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C ∗-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital
C ∗-algebra A.

The self-adjoint elements of A are thought of as the observables; they
are the measurable quantities of the system.

A state of the system is defined as a positive functional on A (i.e. a
linear map ω : A→ C such that ω(a∗a) ≥ 0 for all a ∈ A) with
ω(1A) = 1. If the system is in the state ω, then ω(a) is the expected
value of the observable a.

Automorphisms correspond to the symmetries, while one-parameter
automorphism groups {Φt}t∈R describe the reversible time evolution
of the system (in the Heisenberg picture). Their infinitesimal
generators

δ(x) := lim
t→0

1

t
(Φt(x)− x)

are the ∗-derivations.
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Throughout, A will be a C ∗-algebra.

By an ideal of A we always mean a closed two-sided ideal.

An ideal I of A is said to be essential if I has a non-zero intersection with
every other non-zero ideal of A. This is equivalent to say that its
annihilator I⊥ := {a ∈ A : aI = {0}} is zero.

Definition

The multiplier algebra of A is the C ∗-subalgebra M(A) of the enveloping
von Neumann algebra A∗∗ that consists of all x ∈ A∗∗ such that ax ∈ A
and xa ∈ A for all a ∈ A.

M(A) is a unital extension of A in which A sits as an essential ideal.
Moreover, M(A) satisfies the following universal property: Whenever A sits
as an ideal in a C ∗-algebra B, then the identity map on A extends
uniquely to a ∗-homomorphism from B to M(A) with kernel A⊥. Hence,
M(A) is the largest unitization of A.
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Ilja Gogić (University of Zagreb) Derivations of C∗-algebras FMF, Ljubljana, 27.02.2014 3 / 29



Definition

Derivation of A is a linear map δ : A→ A satisfying the Leibniz rule

δ(xy) = δ(x)y + xδ(y)

for all x , y ∈ A.

Example

If A is a C ∗-subalgebra of a C ∗-algebra B, then each element a ∈ B which
derives A (i.e. ax − xa ∈ A, for all x ∈ A) implements a derivation
δa : A→ A given by

δa(x) := ax − xa.

Definition

A derivation δ of A is said to be inner if there exists a multiplier
a ∈ M(A) such that δ = δa.
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In the application to physics, innerness of a derivation corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Notation

We denote by Der(A) (resp. Inn(A)) the set of all derivations (resp. inner
derivations) of A.

Main problem

Which C ∗-algebras admit only inner derivations?

Some classes of C ∗-algebras which admit only inner derivations:

Von Neumann algebras (Kadison-Sakai, 1966).

Simple C ∗-algebras (Sakai, 1968).

AW ∗-algebras (Olesen, 1974).

Homogeneous C ∗-algebras (Sproston, 1976 - unital case; G., 2013 -
extension to the non-unital case).
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Ilja Gogić (University of Zagreb) Derivations of C∗-algebras FMF, Ljubljana, 27.02.2014 5 / 29



In the application to physics, innerness of a derivation corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Notation

We denote by Der(A) (resp. Inn(A)) the set of all derivations (resp. inner
derivations) of A.

Main problem

Which C ∗-algebras admit only inner derivations?

Some classes of C ∗-algebras which admit only inner derivations:

Von Neumann algebras (Kadison-Sakai, 1966).

Simple C ∗-algebras (Sakai, 1968).

AW ∗-algebras (Olesen, 1974).

Homogeneous C ∗-algebras (Sproston, 1976 - unital case; G., 2013 -
extension to the non-unital case).
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AW ∗-algebras

An AW ∗-algebra is a C ∗-algebra A such that the left annihilator of each
right ideal of A is of the form Ap for some projection p ∈ A.

AW ∗-algebras were introduced by Kaplansky in 1951 in an attempt to
give an abstract algebraic characterization of von Neumann algebras.

It is easy to see that every von Neumann algebra is an AW ∗-algebra,
but the converse fails. Just as for von Neumann algebras,
AW ∗-algebras can be divided into type I , type II , and type III .

A commutative C ∗-algebra is an AW ∗-algebra if and only if its
maximal ideal space is Stonean (i.e. an extremely disconnected
compact Hausdorff space).

A C ∗-algebra A is an AW ∗-algebra if and only if every MASA of A is
monotone complete. All AW ∗-algebras of type I are themselves
monotone complete (Hamana, 1981).

