X), no information is lost. In fact, X can be recovered from C(X).

Commutative Gelfand-Naimark theorem, 1943

 $X \circ C \cong \mathrm{id}_{\mathbf{CH}}$ i $C \circ X \cong \mathrm{id}_{\mathbf{UCC}^*}$ (natural isomorphism of functors). In particular, the categories \mathbf{CH} and \mathbf{UCC}^* are dual.

In other words: By passing from the space X the function algebra C(X), no information is lost. In fact, X can be recovered from C(X).

Thus, topological properties of X can be translated into algebraic properties of C(X), and vice versa, so the theory of C^* -algebras is often thought of as **noncommutative topology**.

• If \mathcal{H} is a Hilbert space, then the algebra $\mathbb{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} with the operator norm and usual adjoint obeys the C^* -identity.

- If \mathcal{H} is a Hilbert space, then the algebra $\mathbb{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} with the operator norm and usual adjoint obeys the C^* -identity.
- In particular, the matrix algebras $M_n(\mathbb{C})$ over \mathbb{C} with the euclidian norm are C^* -algebras. Moreover, the finite direct sums of matrix algebras over \mathbb{C} make up all finite-dimensional C^* -algebras.

- If \mathcal{H} is a Hilbert space, then the algebra $\mathbb{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} with the operator norm and usual adjoint obeys the C^* -identity.
- In particular, the matrix algebras $M_n(\mathbb{C})$ over \mathbb{C} with the euclidian norm are C^* -algebras. Moreover, the finite direct sums of matrix algebras over \mathbb{C} make up all finite-dimensional C^* -algebras.
- If A C^* -algebra and X is a CH space, then C(X,A) becomes a C^* -algebra with respect to the pointwise operations and max-norm.

- If \mathcal{H} is a Hilbert space, then the algebra $\mathbb{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} with the operator norm and usual adjoint obeys the C^* -identity.
- In particular, the matrix algebras $M_n(\mathbb{C})$ over \mathbb{C} with the euclidian norm are C^* -algebras. Moreover, the finite direct sums of matrix algebras over \mathbb{C} make up all finite-dimensional C^* -algebras.
- If A C^* -algebra and X is a CH space, then C(X,A) becomes a C^* -algebra with respect to the pointwise operations and max-norm.
- To every locally compact group G, one can associate a C^* -algebra $C^*(G)$. Everything about the representation theory of G is encoded in $C^*(G)$.

- If \mathcal{H} is a Hilbert space, then the algebra $\mathbb{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} with the operator norm and usual adjoint obeys the C^* -identity.
- In particular, the matrix algebras $M_n(\mathbb{C})$ over \mathbb{C} with the euclidian norm are C^* -algebras. Moreover, the finite direct sums of matrix algebras over \mathbb{C} make up all finite-dimensional C^* -algebras.
- If A C^* -algebra and X is a CH space, then C(X,A) becomes a C^* -algebra with respect to the pointwise operations and max-norm.
- To every locally compact group G, one can associate a C^* -algebra $C^*(G)$. Everything about the representation theory of G is encoded in $C^*(G)$.
- The category of C*-algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (some) tensor products, etc.

A representation of a C^* -algebra A is a *-homomorphism $\pi: A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial closed invariant subspaces (i.e. if \mathcal{K} is a closed subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

A representation of a C^* -algebra A is a *-homomorphism $\pi: A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial closed invariant subspaces (i.e. if \mathcal{K} is a closed subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Noncommutative Gelfand-Naimark theorem, 1943

Every C^* -algebra admits an isometric representation on some Hilbert space.

A representation of a C^* -algebra A is a *-homomorphism $\pi: A \to \mathbb{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . A representation π is said to be **irreducible** if it has no nontrivial closed invariant subspaces (i.e. if \mathcal{K} is a closed subspace of \mathcal{H} such that $\pi(A)\mathcal{K} \subseteq \mathcal{K}$, then $\mathcal{K} = \{0\}$ or $\mathcal{K} = \mathcal{H}$).

Noncommutative Gelfand-Naimark theorem, 1943

Every C^* -algebra admits an isometric representation on some Hilbert space.

Remark

Because of the previous theorem, C^* -algebras can be concretely defined to be norm closed self-adjoint subalgebras of bounded operators on some Hilbert space \mathcal{H} .

Let A be C^* -algebra.

Let A be C*-algebra.

• A primitive ideal of A is an ideal which is the kernel of an irreducible representation of A.

Let A be C*-algebra.

