When are the lengths of elementary operators uniformly bounded?

Ilja Gogić

International Workshop on Operator Theory and Applications Tbilisi, Georgia, July 6–10, 2015

• Throughout this talk A will be a unital C^* -algebra with centre Z.

- Throughout this talk A will be a unital C^* -algebra with centre Z.
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.

- Throughout this talk A will be a unital C^* -algebra with centre Z.
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.

- Throughout this talk A will be a unital C^* -algebra with centre Z.
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.
- The **primitive spectrum** of *A*, which we denote by Prim(A), is the set of all primitive ideals of *A* equipped with the Jacobson topology. Hence, if *S* is some set of primitive ideals, its closure is

$$\overline{S} = \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}.$$

Prim(A) is a compact space which in general satisfies only T_0 -separation axiom.

- Throughout this talk A will be a unital C^* -algebra with centre Z.
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.
- The **primitive spectrum** of *A*, which we denote by Prim(A), is the set of all primitive ideals of *A* equipped with the Jacobson topology. Hence, if *S* is some set of primitive ideals, its closure is

$$\overline{S} = \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}.$$

Prim(A) is a compact space which in general satisfies only T_0 -separation axiom.

• A linear map $\phi: A \rightarrow A$ is said to be **completely bounded** if

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi \otimes \operatorname{id}_{\mathbb{M}_n}\| < \infty.$$

As usual, by CB(A) we denote the set of all completely bounded maps on A.

Ilja Gogić (TCD)

• **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form mA for some maximal ideal m of Z and the map m → mA defines a bijection of Max(Z) onto Glimm(A).

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form mA for some maximal ideal m of Z and the map m → mA defines a bijection of Max(Z) onto Glimm(A).
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with I · J = {0}, then I ⊆ Q or J ⊆ Q.

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form mA for some maximal ideal m of Z and the map m → mA defines a bijection of Max(Z) onto Glimm(A).
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with I · J = {0}, then I ⊆ Q or J ⊆ Q.
- We denote the set of all 2-primal ideals by $Primal_2(A)$.

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.
- We denote the set of all Glimm ideals of A by Glimm(A).
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form mA for some maximal ideal m of Z and the map m → mA defines a bijection of Max(Z) onto Glimm(A).
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with I · J = {0}, then I ⊆ Q or J ⊆ Q.
- We denote the set of all 2-primal ideals by $Primal_2(A)$.
- It is not difficult to see that an ideal Q of A is 2-primal if and only if for all P₁, P₂ ∈ Prim(A/Q) there exists a net in Prim(A) which converges simultaneously to P₁ and P₂.

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form mA for some maximal ideal m of Z and the map m → mA defines a bijection of Max(Z) onto Glimm(A).
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with I · J = {0}, then I ⊆ Q or J ⊆ Q.
- We denote the set of all 2-primal ideals by $Primal_2(A)$.
- It is not difficult to see that an ideal Q of A is 2-primal if and only if for all P₁, P₂ ∈ Prim(A/Q) there exists a net in Prim(A) which converges simultaneously to P₁ and P₂.
- In particular, Prim(A) is Hausdorff if and only if

$$\operatorname{Glimm}(A) = \operatorname{Primal}_2(A) \setminus \{A\} = \operatorname{Prim}(A).$$

Let A be a C*-algebra consisting of all elements $a \in C([0, 1], \mathbb{M}_3)$ s.t.

$$a(1) = \left[egin{array}{ccc} \lambda_1(a) & 0 & 0 \ 0 & \lambda_2(a) & 0 \ 0 & 0 & \lambda_3(a) \end{array}
ight]$$

for some $\lambda_i(a) \in \mathbb{C}$. Let P_t $(t \in [0, 1))$ and R_i (i = 1, 2, 3) be, respectively, the kernels of irreducible representations $A \to \mathbb{M}_3$, $a \mapsto a(t)$ and $A \to \mathbb{C}$, $a \mapsto \lambda_i(a)$. Then:

Let A be a C*-algebra consisting of all elements $a \in C([0, 1], \mathbb{M}_3)$ s.t.