It is unknown whether all AW ∗-algebras are monotone complete. In
fact, this is a long standing open problem dating back to the work of
Kaplansky.
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Homogeneous C ∗-algebras

A C ∗-algebra A is said to be (n-)homogeneous if all irreducible
representations of A have the same finite dimension n.

The 1-homogeneous C ∗-algebras are precisely the commutative ones,
hence of the form A = C0(X ) for some locally compact Hausdorff
space X .

For each locally compact Hausdorff space X , the C ∗-algebra
C0(X )⊗Mn is n-homogeneous.

More generally, if E is an algebraic Mn-bundle over a locally compact
Hausdorff space X , i.e. E is a locally trivial fibre bundle with fibre Mn

and structure group Aut(Mn) ∼= PU(n) (the projective unitary
group), then the set Γ0(E ) of all continuous sections of E vanishing
at infinity is an n-homogeneous C ∗-algebra, with respect to the
fiberwise operations and sup-norm.

By a wonderful theorem due to Fell and Tomiyama-Takesaki (1961),
every n-homogeneous C ∗-algebra A can be realized as A = Γ0(E ) for
some algebraic Mn-bundle E over the spectrum Â.
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Back to our main problem, the separable case was completely solved in
1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

Let A be a separable C ∗-algebra, Then the following conditions are
equivalent:

(a) A admits only inner derivations.

(b) A = A1 ⊕ A2, where A1 is a continuous-trace C ∗-algebra, and A2 is a
direct sum of simple C ∗-algebras.

On the other hand, for inseparable C ∗-algebras the problem of innerness of
derivations remains widely open, even for the simplest cases such as
subhomogeneous C ∗-algebras (i.e. C ∗-algebras which have
finite-dimensional irreducible representations of bounded degree).
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If I and J are two essential ideals of A such that J ⊆ I , then there is an
embedding M(I ) ↪→ M(J).

In this way, we obtain a directed system of C ∗-algebras with isometric
connecting morphisms, where I runs through the directed set Idess(A) of
all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C ∗-algebra

Mloc(A) := (C ∗−) lim
−→
{M(I ) : I ∈ Idess(A)}.

Iterating the construction of Mloc(A), one obtains the following tower of
C ∗-algebras which, a priori, does not have the largest element:

A ⊆ Mloc(A) ⊆ M
(2)
loc (A) ⊆ · · · ⊆ M

(n)
loc (A) ⊆ · · · ,

where M
(2)
loc (A) = Mloc(Mloc(A)), M

(3)
loc (A) = Mloc(M

(2)
loc (A)), etc.
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Remark

An easy, but invaluable fact is that Mloc(I ) = Mloc(A) for every essential
ideal I of A. This is because {J ∈ Idess(A) : J ⊆ I} is cofinal in Idess(A).

Example

If A is simple, then Mloc(A) = M(A).

Example

If A is an AW ∗-algebra, then Mloc(A) = A.

Example

If A = C0(X ) is a commutative C ∗-algebra, then Mloc(A) is a
commutative AW ∗-algebra whose maximal ideal space can be identified
with the inverse limit lim

←−
βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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The concept of the local multiplier algebra was introduced by G. Pedersen
in 1978 (he called it the ”C ∗-algebra of essential multipliers”).

Every derivation of a C ∗-algebra A extends uniquely and under
preservation of the norm to a derivation of Mloc(A).

Pedersen proved that every derivation of a separable C ∗-algebra A
becomes inner when extended to a derivation of Mloc(A). Moreover, it
suffices to assume that every essential closed ideal of A is σ-unital.

In particular, Pedersen’s result entails Sakai’s theorem that every
derivation of a simple unital C ∗-algebra is inner.
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Since Mloc(A) = M(A) if A is simple, and Mloc(A) = A if A is an
AW ∗-algebra, only an affirmative answer in the inseparable case would
cover, extend and unify the results that every derivation of a simple
C ∗-algebra is inner in its multiplier algebra and that all derivations of
AW ∗-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of Mloc(A)

If A is an arbitrary C ∗-algebra, is every derivation of Mloc(A) inner?

Stability problem of Mloc(A)

Is M
(2)
loc (A) = Mloc(A) for every C ∗-algebra A?

Ilja Gogić (University of Zagreb) Derivations of C∗-algebras FMF, Ljubljana, 27.02.2014 12 / 29



Since Mloc(A) = M(A) if A is simple, and Mloc(A) = A if A is an
AW ∗-algebra, only an affirmative answer in the inseparable case would
cover, extend and unify the results that every derivation of a simple
C ∗-algebra is inner in its multiplier algebra and that all derivations of
AW ∗-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of Mloc(A)

If A is an arbitrary C ∗-algebra, is every derivation of Mloc(A) inner?

