The cb-norm approximation of derivations and automorphisms by elementary operators

Ilja Gogić

Department of Mathematis University of Zagreb

IWOTA 2019 July 22-26, 2019 Lisbon, Portugal

This research was partially supported by the Croatian Science Foundation under the project IP-2016-06-1046.

C*-algebraic formulation of Quantum Mechanics

C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C^* -algebra A.

C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C^* -algebra A.

• The self-adjoint elements of *A* are thought of as the observables; they are the measurable quantities of the system.

C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C^* -algebra A.

- The self-adjoint elements of A are thought of as the observables; they are the measurable quantities of the system.
- A state of the system is defined as a positive functional on A (i.e. a linear map ω : A → C such that ω(a*a) ≥ 0 for all a ∈ A) with ω(1_A) = 1. If the system is in the state ω, then ω(a) is the expected value of the observable a.

C*-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital C^* -algebra A.

- The self-adjoint elements of A are thought of as the observables; they are the measurable quantities of the system.
- A state of the system is defined as a positive functional on A (i.e. a linear map $\omega : A \to \mathbb{C}$ such that $\omega(a^*a) \ge 0$ for all $a \in A$) with $\omega(1_A) = 1$. If the system is in the state ω , then $\omega(a)$ is the expected value of the observable a.
- Automorphisms correspond to the symmetries, while one-parameter automorphism groups {Φ_t}_{t∈ℝ} describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators

$$\delta(x) := \lim_{t\to 0} \frac{1}{t} (\Phi_t(x) - x)$$

are the *-derivations.

Definition

The multiplier algebra M(A) of A is the largest unitization of A; it consists of all elements $x \in A^{**}$ (the enveloping von Neumann algebra) such that $ax \in A$ and $xa \in A$ for all $a \in A$.

Definition

The multiplier algebra M(A) of A is the largest unitization of A; it consists of all elements $x \in A^{**}$ (the enveloping von Neumann algebra) such that $ax \in A$ and $xa \in A$ for all $a \in A$.

Definition

Derivation of A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$

for all $x, y \in A$.

Definition

The multiplier algebra M(A) of A is the largest unitization of A; it consists of all elements $x \in A^{**}$ (the enveloping von Neumann algebra) such that $ax \in A$ and $xa \in A$ for all $a \in A$.

Definition

Derivation of A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$

for all $x, y \in A$. If there exists a multiplier $a \in M(A)$ such that $\delta(x) = ax - xa$ for all $x \in A$, δ is said to be an inner derivation.

Main problem

Which C^* -algebras admit only inner derivations?

Main problem

Which C^* -algebras admit only inner derivations?

Some *C**-algebras which admit only inner derivations:

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

• von Neumann algebras (Kadison-Sakai 1966);

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);

Main problem

Which C^* -algebras admit only inner derivations?

Some C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
- homogeneous C*-algebras (Sproston 1976 unital case; G. 2013 extension to the non-unital case).

An AW^* -algebra is a C^* -algebra A whose every maximal abelian subalgebra (MASA) is monotone complete.

• AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).

- AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).
- A commutative C*-algebra is an AW*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).

- AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).
- A commutative C*-algebra is an AW*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).
- Every von Neumann algebra is an AW*-algebra (the converse fails; Dixmier's commutative example from 1951). Just as for von Neumann algebras, AW*-algebras can be divided into Type I, Type II, and Type III.

- AW*-algebras were introduced by Kaplansky in 1951 in an attempt to give an abstract algebraic characterization of von Neumann algebras (W*-algebras).
- A commutative C*-algebra is an AW*-algebra if and only if its structure space is Stonean (i.e. an extremely disconnected compact Hausdorff space).
- Every von Neumann algebra is an AW*-algebra (the converse fails; Dixmier's commutative example from 1951). Just as for von Neumann algebras, AW*-algebras can be divided into Type I, Type II, and Type III.
- All type *I AW**-algebras are monotone complete (Hamana 1981), but it is unknown whether all *AW**-algebras are monotone complete; this is a long standing open problem dating back to the work of Kaplansky.

A C^* -algebra A is said to be (n-)homogeneous if all irreducible representations of A have the same finite dimension n.

• The 1-homogeneous C^* -algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.

- The 1-homogeneous C^* -algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.
- For each locally compact Hausdorff space X, the C*-algebra C₀(X, M_n) is n-homogeneous.

- The 1-homogeneous C^* -algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.
- For each locally compact Hausdorff space X, the C*-algebra C₀(X, M_n) is n-homogeneous.
- More generally, if E is an algebraic \mathbb{M}_n -bundle over a locally compact Hausdorff space X, i.e. E is a locally trivial fibre bundle with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) \cong PU(n)$ (the projective unitary group), then the set $\Gamma_0(E)$ of all continuous sections of E vanishing at infinity is an *n*-homogeneous C^* -algebra, with respect to the fiberwise operations and sup-norm.

