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Preliminaries

Throughout this talk A will be a unital C ∗-algebra with centre Z .

An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A.

The primitive spectrum of A, which we denote by Prim(A), is the
set of all primitive ideals of A equipped with the Jacobson topology.
Hence, if S is some set of primitive ideals, its closure is

S =

{
P ∈ Prim(A) : P ⊇

⋂
Q∈S

Q

}
.

Prim(A) is a compact space which in general satisfies only
T0-separation axiom.

A linear map φ : A→ A is said to be completely bounded if

‖φ‖cb := sup
n∈N
‖φ⊗ idMn‖ <∞.

As usual, by CB(A) we denote the set of all completely bounded
maps on A.
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Ilja Gogić (TCD) Lengths of elementary operators IWOTA 2015, July 6, 2015 2 / 11



Glimm and 2-primal ideals

Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z .

We denote the set of all Glimm ideals of A by Glimm(A).

By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A
is of the form mA for some maximal ideal m of Z and the map
m 7→ mA defines a bijection of Max(Z ) onto Glimm(A).

An ideal Q of A is said to be 2-primal if whenever I and J are closed
two-sided ideals of A with I · J = {0}, then I ⊆ Q or J ⊆ Q.

We denote the set of all 2-primal ideals by Primal2(A).

It is not difficult to see that an ideal Q of A is 2-primal if and only if
for all P1,P2 ∈ Prim(A/Q) there exists a net in Prim(A) which
converges simultaneously to P1 and P2.

In particular, Prim(A) is Hausdorff if and only if

Glimm(A) = Primal2(A) \ {A} = Prim(A).
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Basic example

Let A be a C ∗-algebra consisting of all elements a ∈ C ([0, 1],M3) s.t.

a(1) =

 λ1(a) 0 0
0 λ2(a) 0
0 0 λ3(a)


for some λi (a) ∈ C. Let Pt (t ∈ [0, 1)) and Ri (i = 1, 2, 3) be,
respectively, the kernels of irreducible representations A→M3, a 7→ a(t)
and A→ C, a 7→ λi (a). Then:

Prim(A) = {Pt : t ∈ [0, 1)} ∪ {R1,R2,R3},

Glimm(A) = {Pt : t ∈ [0, 1)} ∪ {R1 ∩ R2 ∩ R3},

Primal2(A) = {A} ∪ {Pt : t ∈ [0, 1)} ∪ {R1,R2,R3}
∪{R1 ∩ R2,R1 ∩ R3,R2 ∩ R3} ∪ {R1 ∩ R2 ∩ R3}.
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Homogeneous and subhomogeneous C ∗-algebras

Let B be a (not necessarily unital) C ∗-algebra.

B is said to be (n-)homogeneous if B/P ∼= Mn for all P ∈ Prim(B).

A famous theorem of Fell and Tomiyama-Takesaki asserts that for any
n-homogeneous C ∗-algebra B with primitive spectrum X there is a
locally trivial bundle E over X with fibre Mn and structure group
PU(n) = Aut(Mn) such that A is isomorphic to the algebra Γ0(E) of
sections of E which vanish at infinity.

If the bundle E can be trivialized over some finite open cover of X , we
say that B = Γ0(E) has the finite type property.

B is said to be subhomogeneous if

sup{dim(B/P) : P ∈ Prim(B)} <∞.

If each homogeneous sub-quotient of B has the finite type property,
we say that B has the finite type property.
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Elementary operators and canonical contraction θA

Definition

An elementary operator on A is a map φ : A→ A which can be written
as a finite sum of two-sided multiplication maps Ma,b : x 7→ axb
(a, b ∈ A). By E`(A) we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with∥∥∥∥∥∑
i

Mai ,bi

∥∥∥∥∥
cb

≤

∥∥∥∥∥∑
i

aia
∗
i

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1
2

.

Hence, if we endow the algebraic tensor product A⊗ A with the Haagerup
norm

‖t‖h := inf


∥∥∥∥∥∑

i

aia
∗
i

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1
2

: t =
∑
i

ai ⊗ bi

 ,
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we obtain a well-defined contraction

(A⊗ A, ‖ · ‖h)→ (E`(A), ‖ · ‖cb), given by
∑
i

ai ⊗ bi 7→
∑
i

Mai ,bi .

Its continuous extension to the completed Haagerup tensor product
A⊗h A is known as a canonical contraction from A⊗h A to CB(A) and
is denoted by θA.