Stability problem of Mloc(A)

Is M
(2)
loc (A) = Mloc(A) for every C ∗-algebra A?
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Ilja Gogić (University of Zagreb) Derivations of C∗-algebras FMF, Ljubljana, 27.02.2014 12 / 29



There is another important characterisation of Mloc(A), which was first
obtained by Frank and Paulsen in 2003.

For a C ∗-algebra A, let us denote by I (A) its injective envelope as
introduced by Hamana in 1979.

I (A) is not an injective object in the category of C ∗-algebras and
∗-homomorphisms, but in the category of operator spaces and complete
positive maps, i.e. for every inclusion E ⊆ F of operator systems, each
completely positive map φ : E → I (A) has a completely positive extension
φ̃ : F → I (A).

However, it turns out that (nevertheless) I (A) is a C ∗-algebra canonically
containing A as a C ∗-subalgebra. Moreover, I (A) is monotone complete,
so in particular, I (A) is an AW ∗-algebra.
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Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I (A), Mloc(A) is the norm closure of the
set of all x ∈ I (A) which act as a multiplier on some I ∈ Idess(A), i.e.

Mloc(A) =

 ⋃
I∈Idess(A)

{x ∈ I (A) : xI + Ix ⊆ I}

=

Thus, we have the following inclusion of C ∗-algebras:

A ⊆ Mloc(A) ⊆ A ⊆ I (A),

where A is the regular monotone completion of A.

Moreover, it can be seen that I (Mloc(A)) = I (A), so we have an additional
sequence of inclusions of C ∗-algebras:

A ⊆ Mloc(A) ⊆ M
(2)
loc (A) ⊆ · · · ⊆ A ⊆ I (A).
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Very difficult problem

When is Mloc(A) = I (A), or at least Mloc(A) = A?

Stability problem has a negative solution

The first class of examples of C ∗-algebras for which the stability
problem of local multiplier algebras has a negative answer was given
by Ara and Mathieu (2006): There exist unital separable
approximately finite-dimensional primitive C ∗-algebras A such that

M
(2)
loc (A) 6= Mloc(A).

After that, Argerami, Farenick and Massey (2009) showed that a
relatively well-behaved C ∗-algebra C ([0, 1])⊗K also fails to satisfy

M
(2)
loc (A) = Mloc(A).

This example was further developed by Ara and Mathieu (2011), who
showed that if X is a perfect, second countable locally compact
Hausdorff space, and A = C0(X )⊗ B for some non-unital separable

simple C ∗-algebra B, then M
(2)
loc (A) 6= Mloc(A).
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This leads to the following restatement of the stability problem of Mloc(A):

Problem

When is M
(2)
loc (A) = Mloc(A)?

We have the following partial answer:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C ∗-algebra such
that Prim(A)(= the primitive ideal space of A) contains a dense Gδ subset

of closed points, then M
(2)
loc (A) = Mloc(A). Moreover, in this case Mloc(A)

has only inner derivations.

Recall that a C ∗-algebra is said to be quasicentral if no primitive ideal of
A contains the centre Z (A). This is equivalent to say that A admits an
approximate unit (ei ) such that ei ∈ Z (A) for all i .
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On the other hand, M
(2)
loc (A) is always a type I AW ∗-algebra, whenever A

is separable and liminal. More generally:

Theorem (Somerset, 2000; Argerami and Farenick, 2005)

If the injective envelope of a C ∗-algebra A is an AW ∗-algebra of type I ,
then A has a liminal essential ideal. The converse is also true if A is
separable. Moreover, in this case M

(2)
loc (A) is an AW ∗-algebra of type I .

There is also a partial converse in a non-separable direction:

Theorem (Argerami, Farenick and Massey, 2010)

If A is a spatial Fell algebra, then M
(2)
loc (A) is an AW ∗-algebra of type I .

The above result in particular applies to the algebras of the form
A = C0(X )⊗K, for any locally compact Hausdorff space X .

Problem

Is M
(3)
loc (A) = M

(2)
loc (A) for every C ∗-algebra A?
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On the other hand, a fairly interesting class of type I C ∗-algebras is the
class FIN, which consists of all C ∗-algebras with finite-dimensional
irreducible representations.