- A primitive ideal of A is an ideal which is the kernel of an irreducible representation of A.
- The primitive spectrum of A is the set Prim(A) of primitive ideals
 of A equipped with the Jacobson topology: If S is a set of primitive
 ideals, its closure is

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}.$$

Let A be C*-algebra.

- A primitive ideal of A is an ideal which is the kernel of an irreducible representation of A.
- The primitive spectrum of A is the set Prim(A) of primitive ideals of A equipped with the Jacobson topology: If S is a set of primitive ideals, its closure is

$$\overline{S} := \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}.$$

Example

If A = C(X), let $C_x(X) := \{ f \in C(X) : f(x) = 0 \}$ $(x \in X)$. Then $\operatorname{Prim}(C(X)) = \{ C_x(X) : x \in X \}$. Moreover, the correspondence $x \mapsto C_x(X)$ defines a homeomorphism between X and $\operatorname{Prim}(C(X))$.

• Prim(A) is always a locally compact space. It is compact whenever A is unital.

- Prim(A) is always a locally compact space. It is compact whenever A is unital.
- If A is separable, Prim(A) is second countable.

- Prim(A) is always a locally compact space. It is compact whenever A
 is unital.
- If A is separable, Prim(A) is second countable.
- However, as a topological space, Prim(A) is in general badly behaved and may satisfy only the T_0 -separation axiom.

- Prim(A) is always a locally compact space. It is compact whenever A
 is unital.
- If A is separable, Prim(A) is second countable.
- However, as a topological space, Prim(A) is in general badly behaved and may satisfy only the T_0 -separation axiom.

When a C^* -algebra A is unital, the Jacobson topology on Prim(A) not only describes the ideal structure of A, but also allows us to completely describe the center Z(A) of A:

- Prim(A) is always a locally compact space. It is compact whenever A
 is unital.
- If A is separable, Prim(A) is second countable.
- However, as a topological space, Prim(A) is in general badly behaved and may satisfy only the T_0 -separation axiom.

When a C^* -algebra A is unital, the Jacobson topology on $\operatorname{Prim}(A)$ not only describes the ideal structure of A, but also allows us to completely describe the center Z(A) of A:

Dauns-Hofmann theorem, 1968

Let A be a unital C^* -algebra. For each $P \in \operatorname{Prim}(A)$, let $q_P : A \to A/P$ be the quotient map. Then there is a *-isomorphism Φ_A of $C(\operatorname{Prim}(A))$ onto the center Z(A) of A such that

$$q_P(\Phi_A(f)a) = f(P)q_P(a)$$

for all $f \in C(\operatorname{Prim}(A))$, $a \in A$ and $P \in \operatorname{Prim}(A)$.

C(X)-algebras

In the light of noncommutative topology it is natural to try to view a given unital C^* -algebra A as a set of sections of some sort of the bundle. For example, C(X) is the family of sections of trivial bundle over X.

C(X)-algebras

In the light of noncommutative topology it is natural to try to view a given unital C^* -algebra A as a set of sections of some sort of the bundle. For example, C(X) is the family of sections of trivial bundle over X.

The natural candidate for the base space X is $\operatorname{Prim}(A)$, the primitive spectrum of A. However, since the topology on $\operatorname{Prim}(A)$ can be awkward to deal with, a natural alternative is to find a compact Hausdorff space X (which will turn out to be a continuous image of $\operatorname{Prim}(A)$) over which A fibres in a nice way.

C(X)-algebras

In the light of noncommutative topology it is natural to try to view a given unital C^* -algebra A as a set of sections of some sort of the bundle. For example, C(X) is the family of sections of trivial bundle over X.

The natural candidate for the base space X is $\operatorname{Prim}(A)$, the primitive spectrum of A. However, since the topology on $\operatorname{Prim}(A)$ can be awkward to deal with, a natural alternative is to find a compact Hausdorff space X (which will turn out to be a continuous image of $\operatorname{Prim}(A)$) over which A fibres in a nice way.

Such algebras are known as C(X)-algebras and were introduced by G. Kasparov in 1988:

Definition

Suppose that X is a compact Hausdorff space. A unital C^* -algebra A is said to be a C(X)-algebra if A is endowed with a unital *-homomorphism ψ_A from C(X) to the centre of A.

Definition

An upper semicontinuous C^* -bundle is a triple $\mathfrak{A} = (p, A, X)$ where A is a topological space with a continuous open surjection $p : A \to X$, together with operations and norms making each fibre $A_x := p^{-1}(x)$ into a C^* -algebra, such that the following conditions are satisfied:

Definition

An upper semicontinuous C^* -bundle is a triple $\mathfrak{A} = (p, A, X)$ where A is a topological space with a continuous open surjection $p : A \to X$, together with operations and norms making each **fibre** $A_X := p^{-1}(x)$ into a C^* -algebra, such that the following conditions are satisfied:

(A1) The maps $\mathbb{C} \times \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$ and $\mathcal{A} \to \mathcal{A}$ given in each fibre by scalar multiplication, addition, multiplication and involution, respectively, are continuous $(\mathcal{A} \times_X \mathcal{A} \text{ denotes the } Whitney sum over <math>X)$.

