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Preliminaries

@ Throughout this talk A will be a unital C*-algebra with centre Z.

@ An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A.

@ The primitive spectrum of A, which we denote by Prim(A), is the
set of all primitive ideals of A equipped with the Jacobson topology.
Hence, if S is some set of primitive ideals, its closure is

S:{PePrim(A) P2 () Q}.

QeS

Prim(A) is a compact space which in general satisfies only
To-separation axiom.
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Preliminaries

@ Throughout this talk A will be a unital C*-algebra with centre Z.

@ An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A.

@ The primitive spectrum of A, which we denote by Prim(A), is the
set of all primitive ideals of A equipped with the Jacobson topology.
Hence, if S is some set of primitive ideals, its closure is

S:{PePrim(A) P2 () Q}.

QeS

Prim(A) is a compact space which in general satisfies only
To-separation axiom.

@ A linear map ¢ : A — A is said to be completely bounded if

[¢llcb := sup [|¢ @ idn, || < oo
neN

As usual, by CB(A) we denote the set of all completely bounded
maps on A.
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Glimm and 2-primal ideals

@ Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z.
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Glimm and 2-primal ideals
@ Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z.
@ We denote the set of all Glimm ideals of A by Glimm(A).

@ By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A
is of the form mA for some maximal ideal m of Z and the map
m — mA defines a bijection of Max(Z) onto Glimm/(A).
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@ Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z.

@ We denote the set of all Glimm ideals of A by Glimm(A).

@ By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A

is of the form mA for some maximal ideal m of Z and the map
m — mA defines a bijection of Max(Z) onto Glimm/(A).

@ An ideal Q of A is said to be 2-primal if whenever | and J are closed

two-sided ideals of A with /-J = {0}, then /| C Q or J C Q.
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Glimm and 2-primal ideals

Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z.

We denote the set of all Glimm ideals of A by Glimm(A).

By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A
is of the form mA for some maximal ideal m of Z and the map
m — mA defines a bijection of Max(Z) onto Glimm/(A).

An ideal Q of A is said to be 2-primal if whenever | and J are closed
two-sided ideals of A with /-J = {0}, then /| C Q or J C Q.

We denote the set of all 2-primal ideals by Primaly(A).

It is not difficult to see that an ideal @ of A is 2-primal if and only if
for all Py, P> € Prim(A/Q) there exists a net in Prim(A) which
converges simultaneously to P; and P».

v
Ilja Gogi¢ (TCD) IWOTA 2015, July 6, 2015 3 /11




Glimm and 2-primal ideals
@ Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z.
@ We denote the set of all Glimm ideals of A by Glimm(A).

@ By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A
is of the form mA for some maximal ideal m of Z and the map
m — mA defines a bijection of Max(Z) onto Glimm/(A).

@ An ideal Q of A is said to be 2-primal if whenever | and J are closed
two-sided ideals of A with /-J = {0}, then /| C Q or J C Q.

@ We denote the set of all 2-primal ideals by Primaly(A).

@ It is not difficult to see that an ideal @ of A is 2-primal if and only if
for all Py, P> € Prim(A/Q) there exists a net in Prim(A) which
converges simultaneously to P; and P».

@ In particular, Prim(A) is Hausdorff if and only if

Glimm(A) = Primaly(A) \ {A} = Prim(A).
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Basic example
Let A be a C*-algebra consisting of all elements a € C([0, 1], M3) s.t.

M@ 0 0
al)=| 0 X)) 0
0 0 )\3(3)

for some \;j(a) € C. Let P: (t €[0,1)) and R; (i = 1,2,3) be,
respectively, the kernels of irreducible representations A — M3, a — a(t)
and A — C, a~— \j(a). Then:

v

llja Gogi¢ (TCD) IWOTA 2015, July 6, 2015 4 /11



Basic example
Let A be a C*-algebra consisting of all elements a € C([0, 1], M3) s.t.