Problem

What can be said about Mloc(A) and I (A) if A belongs to FIN?

Theorem (G., 2013)

If a C ∗-algebra A belongs to FIN, then Mloc(A) is a finite or countable
direct product of C ∗-algebras of the form C (Xn)⊗Mn, where each space

Xn is Stonean. In particular, Mloc(A) = M
(2)
loc (A) = I (A), and Mloc(A)

admits only inner derivations.
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Proof, Step 1

We first show that every C ∗-algebra in FIN contains a quasi-central
essential ideal J of continuous trace. The proof essentially relies on the
fact that the spectrum of a C ∗-algebra is a Baire space.

Note that all quasi-central continuous-trace C ∗-algebras belong to FIN.
They have a particularly nice description:

Theorem (Archbold, 1972)

Let J be a C ∗-algebra in FIN. Then the following conditions are
equivalent:

(a) J is quasi-central and has a continuous trace.

(b) Dimension function d : Ĵ → N, d : [π] 7→ dimπ, is continuous.

(c) J is isomorphic to the C ∗-direct sum
⊕∞

n=1 Jn of a sequence (Jn) of
C ∗-algebras, where each Jn is either zero, or n-homogeneous.
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Proof, Step 2

Note that this reduces the proof to the homogeneous case. Indeed, if J is
an essential quasi-central continuous trace ideal of A, and if J =

⊕∞
n=1 Jn,

where Jn are as in Archbold’s theorem, then

Mloc(A) = Mloc

( ∞⊕
n=1

Jn

)
=
∞∏
n=1

Mloc(Jn).

Hence, in the sequel we shall assume that A is n-homogeneous. Then by
Fell-Tomiyama-Takesaki theorem we have A = Γ0(E ) for an algebraic
Mn-bundle E over Â.
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Proof, Step 3

If A = Γ0(E ) as above, then using the Zorn’s lemma we find an open
dense subset U of Â such that the restriction bundle E |U is trivial (i.e.
E |U ∼= U ×Mn as PU(n)-bundles). Then I := Γ0(E |U) ∼= C0(U)⊗Mn is
an essential ideal of A, so

Mloc(A) = Mloc(I ) ∼= Mloc(C0(U)⊗Mn) ∼= Mloc(C0(U))⊗Mn

∼= C (X )⊗Mn,

where X is the maximal ideal space of Mloc(C0(U)). Finally, since
Mloc(C0(U)) is a commutative AW ∗-algebra, X is a Stonean space.

Summary

We have no example in which M
(2)
loc (A) = Mloc(A) and we do not

know that every derivation of Mloc(A) is inner.

We have no example in which M
(2)
loc (A) 6= Mloc(A) and we know every

derivation of Mloc(A) is inner.
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Motivation

We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.

On a C ∗-algebra A, however, it is natural to regard two-sided
multiplication maps

Ma,b : x 7→ axb (a, b ∈ M(A))

as basic building blocks (instead of rank one operators).

We can therefore try to approximate a more general map on A, one
that preserves ideals, by finite sums of two-sided multiplication maps,
that is, by elementary operators.

This procedure in particular applies to derivations of C ∗-algebras

Ilja Gogić (University of Zagreb) Derivations of C∗-algebras FMF, Ljubljana, 27.02.2014 22 / 29



Motivation

We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.

On a C ∗-algebra A, however, it is natural to regard two-sided
multiplication maps

Ma,b : x 7→ axb (a, b ∈ M(A))

as basic building blocks (instead of rank one operators).

We can therefore try to approximate a more general map on A, one
that preserves ideals, by finite sums of two-sided multiplication maps,
that is, by elementary operators.

This procedure in particular applies to derivations of C ∗-algebras
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Since derivations of C ∗-algebras are completely bounded, we may consider
the following question:

Problem

Which derivations of a C ∗-algebra A admit a completely bounded
approximation by elementary operators? That is, which derivations of A lie

in the cb-norm closure E`(A)
cb

of the set E`(A) of all elementary
operators on A?

Remark

Since each inner derivation δa (a ∈ M(A)) is an elementary operator

on A, E`(A)
cb

includes the cb-corm closure of Inn(A).

Since the cb-norm of an inner derivation of a C ∗-algebra coincides
with its operator norm, the cb-norm closure of Inn(A) coincides with
the operator norm closure of Inn(A). We denote this closure by

Inn(A).
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Problem (G., 2010)

Does every C ∗-algebra satisfy the condition

Der(A) ∩ E`(A)
cb

= Inn(A)?