Definition

An upper semicontinuous C^* -bundle is a triple $\mathfrak{A} = (p, A, X)$ where A is a topological space with a continuous open surjection $p : A \to X$, together with operations and norms making each **fibre** $A_X := p^{-1}(x)$ into a C^* -algebra, such that the following conditions are satisfied:

- (A1) The maps $\mathbb{C} \times \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$ and $\mathcal{A} \to \mathcal{A}$ given in each fibre by scalar multiplication, addition, multiplication and involution, respectively, are continuous $(\mathcal{A} \times_X \mathcal{A} \text{ denotes the } Whitney sum over <math>X)$.
- (A2) The map $A \to \mathbb{R}$, defined by norm on each fibre, is upper semicontinuous.

Definition

An upper semicontinuous C^* -bundle is a triple $\mathfrak{A} = (p, A, X)$ where A is a topological space with a continuous open surjection $p : A \to X$, together with operations and norms making each fibre $A_x := p^{-1}(x)$ into a C^* -algebra, such that the following conditions are satisfied:

- (A1) The maps $\mathbb{C} \times \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$ and $\mathcal{A} \to \mathcal{A}$ given in each fibre by scalar multiplication, addition, multiplication and involution, respectively, are continuous $(\mathcal{A} \times_X \mathcal{A} \text{ denotes the } Whitney sum over <math>X)$.
- (A2) The map $A \to \mathbb{R}$, defined by norm on each fibre, is upper semicontinuous.
- (A3) If $x \in X$ and if (a_i) is a net in \mathcal{A} such that $||a_i|| \to 0$ and $p(a_i) \to x$ in X, then $a_i \to 0_x$ in \mathcal{A} (0_x denotes the zero-element of \mathcal{A}_x).

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that $\mathfrak A$ is a **continuous** C^* -bundle.

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that $\mathfrak A$ is a **continuous** C^* -bundle.

Example

If A is a C^* -algebra, then the simplest example of a continuous C^* -bundle is the **product bundle** over X with fibre A,

$$\epsilon(X,A) := (\pi_1, X \times A, A).$$

where π_1 is a projection on the first coordinate.

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that $\mathfrak A$ is a **continuous** C^* -bundle.

Example

If A is a C^* -algebra, then the simplest example of a continuous C^* -bundle is the **product bundle** over X with fibre A,

$$\epsilon(X,A) := (\pi_1, X \times A, A).$$

where π_1 is a projection on the first coordinate.

By a **section** of an upper semicontinuous C^* -bundle $\mathfrak A$ we mean a map $s:X\to \mathcal A$ such that p(s(x))=x for all $x\in X$. We denote by $\Gamma(\mathfrak A)$ the set of all continuous sections of $\mathfrak A$. Then $\Gamma(\mathfrak A)$ becomes a C(X)-algebra with respect to the natural pointwise operations and sup-norm.

On the other hand, given a C(X)-algebra A, one can always associate an upper semicontinuous C^* -bundle $\mathfrak A$ over X such that $A\cong \Gamma(\mathfrak A)$, as follows:

• Set $J_x := C_0(X \setminus \{x\}) \cdot A$ and note that J_x is a closed two-sided ideal in A (by Cohen factorization theorem). The quotient $A_x := A/J_x$ is called the **fibre** at the point x.

On the other hand, given a C(X)-algebra A, one can always associate an upper semicontinuous C^* -bundle $\mathfrak A$ over X such that $A\cong \Gamma(\mathfrak A)$, as follows:

- Set J_x := C₀(X \ {x}) · A and note that J_x is a closed two-sided ideal in A (by Cohen factorization theorem). The quotient A_x := A/J_x is called the **fibre** at the point x.
- Let

$$\mathcal{A}:=\bigsqcup_{x\in X}A_x,$$

and let $p: A \rightarrow X$ be the canonical associated projection.

On the other hand, given a C(X)-algebra A, one can always associate an upper semicontinuous C^* -bundle $\mathfrak A$ over X such that $A\cong \Gamma(\mathfrak A)$, as follows:

- Set J_x := C₀(X \ {x}) · A and note that J_x is a closed two-sided ideal in A (by Cohen factorization theorem). The quotient A_x := A/J_x is called the **fibre** at the point x.
- Let

$$\mathcal{A}:=\bigsqcup_{x\in X}A_x,$$

and let $p: A \rightarrow X$ be the canonical associated projection.