$$a(1) = \left[egin{array}{ccc} \lambda_1(a) & 0 & 0 \ 0 & \lambda_2(a) & 0 \ 0 & 0 & \lambda_3(a) \end{array}
ight]$$

for some $\lambda_i(a) \in \mathbb{C}$. Let P_t $(t \in [0, 1))$ and R_i (i = 1, 2, 3) be, respectively, the kernels of irreducible representations $A \to \mathbb{M}_3$, $a \mapsto a(t)$ and $A \to \mathbb{C}$, $a \mapsto \lambda_i(a)$. Then:

$$Prim(A) = \{P_t : t \in [0,1)\} \cup \{R_1, R_2, R_3\},\$$

Let A be a C*-algebra consisting of all elements $a \in C([0, 1], \mathbb{M}_3)$ s.t.

$$\mathsf{a}(1) = \left[egin{array}{ccc} \lambda_1(a) & 0 & 0 \ 0 & \lambda_2(a) & 0 \ 0 & 0 & \lambda_3(a) \end{array}
ight]$$

for some $\lambda_i(a) \in \mathbb{C}$. Let P_t $(t \in [0, 1))$ and R_i (i = 1, 2, 3) be, respectively, the kernels of irreducible representations $A \to \mathbb{M}_3$, $a \mapsto a(t)$ and $A \to \mathbb{C}$, $a \mapsto \lambda_i(a)$. Then:

$$Prim(A) = \{P_t : t \in [0,1)\} \cup \{R_1, R_2, R_3\},\$$

 $\text{Glimm}(A) = \{ P_t : t \in [0,1) \} \cup \{ R_1 \cap R_2 \cap R_3 \},\$

Let A be a C*-algebra consisting of all elements $a \in C([0, 1], \mathbb{M}_3)$ s.t.

$$a(1) = \left[egin{array}{ccc} \lambda_1(a) & 0 & 0 \ 0 & \lambda_2(a) & 0 \ 0 & 0 & \lambda_3(a) \end{array}
ight]$$

for some $\lambda_i(a) \in \mathbb{C}$. Let P_t $(t \in [0, 1))$ and R_i (i = 1, 2, 3) be, respectively, the kernels of irreducible representations $A \to \mathbb{M}_3$, $a \mapsto a(t)$ and $A \to \mathbb{C}$, $a \mapsto \lambda_i(a)$. Then:

$$Prim(A) = \{P_t : t \in [0,1)\} \cup \{R_1, R_2, R_3\},\$$

Glimm(A) = { P_t : $t \in [0,1)$ } \cup { $R_1 \cap R_2 \cap R_3$ },

 $\begin{aligned} \text{Primal}_2(A) &= \{A\} \cup \{P_t : t \in [0,1)\} \cup \{R_1, R_2, R_3\} \\ &\cup \{R_1 \cap R_2, R_1 \cap R_3, R_2 \cap R_3\} \cup \{R_1 \cap R_2 \cap R_3\}. \end{aligned}$

Homogeneous and subhomogeneous C*-algebras

Let *B* be a (not necessarily unital) C^* -algebra.

Homogeneous and subhomogeneous C*-algebras

Let *B* be a (not necessarily unital) C^* -algebra.

• B is said to be (n-)homogeneous if $B/P \cong \mathbb{M}_n$ for all $P \in Prim(B)$.

- B is said to be (n-)homogeneous if $B/P \cong \mathbb{M}_n$ for all $P \in Prim(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C*-algebra B with primitive spectrum X there is a locally trivial bundle E over X with fibre M_n and structure group PU(n) = Aut(M_n) such that A is isomorphic to the algebra Γ₀(E) of sections of E which vanish at infinity.

- B is said to be (n-)homogeneous if $B/P \cong \mathbb{M}_n$ for all $P \in Prim(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C*-algebra B with primitive spectrum X there is a locally trivial bundle E over X with fibre M_n and structure group PU(n) = Aut(M_n) such that A is isomorphic to the algebra Γ₀(E) of sections of E which vanish at infinity.
- If the bundle *E* can be trivialized over some finite open cover of *X*, we say that *B* = Γ₀(*E*) has the **finite type property**.