M@ 0 0
al)=| 0 X)) 0
0 0 )\3(3)

for some \;j(a) € C. Let P: (t €[0,1)) and R; (i = 1,2,3) be,

respectively, the kernels of irreducible representations A — M3, a — a(t)
and A — C, a~— \j(a). Then:

Prim(A) = {P; : t €[0,1)} U{Ry, Ry, Rs},

v

llja Gogi¢ (TCD) IWOTA 2015, July 6, 2015 4 /11



Basic example
Let A be a C*-algebra consisting of all elements a € C([0, 1], M3) s.t.
A(a) 0 0
a(l) = 0 X((a) O
0 0 )\3(3)

for some \;j(a) € C. Let P: (t €[0,1)) and R; (i = 1,2,3) be,
respectively, the kernels of irreducible representations A — M3, a — a(t)
and A — C, a~— \j(a). Then:

PI‘iIIl(A) = {Pt te [0, 1)} U {Rl, Ry, R3},

Glimm(A) ={P; : t€[0,1)} U{R1 N RN Rs},

v

llja Gogi¢ (TCD) IWOTA 2015, July 6, 2015 4 /11



Basic example
Let A be a C*-algebra consisting of all elements a € C([0, 1], M3) s.t.
A(a) 0 0
a(l) = 0 X((a) O
0 0 )\3(3)

for some \;j(a) € C. Let P: (t €[0,1)) and R; (i = 1,2,3) be,
respectively, the kernels of irreducible representations A — M3, a — a(t)
and A — C, a~— \j(a). Then:

Prim(A) = {P; : t € [0,1)} U{Ri, Ry, Rs},
Glimm(A) ={P; : t€[0,1)} U{R1 N RN Rs},

Primal,(A) = {A}U{P: : t€[0,1)} U{R1, Ro, R3}
U{RiN Ry, RiNR3,RoNR3} U{R1 N R2 N R3}.
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Homogeneous and subhomogeneous C*-algebras
Let B be a (not necessarily unital) C*-algebra.

@ B is said to be (n-)homogeneous if B/P = M, for all P € Prim(B).

@ A famous theorem of Fell and Tomiyama-Takesaki asserts that for any
n-homogeneous C*-algebra B with primitive spectrum X there is a
locally trivial bundle £ over X with fibre M, and structure group
PU(n) = Aut(M,) such that A is isomorphic to the algebra (&) of
sections of £ which vanish at infinity.
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Homogeneous and subhomogeneous C*-algebras
Let B be a (not necessarily unital) C*-algebra.

@ B is said to be (n-)homogeneous if B/P = M, for all P € Prim(B).
@ A famous theorem of Fell and Tomiyama-Takesaki asserts that for any
n-homogeneous C*-algebra B with primitive spectrum X there is a

locally trivial bundle £ over X with fibre M, and structure group
PU(n) = Aut(M,) such that A is isomorphic to the algebra (&) of
sections of £ which vanish at infinity.

@ If the bundle £ can be trivialized over some finite open cover of X, we
say that B = [o(€) has the finite type property.

.
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v

@ B is said to be subhomogeneous if

sup{dim(B/P) : P € Prim(B)} < oc.
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Homogeneous and subhomogeneous C*-algebras

Let B be a (not necessarily unital) C*-algebra.

B is said to be (n-)homogeneous if B/P = M), for all P € Prim(B).

A famous theorem of Fell and Tomiyama-Takesaki asserts that for any
n-homogeneous C*-algebra B with primitive spectrum X there is a
locally trivial bundle £ over X with fibre M, and structure group
PU(n) = Aut(M,) such that A is isomorphic to the algebra (&) of
sections of £ which vanish at infinity.

If the bundle £ can be trivialized over some finite open cover of X, we
say that B = [o(€) has the finite type property.

v

B is said to be subhomogeneous if
sup{dim(B/P) : P € Prim(B)} < oc.