• If $a \in A$, let a_X be the image of a in A_X . We define the map $\hat{a}: X \to \mathcal{A}$ by $\hat{a}(x) := a_X$. Let $\Omega := \{\hat{a}: a \in A\}$.

On the other hand, given a C(X)-algebra A, one can always associate an upper semicontinuous C^* -bundle $\mathfrak A$ over X such that $A \cong \Gamma(\mathfrak A)$, as follows:

- Set J_x := C₀(X \ {x}) · A and note that J_x is a closed two-sided ideal in A (by Cohen factorization theorem). The quotient A_x := A/J_x is called the **fibre** at the point x.
- Let

$$\mathcal{A}:=\bigsqcup_{x\in X}A_x,$$

and let $p: A \rightarrow X$ be the canonical associated projection.

- If $a \in A$, let a_x be the image of a in A_x . We define the map $\hat{a}: X \to \mathcal{A}$ by $\hat{a}(x) := a_x$. Let $\Omega := \{\hat{a}: a \in A\}$.
- For each $a \in A$ we have

$$||a_x|| = \inf\{||[1 - f + f(x)] \cdot a|| : f \in C(X)\}.$$

In particular, all norm functions $x \mapsto ||a_x|| \ (a \in A)$ are upper semicontinuous on X.

Theorem (Fell & Lee)

There exists a unique topology on \mathcal{A} for which $\mathfrak{A} := (p, \mathcal{A}, X)$ becomes an upper semicontinuous C^* -bundle such that $\Omega = \Gamma(\mathfrak{A})$. Moreover, the **generalized Gelfand transform** $\mathcal{G} : a \mapsto \hat{a}, \mathcal{G} : A \to \Gamma(\mathfrak{A})$, defines an isomorphism of C(X)-algebras.

Theorem (Fell & Lee)

There exists a unique topology on \mathcal{A} for which $\mathfrak{A}:=(p,\mathcal{A},X)$ becomes an upper semicontinuous C^* -bundle such that $\Omega=\Gamma(\mathfrak{A})$. Moreover, the **generalized Gelfand transform** $\mathcal{G}:a\mapsto \hat{a},\,\mathcal{G}:A\to \Gamma(\mathfrak{A})$, defines an isomorphism of C(X)-algebras.

Definition

If all norm functions $x \mapsto ||a_x||$ $(a \in A)$ are continuous on X, we say that A is a **continuous** C(X)-algebra. This is equivalent to say that the associated bundle $\mathfrak A$ is continuous.

Example

Let D be any unital C^* -algebra. Then A := C(X, D) becomes a continuous C(X)-algebra in a natural way:

$$\psi_A(f)(x) := f(x) \cdot 1_A \qquad (f \in C(X)).$$

In this case, each fibre A_x is easily identified with D.

Example

Let D be any unital C^* -algebra. Then A := C(X, D) becomes a continuous C(X)-algebra in a natural way:

$$\psi_{\mathcal{A}}(f)(x) := f(x) \cdot 1_{\mathcal{A}} \qquad (f \in C(X)).$$

In this case, each fibre A_x is easily identified with D.

Example (Degenerate example)

Let A be any unital C^* -algebra and let us fix a point $x_0 \in X$. Then A becomes a C(X)-algebra via the map

$$\psi_{\mathcal{A}}(f) := f(x_0) \cdot 1_{\mathcal{A}} \qquad (f \in \mathcal{C}(X)).$$

In this example, every fibre A_x is zero, except for $x = x_0$, where $A_{x_0} = A$.

To avoid such pathological examples, we shall always assume that the *-homomorphism ψ_A is injective. Then we may identify C(X) with the C^* -subalgebra $\psi_A(C(X))$ of Z(A).

To avoid such pathological examples, we shall always assume that the *-homomorphism ψ_A is injective. Then we may identify C(X) with the C^* -subalgebra $\psi_A(C(X))$ of Z(A).

Example

Let X and Y be two CH spaces. If $F: Y \to X$ is any continuous function, then C(Y) becomes a C(X)-algebra with

$$\psi_{C(Y)}(f) := f \circ F.$$

To avoid such pathological examples, we shall always assume that the *-homomorphism ψ_A is injective. Then we may identify C(X) with the C^* -subalgebra $\psi_A(C(X))$ of Z(A).