- The 1-homogeneous C^* -algebras are precisely the commutative ones, hence of the form $A = C_0(X)$ for some locally compact Hausdorff space X.
- For each locally compact Hausdorff space X, the C*-algebra C₀(X, M_n) is n-homogeneous.
- More generally, if E is an algebraic \mathbb{M}_n -bundle over a locally compact Hausdorff space X, i.e. E is a locally trivial fibre bundle with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) \cong PU(n)$ (the projective unitary group), then the set $\Gamma_0(E)$ of all continuous sections of E vanishing at infinity is an *n*-homogeneous C^* -algebra, with respect to the fiberwise operations and sup-norm.
- By a famous theorem due to Fell and Tomiyama-Takesaki from 1961, every *n*-homogeneous C^* -algebra A can be realized as $A = \Gamma_0(E)$ for some algebraic \mathbb{M}_n -bundle E over Prim(A).

Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^* -algebra, Then the following conditions are equivalent:

- (i) A admits only inner derivations.
- (ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

Back to the main problem, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C^* -algebra, Then the following conditions are equivalent:

- (i) A admits only inner derivations.
- (ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

On the other hand, for inseparable C^* -algebras the problem of innerness of derivations remains widely open, even for the simplest cases such as subhomogeneous C^* -algebras (i.e. C^* -algebras which have finite-dimensional irreducible representations of bounded degree).

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\to \infty} \{ M(I) : I \in \mathrm{Id}_{ess}(A) \}.$$

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\to \infty} \{ M(I) : I \in \mathrm{Id}_{ess}(A) \}.$$

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$$

Example

If A is simple, then obviously $M_{\text{loc}}(A) = M(A)$.

Example

If A is an AW^* -algebra, then $M_{loc}(A) = A$.

Example

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

Example

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation of a C^* -algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ -unital), this extension becomes inner in $M_{loc}(A)$.

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation of a C^{*}-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ -unital), this extension becomes inner in $M_{loc}(A)$.

In particular, Pedersen's result entails Sakai's theorem that every derivation of a simple unital C^* -algebra is inner.

Ilja Gogić (University of Zagreb)

The cb-norm approx. by elem. operators

This led Pedersen to ask:

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{\rm loc}(A)$ has only inner derivations for:

• Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

- Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

- Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
- C^* -algebras with finite-dimensional irreducible representations; in this case $M_{loc}(A)$ coincides with the injective envelope of A (G. 2013).

The cb-norm approximation by elementary operators

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.

The cb-norm approximation by elementary operators

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are **completely bounded** (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

The cb-norm approximation by elementary operators

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are **completely bounded** (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

Let us denote by $\mathcal{E}\ell(A)$ the set of all elementary operators on A and by $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ its cb-norm closure.

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Since all derivations and *-automorphisms of C^* -algebras A are completely bounded, the above question in particular applies to those class of maps.

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Since all derivations and *-automorphisms of C^* -algebras A are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation δ of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if δ is an inner derivation.

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Since all derivations and *-automorphisms of C^* -algebras A are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation δ of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if δ is an inner derivation.

The **Glimm ideals** of A are the ideals of A generated by the maximal ideals of Z(A).

The class of C^* -algebras whose every Glimm ideal is prime includes:

• prime C*-algebras;

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^* -algebra A, every derivation of $M_{\text{loc}}(A)$ lies in $\overline{\overline{\mathcal{E}\ell(M_{\text{loc}}(A))}}_{cb}$.

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^* -algebra A, every derivation of $M_{\text{loc}}(A)$ lies in $\overline{\overline{\mathcal{E}\ell(M_{\text{loc}}(A))}}_{cb}$.

For prime C^* -algebras we also established the following result:

Theorem (G. 2019)

If A is a prime C*-algebra then an algebra epimorphism $\sigma : A \to A$ lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if σ is an inner automorphism of A.

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations (by Sproston's Theorem):

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations (by Sproston's Theorem):

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations (by Sproston's Theorem):

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

On the other hand:

Proposition

Let A be a separable n-homogeneous C^* -algebra whose primitive spectrum X is locally contractable. Then every Z(M(A))-linear automorphism of A becomes inner when extended to $M_{loc}(A)$. In particular, all (outer) elementary automorphisms on $A_n = C(PU(n), \mathbb{M}_n)$ become inner in $M_{loc}(A_n)$.

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators: Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ that consists of all $a \in B$ such that If

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \qquad (n \in \mathbb{N}).$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ that consists of all $a \in B$ such that If

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \qquad (n \in \mathbb{N}) \,.$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Problem

Does every automorphism of a C^* -algebra A that is also an elementary operator become inner when extended to $M_{loc}(A)$?