- B is said to be (n-)homogeneous if $B/P \cong \mathbb{M}_n$ for all $P \in Prim(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C*-algebra B with primitive spectrum X there is a locally trivial bundle E over X with fibre M_n and structure group PU(n) = Aut(M_n) such that A is isomorphic to the algebra Γ₀(E) of sections of E which vanish at infinity.
- If the bundle *E* can be trivialized over some finite open cover of *X*, we say that *B* = Γ₀(*E*) has the **finite type property**.

• B is said to be subhomogeneous if

 $\sup\{\dim(B/P) : P \in Prim(B)\} < \infty.$

- B is said to be (n-)homogeneous if $B/P \cong \mathbb{M}_n$ for all $P \in Prim(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C*-algebra B with primitive spectrum X there is a locally trivial bundle E over X with fibre M_n and structure group PU(n) = Aut(M_n) such that A is isomorphic to the algebra Γ₀(E) of sections of E which vanish at infinity.
- If the bundle *E* can be trivialized over some finite open cover of *X*, we say that *B* = Γ₀(*E*) has the **finite type property**.
- B is said to be subhomogeneous if

 $\sup\{\dim(B/P) : P \in Prim(B)\} < \infty.$

• If each homogeneous sub-quotient of *B* has the finite type property, we say that *B* has the finite type property.

Elementary operators and canonical contraction θ_A

Definition

An elementary operator on A is a map $\phi : A \to A$ which can be written as a finite sum of two-sided multiplication maps $M_{a,b} : x \mapsto axb$ $(a, b \in A)$. By $\mathcal{E}\ell(A)$ we denote the set of all elementary operators on A

Elementary operators and canonical contraction θ_A

Definition

An elementary operator on A is a map $\phi : A \to A$ which can be written as a finite sum of two-sided multiplication maps $M_{a,b} : x \mapsto axb$ $(a, b \in A)$. By $\mathcal{E}\ell(A)$ we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i}a_{i}^{*}\right\|^{\frac{1}{2}} \left\|\sum_{i} b_{i}^{*}b_{i}\right\|^{\frac{1}{2}}$$

Elementary operators and canonical contraction θ_A

Definition

An elementary operator on A is a map $\phi : A \to A$ which can be written as a finite sum of two-sided multiplication maps $M_{a,b} : x \mapsto axb$ $(a, b \in A)$. By $\mathcal{E}\ell(A)$ we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i}a_{i}^{*}\right\|^{\frac{1}{2}} \left\|\sum_{i} b_{i}^{*}b_{i}\right\|^{\frac{1}{2}}$$

Hence, if we endow the algebraic tensor product $A \otimes A$ with the Haagerup norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

$$(A\otimes A, \|\cdot\|_h) o (\mathcal{E}\ell(A), \|\cdot\|_{cb}), \quad ext{given by} \quad \sum_i a_i\otimes b_i\mapsto \sum_i M_{a_i,b_i}.$$

$$(A \otimes A, \|\cdot\|_h) o (\mathcal{E}\ell(A), \|\cdot\|_{cb}), \quad \text{given by} \quad \sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i, b_i}.$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_h A$ is known as a **canonical contraction** from $A \otimes_h A$ to CB(A) and is denoted by θ_A .

$$(A\otimes A, \|\cdot\|_h) o (\mathcal{E}\ell(A), \|\cdot\|_{cb}), \quad ext{given by} \quad \sum_i a_i\otimes b_i\mapsto \sum_i M_{a_i,b_i}.$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_h A$ is known as a **canonical contraction** from $A \otimes_h A$ to CB(A) and is denoted by θ_A .

Remark

If A contains a pair of non-zero orthogonal ideals, then θ_A cannot be injective. Hence, the necessary condition for the injectivity of θ_A is that A must be a prime C^* -algebra.

$$(A\otimes A, \|\cdot\|_h) o (\mathcal{E}\ell(A), \|\cdot\|_{cb}), \quad ext{given by} \quad \sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_h A$ is known as a **canonical contraction** from $A \otimes_h A$ to CB(A) and is denoted by θ_A .