Example

Let X and Y be two CH spaces. If $F: Y \to X$ is any continuous function, then C(Y) becomes a C(X)-algebra with

$$\psi_{C(Y)}(f) := f \circ F.$$

• For each $x \in X$, every fibre $C(Y)_x$ is *-isomorphic to $C(F^{-1}(x))$.

To avoid such pathological examples, we shall always assume that the *-homomorphism ψ_A is injective. Then we may identify C(X) with the C^* -subalgebra $\psi_A(C(X))$ of Z(A).

Example

Let X and Y be two CH spaces. If $F: Y \to X$ is any continuous function, then C(Y) becomes a C(X)-algebra with

$$\psi_{C(Y)}(f) := f \circ F.$$

- For each $x \in X$, every fibre $C(Y)_x$ is *-isomorphic to $C(F^{-1}(x))$.
- C(Y) is a continuous C(X)-algebra if and only if F is an open map.

Theorem

Let A be a unital C^* -algebra and let X be a CH space.

Theorem

Let A be a unital C^* -algebra and let X be a CH space.

• If there exists a continuous map F_A : $\operatorname{Prim}(A) \to X$, then A becomes a C(X)-algebra with

$$\psi_{A}(f) := \Phi_{A} \circ f \circ F_{A} \qquad (f \in C(X)),$$

where Φ_A : $C(\operatorname{Prim}(A)) \cong Z(A)$ is the Dauns-Hofmann isomorphism.

Theorem

Let A be a unital C^* -algebra and let X be a CH space.

• If there exists a continuous map F_A : $\operatorname{Prim}(A) \to X$, then A becomes a C(X)-algebra with

$$\psi_A(f) := \Phi_A \circ f \circ F_A \qquad (f \in C(X)),$$

where $\Phi_A : C(\operatorname{Prim}(A)) \cong Z(A)$ is the Dauns-Hofmann isomorphism.

• Moreover, every unital C(X)-algebra arises is this way.

Theorem

Let A be a unital C^* -algebra and let X be a CH space.

• If there exists a continuous map F_A : $\operatorname{Prim}(A) \to X$, then A becomes a C(X)-algebra with

$$\psi_A(f) := \Phi_A \circ f \circ F_A \qquad (f \in C(X)),$$

where $\Phi_A : C(\operatorname{Prim}(A)) \cong Z(A)$ is the Dauns-Hofmann isomorphism.

- Moreover, every unital C(X)-algebra arises is this way.
- A C(X)-algebra A is continuous if end only if the associated map $F_A : \operatorname{Prim}(A) \to X$ is open.

Definition

A unital C(X)-algebra A is said to be:

Definition

A unital C(X)-algebra A is said to be:

• homogeneous all fibres of A are *-isomorphic to the same finite-dimensional C*-algebra.

Definition

A unital C(X)-algebra A is said to be:

- homogeneous all fibres of A are *-isomorphic to the same finite-dimensional C*-algebra.
- subhomogeneous if there exists a positive integer N such that every fibre A_x of A is finite-dimensional with dim $A_x \le N$.

Definition

A unital C(X)-algebra A is said to be:

- homogeneous all fibres of A are *-isomorphic to the same finite-dimensional C*-algebra.
- subhomogeneous if there exists a positive integer N such that every fibre A_x of A is finite-dimensional with dim $A_x \le N$.

Example

• $C(X, \mathbb{M}_n)$ is a (continuous) homogeneous C(X)-algebra with fibre \mathbb{M}_n .

We will be particularly interested in the following classes of C(X)-algebras:

Definition

A unital C(X)-algebra A is said to be:

- homogeneous all fibres of A are *-isomorphic to the same finite-dimensional C*-algebra.
- subhomogeneous if there exists a positive integer N such that every fibre A_x of A is finite-dimensional with dim $A_x \leq N$.

Example

- $C(X, \mathbb{M}_n)$ is a (continuous) homogeneous C(X)-algebra with fibre \mathbb{M}_n .
- Let

$$A:=\{f\in C([0,1],\mathbb{M}_n)\ :\ f(0)\ \text{is a diagonal matrix}\}.$$

Then A is a (continuous) C([0,1])-algebra with $A_0 = \mathbb{C}^n$ and $A_x = \mathbb{M}_n$ for $0 < x \le 1$.

$$r(D) := \sum_{i} n_{i}$$
.

$$r(D) := \sum_{i} n_{i}$$
.

Let A be a unital C(X)-algebra.

$$r(D) := \sum_{i} n_{i}.$$

Let A be a unital C(X)-algebra.

• A is subhomogeneous if and only if

$$r(A) := \sup\{r(A_x) : x \in X\} < \infty.$$

As in the finite-dimensional case, we call this number as rank of A.

$$r(D) := \sum_{i} n_{i}.$$

Let A be a unital C(X)-algebra.