If each homogeneous sub-quotient of B has the finite type property,
we say that B has the finite type property.

v
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Elementary operators and canonical contraction 64
Definition
An elementary operator on A is a map ¢ : A — A which can be written

as a finite sum of two-sided multiplication maps M, : x — axb
(a,b € A). By EL(A) we denote the set of all elementary operators on A
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Elementary operators and canonical contraction 0,
Definition
An elementary operator on A is a map ¢ : A — A which can be written

as a finite sum of two-sided multiplication maps M, j, : x — axb
(a,b € A). By EL(A) we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with

2

1
2
S| <[] | Sun
i b i i
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Elementary operators and canonical contraction 0,
Definition
An elementary operator on A is a map ¢ : A — A which can be written

as a finite sum of two-sided multiplication maps M, j, : x — axb
(a,b € A). By EL(A) we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with

2

1
2
S| <[] | Sun
i b i i

Hence, if we endow the algebraic tensor product A ® A with the Haagerup
norm

2

HtHh ;= inf Za,-a;‘ Zb;kbl : tzZa,-@b,- ,

[N
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we obtain a well-defined contraction

(ADA |- [ln) = (EL(A)II - llco), givenby D aj @ bj=s Y Map,.
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Its continuous extension to the completed Haagerup tensor product
A ®p A is known as a canonical contraction from A ®p; A to CB(A) and
is denoted by 64.
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(ADA |- [ln) = (EL(A)II - llco), givenby D aj @ bj=s Y Map,.

Its continuous extension to the completed Haagerup tensor product
A ®p A is known as a canonical contraction from A ®p; A to CB(A) and
is denoted by 64.

Remark

If A contains a pair of non-zero orthogonal ideals, then 6,4 cannot be
injective. Hence, the necessary condition for the injectivity of 64 is that A
must be a prime C*-algebra.
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Its continuous extension to the completed Haagerup tensor product
A ®p A is known as a canonical contraction from A ®p; A to CB(A) and
is denoted by 64.

Remark

If A contains a pair of non-zero orthogonal ideals, then 6,4 cannot be
injective. Hence, the necessary condition for the injectivity of 64 is that A
must be a prime C*-algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

A is prime <= 04 is injective <= 0, is isometric.
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we obtain a well-defined contraction

(ADA |- [ln) = (EL(A)II - llco), givenby D aj @ bj=s Y Map,.

Its continuous extension to the completed Haagerup tensor product
A ®p A is known as a canonical contraction from A ®p; A to CB(A) and
is denoted by 64.

Remark

If A contains a pair of non-zero orthogonal ideals, then 6,4 cannot be
injective. Hence, the necessary condition for the injectivity of 64 is that A
must be a prime C*-algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)

A is prime <= 04 is injective <= 0, is isometric.

Theorem (Somerset 1998)

kerfa = {Q®nA+A®;, Q : Q € Primaly(A)}.

v
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Length of elementary operators

The length of an elementary operator ¢ # 0 is the smallest ¢ = ¢(¢) € N
such that ¢ = Zle M., b, for some a;, bj € A. We also define ¢(0) = 0.
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Length of elementary operators

The length of an elementary operator ¢ # 0 is the smallest ¢ = ¢(¢

eN
such that ¢ = Zle M., b, for some a;, bj € A. We also define ¢(0) = 0.

Problem

Determine the length of an elementary operator > ; M,, 5, in terms of its
coefficients a1,...,a, and by, ..., b,
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The length of an elementary operator ¢ # 0 is the smallest ¢ = ¢(¢) € N
such that ¢ = Zle M., b, for some a;, bj € A. We also define ¢(0) = 0.

Problem

Determine the length of an elementary operator > ; M,, 5, in terms of its
coefficients a1,...,a, and by,..., b,.

v

If A'is prime, then 64 is injective, so for any ¢ = > "7 ; M, p,, we have

¢(¢) = min{dimspan{ay,...,a,}, dimspan{by,...,by}}.
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Length of elementary operators

The length of an elementary operator ¢ # 0 is the smallest ¢ = ¢(¢) € N
such that ¢ = Zle M., b, for some a;, bj € A. We also define ¢(0) = 0.