Remark

If A contains a pair of non-zero orthogonal ideals, then θ_A cannot be injective. Hence, the necessary condition for the injectivity of θ_A is that A must be a prime C^* -algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

A is prime $\iff \theta_A$ is injective $\iff \theta_A$ is isometric.

$$(A\otimes A, \|\cdot\|_h) o (\mathcal{E}\ell(A), \|\cdot\|_{cb}), \quad ext{given by} \quad \sum_i a_i\otimes b_i\mapsto \sum_i M_{a_i,b_i}.$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_h A$ is known as a **canonical contraction** from $A \otimes_h A$ to CB(A) and is denoted by θ_A .

Remark

If A contains a pair of non-zero orthogonal ideals, then θ_A cannot be injective. Hence, the necessary condition for the injectivity of θ_A is that A must be a prime C^* -algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

A is prime $\iff \theta_A$ is injective $\iff \theta_A$ is isometric.

Theorem (Somerset 1998)

$$\ker \theta_A = \bigcap \{ Q \otimes_h A + A \otimes_h Q : Q \in \operatorname{Primal}_2(A) \}.$$

The **length** of an elementary operator $\phi \neq 0$ is the smallest $\ell = \ell(\phi) \in \mathbb{N}$ such that $\phi = \sum_{i=1}^{\ell} M_{a_i,b_i}$ for some $a_i, b_i \in A$. We also define $\ell(0) = 0$.

The **length** of an elementary operator $\phi \neq 0$ is the smallest $\ell = \ell(\phi) \in \mathbb{N}$ such that $\phi = \sum_{i=1}^{\ell} M_{a_i,b_i}$ for some $a_i, b_i \in A$. We also define $\ell(0) = 0$.

Problem

Determine the length of an elementary operator $\sum_{i=1}^{n} M_{a_i,b_i}$ in terms of its coefficients a_1, \ldots, a_n and b_1, \ldots, b_n .

The **length** of an elementary operator $\phi \neq 0$ is the smallest $\ell = \ell(\phi) \in \mathbb{N}$ such that $\phi = \sum_{i=1}^{\ell} M_{a_i,b_i}$ for some $a_i, b_i \in A$. We also define $\ell(0) = 0$.

Problem

Determine the length of an elementary operator $\sum_{i=1}^{n} M_{a_i,b_i}$ in terms of its coefficients a_1, \ldots, a_n and b_1, \ldots, b_n .

If A is prime, then θ_A is injective, so for any $\phi = \sum_{i=1}^n M_{a_i,b_i}$ we have

 $\ell(\phi) = \min\{\dim \operatorname{span}\{a_1, \ldots, a_n\}, \dim \operatorname{span}\{b_1, \ldots, b_n\}\}.$

The **length** of an elementary operator $\phi \neq 0$ is the smallest $\ell = \ell(\phi) \in \mathbb{N}$ such that $\phi = \sum_{i=1}^{\ell} M_{a_i,b_i}$ for some $a_i, b_i \in A$. We also define $\ell(0) = 0$.

Problem

Determine the length of an elementary operator $\sum_{i=1}^{n} M_{a_i,b_i}$ in terms of its coefficients a_1, \ldots, a_n and b_1, \ldots, b_n .

If A is prime, then θ_A is injective, so for any $\phi = \sum_{i=1}^n M_{a_i,b_i}$ we have

 $\ell(\phi) = \min\{\dim \operatorname{span}\{a_1, \ldots, a_n\}, \dim \operatorname{span}\{b_1, \ldots, b_n\}\}.$

In particular, if $A = \mathbb{M}_n$, then $\ell(\phi) \leq n^2$ for all $\phi \in \mathcal{E}\ell(A)$. Further, if ϕ is the transpose map $X \mapsto X^{\tau}$, then $\phi = \sum_{i,j=1}^{n} M_{e_{ij},e_{ij}}$ (where (e_{ij}) are standard matrix units in \mathbb{M}_n), so $\ell(\phi) = n^2$. Hence,

 $\sup\{\ell(\phi) : \phi \in \mathcal{E}\ell(\mathbb{M}_n)\} = n^2.$

(P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_1, \ldots, a_n \in A$ such that every $a \in A$ can be written as $a = \sum_{i=1}^n z_i a_i$ for some $z_i \in Z$.