• A is subhomogeneous if and only if

$$r(A) := \sup\{r(A_x) : x \in X\} < \infty.$$

As in the finite-dimensional case, we call this number as rank of A.

If A is continuous and homogeneous with fibre D, then by an important result of J. Fell from 1961, A is automatically locally trivial. This intuitively means that for every point x ∈ X there exists a compact neighborhood U of x such that the restriction of A on U looks like C(U, D).

Let $B \subseteq A$ be two C^* -algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E : A \rightarrow B$ which satisfies the following conditions:

Let $B \subseteq A$ be two C^* -algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E: A \to B$ which satisfies the following conditions:

• E(b) = b for all $b \in B$.

Let $B \subseteq A$ be two C^* -algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E: A \to B$ which satisfies the following conditions:

- E(b) = b for all $b \in B$.
- E is ${}_BA_B$ -linear, i.e. $E(b_1ab_2)=b_1E(a)b_2$ for all $a\in A$ and $b_1,b_2\in B$.

Let $B \subseteq A$ be two C^* -algebras with common identity element. A **conditional expectation** (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E: A \rightarrow B$ which satisfies the following conditions:

- E(b) = b for all $b \in B$.
- E is ${}_BA_B$ -linear, i.e. $E(b_1ab_2)=b_1E(a)b_2$ for all $a\in A$ and $b_1,b_2\in B$.

Remark

The C^* -algebraic conditional expectations are the noncommutative analogues of classical conditional expectations from probability theory.

Let $B \subseteq A$ be two C^* -algebras with common identity element. A conditional expectation (abbreviated C.E.) from A onto B is a completely positive (c.p.) contraction $E : A \rightarrow B$ which satisfies the following conditions:

- E(b) = b for all $b \in B$.
- E is ${}_BA_B$ -linear, i.e. $E(b_1ab_2)=b_1E(a)b_2$ for all $a\in A$ and $b_1,b_2\in B$.

Remark

The C^* -algebraic conditional expectations are the noncommutative analogues of classical conditional expectations from probability theory.

Theorem (Y. Tomiyama, 1957)

A map $E: A \rightarrow B$ is a C.E. if and only if E is a projection of norm one.

A C.E. $E:A\to B$ is said to be of **finite index** (abbreviated C.E.F.I.) if there exists a constant $K\geq 1$ such that the map $(K\cdot E-\mathrm{id}_A):A\to A$ is positive.

A C.E. $E:A\to B$ is said to be of **finite index** (abbreviated C.E.F.I.) if there exists a constant $K\geq 1$ such that the map $(K\cdot E-\mathrm{id}_A):A\to A$ is positive.

A first definition for conditional expectations to be of finite index was given by M. Pimsner and S. Popa in the context of W^* -algebras generalizing results of H. Kosaki and V. F. R. Jones.

A C.E. $E:A\to B$ is said to be of **finite index** (abbreviated C.E.F.I.) if there exists a constant $K\geq 1$ such that the map $(K\cdot E-\mathrm{id}_A):A\to A$ is positive.

A first definition for conditional expectations to be of finite index was given by M. Pimsner and S. Popa in the context of W^* -algebras generalizing results of H. Kosaki and V. F. R. Jones.

However, attempts to describe the more general situation of conditional expectations on C^* -algebras with arbitrary centers to be "of finite index" in some sense(s) went into difficulties. In fact, M. Baillet, Y. Denizeau and J.-F. Havet showed that even in the case of normal faithful conditional expectations E on W^* -algebras M with non-trivial centres, the index value can be calculated only in situations when there exists a number $L \geq 1$ such that the mapping $(L \cdot E - \mathrm{id}_A)$ is completely positive.

Theorem (M. Frank and E. Kirchberg, 1998)

For a C.E. $E: A \rightarrow B$ the following conditions are equivalent:

Theorem (M. Frank and E. Kirchberg, 1998)

For a C.E. $E: A \rightarrow B$ the following conditions are equivalent:

(a) There exists $K \geq 1$ such that the map $K \cdot E - id_A$ is positive.

Theorem (M. Frank and E. Kirchberg, 1998)

For a C.E. $E: A \rightarrow B$ the following conditions are equivalent:

- (a) There exists $K \ge 1$ such that the map $K \cdot E id_A$ is positive.
- **(b)** There exists $L \ge 1$ such that the map $L \cdot E id_A$ is c.p.