Problem

Determine the length of an elementary operator > ; M,, 5, in terms of its
coefficients a1,...,a, and by,..., b,.

v

If A'is prime, then 64 is injective, so for any ¢ = > "7 ; M, p,, we have

¢(¢) = min{dimspan{ai,...,an}, dimspan{bi,..., bn}}.

In particular, if A= M,, then £(¢) < n? for all ¢ € E¢(A). Further, if ¢ is
the transpose map X — X7, then ¢ = }°7._; Me; o; (where (e;) are
standard matrix units in M,), so £(¢) = n®. Hence,

sup{l(¢) : ¢ € ELM,)} = n?,
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Let us consider the following conditions of a C*-algebra A:

(P1) A as a Z-module is finitely generated, i.e. there exists finitely many
elements ai,...,a, € A such that every a € A can be written as
a=Y i ,zajforsome z € Z.
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(P2) A as a Z-module is weakly finitely generated, i.e. there exists a
positive integer n such that every finitely generated Z-submodule of
A can be generated with < n generators.
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Let us consider the following conditions of a C*-algebra A:

(P1) A as a Z-module is finitely generated, i.e. there exists finitely many
elements ai,...,a, € A such that every a € A can be written as
a=Y i ,zajforsome z € Z.

(P2) A as a Z-module is weakly finitely generated, i.e. there exists a
positive integer n such that every finitely generated Z-submodule of
A can be generated with < n generators.

(P3) sup{l(¢) : ¢ €&UA)} < 0.

Obviously (P1) = (P2) = (P3). ]

Theorem (G. 2011)

A C*-algebra A satisfies (P1) if and only if A is a finite direct sum of
unital homogeneous C*-algebras.
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Results

Theorem (G. 2011, 2012)
If A satisfies (P3) then

sup{dim(A/Q) : Q € Primaly(A)} < occ.

In particular, A is subhomogeneous. Further, if A is separable, A must
have a finite type property.
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IWOTA 2015, July 6, 2015 10 / 11




Results

Theorem (G. 2011, 2012)
If A satisfies (P3) then

sup{dim(A/Q) : Q € Primaly(A)} < occ.

In particular, A is subhomogeneous. Further, if A is separable, A must
have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If
Prim(A) is Hausdorff, then A satisfies (P2).
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Results

Theorem (G. 2011, 2012)
If A satisfies (P3) then

sup{dim(A/Q) : Q € Primaly(A)} < occ.

In particular, A is subhomogeneous. Further, if A is separable, A must
have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If
Prim(A) is Hausdorff, then A satisfies (P2).

Theorem (G. 2012; Hausdorffness of Prim(A) is crucial)

There exists a compact subset X of R and a unital C*-subalgebra A of
C(X,My) with trivial homogeneous sub-quotients such that
sup{dim(A/Q) : Q € Primaly(A)} = co. Hence, A doesn't satisfy (P3).
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Corollary

For every separable C*-algebras with Hausdorff Prim(A), the conditions
(P2) and (P3) are equivalent.
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Corollary

For every separable C*-algebras with Hausdorff Prim(A), the conditions
(P2) and (P3) are equivalent.

(P3) # (P2) when Prim(A) is not Hausdorff in general:

Proposition/Example (G. 2012)
o If A satisfies (P2) then sup{dim(A/G): G € Glimm(A)} < oo.
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Corollary

For every separable C*-algebras with Hausdorff Prim(A), the conditions
(P2) and (P3) are equivalent.

(P3) # (P2) when Prim(A) is not Hausdorff in general:

Proposition/Example (G. 2012)
o If A satisfies (P2) then sup{dim(A/G): G € Glimm(A)} < oo.
@ Let A be a C*-algebra which consists of all a € C([0, 1], M) s.t.

An(a) 0
a(l/n) = n e N),
am=| e, 0| eem
for some convergent sequence (Ap(a)) of complex numbers. Then A
satisfies (P3) but has a Glimm ideal of infinite codimension (namely
G = (72 ker Aj). In particular, A doesn't satisfy (P2).
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