- (P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_1, \ldots, a_n \in A$ such that every $a \in A$ can be written as $a = \sum_{i=1}^n z_i a_i$ for some $z_i \in Z$.
- (P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.

- (P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_1, \ldots, a_n \in A$ such that every $a \in A$ can be written as $a = \sum_{i=1}^{n} z_i a_i$ for some $z_i \in Z$.
- (P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.
- (P3) $\sup\{\ell(\phi) : \phi \in \mathcal{E}\ell(A)\} < \infty.$

- (P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_1, \ldots, a_n \in A$ such that every $a \in A$ can be written as $a = \sum_{i=1}^n z_i a_i$ for some $z_i \in Z$.
- (P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.

(P3)
$$\sup\{\ell(\phi) : \phi \in \mathcal{E}\ell(A)\} < \infty.$$

Obviously $(P1) \Rightarrow (P2) \Rightarrow (P3)$.

- (P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_1, \ldots, a_n \in A$ such that every $a \in A$ can be written as $a = \sum_{i=1}^n z_i a_i$ for some $z_i \in Z$.
- (P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.

(P3)
$$\sup\{\ell(\phi) : \phi \in \mathcal{E}\ell(A)\} < \infty.$$

Obviously $(P1) \Rightarrow (P2) \Rightarrow (P3)$.

Theorem (G. 2011)

A C^* -algebra A satisfies (P1) if and only if A is a finite direct sum of unital homogeneous C^* -algebras.

Results

Theorem (G. 2011, 2012)

If A satisfies (P3) then

```
\sup\{\dim(A/Q) \ : \ Q \in \operatorname{Primal}_2(A)\} < \infty.
```

In particular, A is subhomogeneous. Further, if A is separable, A must have a finite type property.

Results

Theorem (G. 2011, 2012)

If A satisfies (P3) then

```
\sup\{\dim(A/Q) : Q \in \operatorname{Primal}_2(A)\} < \infty.
```

In particular, A is subhomogeneous. Further, if A is separable, A must have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If Prim(A) is Hausdorff, then A satisfies (P2).

Results

Theorem (G. 2011, 2012)

If A satisfies (P3) then

```
\sup\{\dim(A/Q) \ : \ Q \in \operatorname{Primal}_2(A)\} < \infty.
```

In particular, A is subhomogeneous. Further, if A is separable, A must have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If Prim(A) is Hausdorff, then A satisfies (P2).

Theorem (G. 2012; Hausdorffness of Prim(A) **is crucial)**

There exists a compact subset X of \mathbb{R} and a unital C*-subalgebra A of $C(X, \mathbb{M}_2)$ with trivial homogeneous sub-quotients such that $\sup\{\dim(A/Q) : Q \in \operatorname{Primal}_2(A)\} = \infty$. Hence, A doesn't satisfy (P3).

Corollary

For every separable C^* -algebras with Hausdorff Prim(A), the conditions (P2) and (P3) are equivalent.

Corollary

For every separable C^* -algebras with Hausdorff Prim(A), the conditions (P2) and (P3) are equivalent.

 $(P3) \neq (P2)$ when Prim(A) is not Hausdorff in general:

Proposition/Example (G. 2012)

• If A satisfies (P2) then $\sup\{\dim(A/G) : G \in \operatorname{Glimm}(A)\} < \infty$.

Corollary

For every separable C^* -algebras with Hausdorff Prim(A), the conditions (P2) and (P3) are equivalent.

 $(P3) \neq (P2)$ when Prim(A) is not Hausdorff in general:

Proposition/Example (G. 2012)

- If A satisfies (P2) then $\sup\{\dim(A/G): G \in \operatorname{Glimm}(A)\} < \infty$.
- Let A be a C*-algebra which consists of all $a \in C([0,1],\mathbb{M}_2)$ s.t.

$$a(1/n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A satisfies (P3) but has a Glimm ideal of infinite codimension (namely $G = \bigcap_{i=1}^{\infty} \ker \lambda_i$). In particular, A doesn't satisfy (P2).