Theorem (M. Frank and E. Kirchberg, 1998)

For a C.E. $E: A \rightarrow B$ the following conditions are equivalent:

- (a) There exists $K \ge 1$ such that the map $K \cdot E id_A$ is positive.
- **(b)** There exists $L \ge 1$ such that the map $L \cdot E id_A$ is c.p.
- (c) A becomes a (complete) Hilbert B-module when equipped with the inner product $\langle a_1, a_2 \rangle := E(a_1^* a_2)$.

Theorem (M. Frank and E. Kirchberg, 1998)

For a C.E. $E: A \rightarrow B$ the following conditions are equivalent:

- (a) There exists $K \ge 1$ such that the map $K \cdot E id_A$ is positive.
- **(b)** There exists $L \ge 1$ such that the map $L \cdot E id_A$ is c.p.
- (c) A becomes a (complete) Hilbert B-module when equipped with the inner product $\langle a_1, a_2 \rangle := E(a_1^* a_2)$.

Moreover, if

$${\sf K}({\sf E}):=\inf\{{\sf K}\geq 1\ :\ {\sf K}\cdot {\sf E}-\mathrm{id}_{\sf A}\ \textit{is positive}\},$$

$$L(E) := \inf\{L \ge 1 : L \cdot E - id_A \text{ is c.p.}\},$$

with $K(E) = \infty$ or $L(E) = \infty$ if no such number K or L exists, then

$$K(E) \leq L(E) \leq K(E)^2$$
.

The number K(E) is sometimes called the **weak index** of E.

The number K(E) is sometimes called the **weak index** of E.

For a unital inclusion $A \subseteq B$ of unital C^* -algebras we can now introduce the following constant, which plays an important role in our research:

$$K(A,B) := \inf\{K(E) : E : A \rightarrow B \text{ is C.E.F.I.}\},\$$

with $K(A, B) = \infty$, if no such E exists.

The number K(E) is sometimes called the **weak index** of E.

For a unital inclusion $A \subseteq B$ of unital C^* -algebras we can now introduce the following constant, which plays an important role in our research:

$$K(A, B) := \inf\{K(E) : E : A \rightarrow B \text{ is C.E.F.I.}\},\$$

with $K(A, B) = \infty$, if no such E exists.

Example

Let A be a homogeneous C(X)-algebra $C(X, \mathbb{M}_n)$ and let $\operatorname{tr}(\cdot)$ be the standard trace on \mathbb{M}_n . Then

$$E(f)(x) := \frac{1}{n}\operatorname{tr}(f(x))$$

defines a C.E.F.I. from A onto C(X). In this case we have K(A, C(X)) = K(E) = n.

Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A **branched coverings** is an open continuous surjection $\sigma: Y \to X$ with uniformly bounded number of pre-images, i.e.

$$\sup_{x\in X}|\sigma^{-1}(x)|<\infty.$$

Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A **branched coverings** is an open continuous surjection $\sigma: Y \to X$ with uniformly bounded number of pre-images, i.e.

$$\sup_{x\in X}|\sigma^{-1}(x)|<\infty.$$

Problem

Find an equivalent formulation of the existence of a branched covering $\sigma: Y \to X$ in terms of their associated C^* -algebras C(X) i C(Y).

Noncommutative branched coverings

Definition

Let X and Y be two CH spaces. A **branched coverings** is an open continuous surjection $\sigma: Y \to X$ with uniformly bounded number of pre-images, i.e.

$$\sup_{x\in X}|\sigma^{-1}(x)|<\infty.$$

Problem

Find an equivalent formulation of the existence of a branched covering $\sigma: Y \to X$ in terms of their associated C^* -algebras C(X) i C(Y).

Theorem (A. Pavlov i E. Troitsky, 2011)

A pair (X,Y) admits a branched covering $\sigma:Y\to X$ if and only if there exists a C.E.F.I. $E:C(Y)\to C(X)$.

Definition

A noncommutative branched covering is a pair (A, B) consisting of a C^* -algebra A and its C^* -subalgebra B with common identity element, such that there exists a C.E.F.I. from A onto B.

Definition

A noncommutative branched covering is a pair (A, B) consisting of a C^* -algebra A and its C^* -subalgebra B with common identity element, such that there exists a C.E.F.I. from A onto B.

Reinterpretation in terms of C(X)-algebras

If $\sigma: Y \to X$ is a continuous surjection, then (as already described) C(Y) becomes a C(X)-algebra via

$$\psi_A(f) = f \circ \sigma \qquad (f \in C(X)).$$

Then:

Definition

A noncommutative branched covering is a pair (A, B) consisting of a C^* -algebra A and its C^* -subalgebra B with common identity element, such that there exists a C.E.F.I. from A onto B.