In many cases the set Inn(A) is closed in the operator norm. However, this
is not always true.

In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if
and only if A has a finite connecting order.
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Connecting order of a C ∗-algebra

The connecting order of a C ∗-algebra is a constant in N ∪ {∞} arising
from a certain graph structure on the primitive spectrum Prim(A):

Two primitive ideals P,Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

A path of length n from P to Q is a sequence of points
P = P0,P1, . . . ,Pn = Q such that Pi−1 is adjacent to Pi for all
1 ≤ i ≤ n.

The distance d(P,Q) from P to Q is defined as follows:

. d(P,P) := 1.

. If P 6= Q and there exists a path from P to Q, then d(P,Q) is equal
to the minimal length of a path from P to Q.

. If there is no path from P to Q, d(P,Q) :=∞.

The connecting order of A is then defined by

Orc(A) := sup{d(P,Q) : P,Q ∈ Prim(A) such that d(P,Q) <∞}.
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Ilja Gogić (University of Zagreb) Derivations of C∗-algebras FMF, Ljubljana, 27.02.2014 25 / 29



Connecting order of a C ∗-algebra

The connecting order of a C ∗-algebra is a constant in N ∪ {∞} arising
from a certain graph structure on the primitive spectrum Prim(A):

Two primitive ideals P,Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

A path of length n from P to Q is a sequence of points
P = P0,P1, . . . ,Pn = Q such that Pi−1 is adjacent to Pi for all
1 ≤ i ≤ n.

The distance d(P,Q) from P to Q is defined as follows:

. d(P,P) := 1.

. If P 6= Q and there exists a path from P to Q, then d(P,Q) is equal
to the minimal length of a path from P to Q.

. If there is no path from P to Q, d(P,Q) :=∞.

The connecting order of A is then defined by

Orc(A) := sup{d(P,Q) : P,Q ∈ Prim(A) such that d(P,Q) <∞}.
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Theorem (G., 2013)

The equality Der(A) ∩ E`(A)
cb

= Inn(A) holds true for all unital
C ∗-algebras A in which every Glimm ideal is prime.

Glimm ideals

Recall that the Glimm ideals of a unital C ∗-algebra A are the ideals
generated by the maximal ideals of the centre of A.

If a unital C ∗-algebra A has only prime Glimm ideals, then Orc(A) = 1, so
Somerset’s theorem yields that Inn(A) is closed in the operator norm.
Hence:

Corollary

If every Glimm ideal of a unital C ∗-algebra A is prime, then every

derivation of A which lies in E`(A)
cb

is inner.
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Example

The class of C ∗-algebras in which every Glimm ideal is prime is fairly large.
It includes:

Prime C ∗-algebras.

C ∗-algebras with Hausdorff primitive spectrum.

Quotients of AW ∗-algebras.

Local multiplier algebras.

Corollary

For each C ∗-algebra A the following conditions are equivalent:

(a) Mloc(A) admits only inner derivations.

(b) Every derivation of Mloc(A) admits a cb-norm approximation by
elementary operators.
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Question

Does there exist a C ∗-algebra A which admits an outer derivation that is
also an elementary operator on A?

Motivated by our previous discussion, it is natural to start looking for
potential examples in the class of C ∗-algebras with Orc(A) =∞.

Example (G., 2010)

Let A be a unital C ∗-algebra consisting of all elements a ∈ C ([0,∞])⊗M2

such that

a(n) =

[
λn(a) 0

0 λn+1(a)

]
(n ∈ N),

for some convergent sequence (λn(a)) of complex numbers. Then:

(a) d(ker λ1, ker λn) = n for all n ∈ N. In particular, Orc(A) =∞.

(b) E`(A) is closed in the cb-norm.

In particular, A admits an outer derivation that is also an elementary
operator on A.
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I end this talk with some connected questions which I find to be
interesting:

Problem

Do we always have Inn(A) ⊆ E`(A)? In particular, does every unital
C ∗-algebra A with Orc(A) =∞ admit an outer derivation that is also an
elementary operator on A?

Problem

Does there exist a unital C ∗-algebra A which admits an outer derivation δ
that is also an elementary operator of length 2, i.e. δ = Ma1,b1 + Ma2,b2 for
some ai , bi ∈ A?

Problem

What can be said about Der(A) ∩ E`(A)?
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