Remark

If A contains a pair of non-zero orthogonal ideals, then θA cannot be
injective. Hence, the necessary condition for the injectivity of θA is that A
must be a prime C ∗-algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

A is prime ⇐⇒ θA is injective ⇐⇒ θA is isometric.

Theorem (Somerset 1998)

ker θA =
⋂
{Q ⊗h A + A⊗h Q : Q ∈ Primal2(A)}.
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Length of elementary operators

The length of an elementary operator φ 6= 0 is the smallest ` = `(φ) ∈ N
such that φ =

∑`
i=1 Mai ,bi for some ai , bi ∈ A. We also define `(0) = 0.

Problem

Determine the length of an elementary operator
∑n

i=1 Mai ,bi in terms of its
coefficients a1, . . . , an and b1, . . . , bn.

If A is prime, then θA is injective, so for any φ =
∑n

i=1 Mai ,bi we have

`(φ) = min{dim span{a1, . . . , an}, dim span{b1, . . . , bn}}.

In particular, if A = Mn, then `(φ) ≤ n2 for all φ ∈ E`(A). Further, if φ is
the transpose map X 7→ X τ , then φ =

∑n
i ,j=1 Meij ,eij (where (eij) are

standard matrix units in Mn), so `(φ) = n2. Hence,

sup{`(φ) : φ ∈ E`(Mn)} = n2.
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Ilja Gogić (TCD) Lengths of elementary operators IWOTA 2015, July 6, 2015 8 / 11



Length of elementary operators

The length of an elementary operator φ 6= 0 is the smallest ` = `(φ) ∈ N
such that φ =

∑`
i=1 Mai ,bi for some ai , bi ∈ A. We also define `(0) = 0.

Problem

Determine the length of an elementary operator
∑n

i=1 Mai ,bi in terms of its
coefficients a1, . . . , an and b1, . . . , bn.

If A is prime, then θA is injective, so for any φ =
∑n

i=1 Mai ,bi we have

`(φ) = min{dim span{a1, . . . , an}, dim span{b1, . . . , bn}}.

In particular, if A = Mn, then `(φ) ≤ n2 for all φ ∈ E`(A). Further, if φ is
the transpose map X 7→ X τ , then φ =

∑n
i ,j=1 Meij ,eij (where (eij) are

standard matrix units in Mn), so `(φ) = n2. Hence,

sup{`(φ) : φ ∈ E`(Mn)} = n2.
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Let us consider the following conditions of a C ∗-algebra A:

(P1) A as a Z -module is finitely generated, i.e. there exists finitely many
elements a1, . . . , an ∈ A such that every a ∈ A can be written as
a =

∑n
i=1 ziai for some zi ∈ Z .

(P2) A as a Z -module is weakly finitely generated, i.e. there exists a
positive integer n such that every finitely generated Z -submodule of
A can be generated with ≤ n generators.

(P3) sup{`(φ) : φ ∈ E`(A)} <∞.

Obviously (P1)⇒ (P2)⇒ (P3).

Theorem (G. 2011)

A C ∗-algebra A satisfies (P1) if and only if A is a finite direct sum of
unital homogeneous C ∗-algebras.
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Results

Theorem (G. 2011, 2012)

If A satisfies (P3) then

sup{dim(A/Q) : Q ∈ Primal2(A)} <∞.

In particular, A is subhomogeneous. Further, if A is separable, A must
have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If
Prim(A) is Hausdorff, then A satisfies (P2).

Theorem (G. 2012; Hausdorffness of Prim(A) is crucial)

There exists a compact subset X of R and a unital C ∗-subalgebra A of
C (X ,M2) with trivial homogeneous sub-quotients such that
sup{dim(A/Q) : Q ∈ Primal2(A)} =∞. Hence, A doesn’t satisfy (P3).
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Corollary

For every separable C ∗-algebras with Hausdorff Prim(A), the conditions
(P2) and (P3) are equivalent.

(P3) 6⇒ (P2) when Prim(A) is not Hausdorff in general:

Proposition/Example (G. 2012)

If A satisfies (P2) then sup{dim(A/G ) : G ∈ Glimm(A)} <∞.

Let A be a C ∗-algebra which consists of all a ∈ C ([0, 1],M2) s.t.

a(1/n) =

[
λn(a) 0

0 λn+1(a)

]
(n ∈ N),

for some convergent sequence (λn(a)) of complex numbers. Then A
satisfies (P3) but has a Glimm ideal of infinite codimension (namely
G =

⋂∞
i=1 ker λi ). In particular, A doesn’t satisfy (P2).
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