Reinterpretation in terms of C(X)-algebras

If $\sigma: Y \to X$ is a continuous surjection, then (as already described) C(Y) becomes a C(X)-algebra via

$$\psi_A(f) = f \circ \sigma \qquad (f \in C(X)).$$

Then:

• σ is an open map if and only if C(Y) is a continuous C(X)-algebra.

Definition

A noncommutative branched covering is a pair (A, B) consisting of a C^* -algebra A and its C^* -subalgebra B with common identity element, such that there exists a C.E.F.I. from A onto B.

Reinterpretation in terms of C(X)-algebras

If $\sigma: Y \to X$ is a continuous surjection, then (as already described) C(Y) becomes a C(X)-algebra via

$$\psi_A(f) = f \circ \sigma \qquad (f \in C(X)).$$

Then:

- σ is an open map if and only if C(Y) is a continuous C(X)-algebra.
- $\sup_{x \in X} |\sigma^{-1}(x)| < \infty$ if and only if C(Y) is a subhomogeneous C(X)-algebra.

Problem

Problem

• Is the above result also valid for noncommutative C(X)-algebras A?

Problem

- Is the above result also valid for noncommutative C(X)-algebras A?
- What can be said about the weak index K(A, C(X))?

Problem

- Is the above result also valid for noncommutative C(X)-algebras A?
- What can be said about the weak index K(A, C(X))?

We managed to prove one direction:

Theorem (E. Blanchard & I.G., 2013)

Let A be a unital C(X)-algebra. If a pair (A, C(X)) defines a noncommutative branched covering, then A is necessarily a continuous subhomogeneous C(X)-algebra. Moreover, in this case we have $K(A, C(X)) \ge r(A)$.

(A) A is a homogeneous C(X)-algebra (our proof essentially relies on the local triviality of the underlying bundle of A).

- (A) A is a homogeneous C(X)-algebra (our proof essentially relies on the local triviality of the underlying bundle of A).
- (B) A is a subhomogeneous C(X)-algebra of rank 2 (our proof cannot be generalized for subhomogeneous C(X)-algebras of higher rank).

Moreover, in both this cases the equality K(A, C(X)) = r(A) is achieved.

- (A) A is a homogeneous C(X)-algebra (our proof essentially relies on the local triviality of the underlying bundle of A).
- (B) A is a subhomogeneous C(X)-algebra of rank 2 (our proof cannot be generalized for subhomogeneous C(X)-algebras of higher rank).

Moreover, in both this cases the equality K(A, C(X)) = r(A) is achieved.

As a direct consequence of part (A), we get:

Corollary

If a unital C(X)-algebra A admits a C(X)-linear embedding into some unital continuous homogeneous unital C(X)-algebra A', then (A, C(X)) defines a noncommutative branched covering with $K(A, C(X)) \leq K(A', C(X))$.

Problem

If a pair (A, C(X)) defines a noncommutative branched covering, is it possible to embed A as a C(X)-subalgebra of some unital continuous homogeneous C(X)-algebra?

Problem

If a pair (A, C(X)) defines a noncommutative branched covering, is it possible to embed A as a C(X)-subalgebra of some unital continuous homogeneous C(X)-algebra?

The answer is (unfortunately) negative. In fact:

Problem

If a pair (A, C(X)) defines a noncommutative branched covering, is it possible to embed A as a C(X)-subalgebra of some unital continuous homogeneous C(X)-algebra?

The answer is (unfortunately) negative. In fact:

• We exhibited an example of a continuous C(X)-algebra A with fibres $M_2(\mathbb{C})$ and \mathbb{C} , where X is the Alexandroff compactification of the disjoint union $\bigsqcup_{n=1}^{\infty} \mathbb{C}P^n$ of complex projective n-dimensional spaces, which does not admit a C(X)-linear embedding into any unital continuous homogeneous C(X)-algebra.

Problem

If a pair (A, C(X)) defines a noncommutative branched covering, is it possible to embed A as a C(X)-subalgebra of some unital continuous homogeneous C(X)-algebra?

The answer is (unfortunately) negative. In fact:

- We exhibited an example of a continuous C(X)-algebra A with fibres $M_2(\mathbb{C})$ and \mathbb{C} , where X is the Alexandroff compactification of the disjoint union $\bigsqcup_{n=1}^{\infty} \mathbb{C}P^n$ of complex projective n-dimensional spaces, which does not admit a C(X)-linear embedding into any unital continuous homogeneous C(X)-algebra.
- On the other hand, since A is of rank 2, the part (B) implies that the pair (A, C(X)) defines a noncommutative branched covering, with K(A, C(X)) = 2.