When are the lengths of elementary operators uniformly bounded?

Ilja Gogić

TRINITY COLLEGE DUBLIN
 COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

THE
UNIVERSITY
OF DUBLIN

International Workshop on Operator Theory and Applications
Tbilisi, Georgia, July 6-10, 2015

Preliminaries

- Throughout this talk A will be a unital C^{*}-algebra with centre Z.

Preliminaries

- Throughout this talk A will be a unital C^{*}-algebra with centre Z.
- An ideal P of A is said to be primitive if P is the kernel of some irreducible representation of A.

Preliminaries

- Throughout this talk A will be a unital C^{*}-algebra with centre Z.
- An ideal P of A is said to be primitive if P is the kernel of some irreducible representation of A.

Preliminaries

- Throughout this talk A will be a unital C^{*}-algebra with centre Z.
- An ideal P of A is said to be primitive if P is the kernel of some irreducible representation of A.
- The primitive spectrum of A, which we denote by $\operatorname{Prim}(A)$, is the set of all primitive ideals of A equipped with the Jacobson topology. Hence, if S is some set of primitive ideals, its closure is

$$
\bar{S}=\left\{P \in \operatorname{Prim}(A): P \supseteq \bigcap_{Q \in S} Q\right\}
$$

$\operatorname{Prim}(A)$ is a compact space which in general satisfies only T_{0}-separation axiom.

Preliminaries

- Throughout this talk A will be a unital C^{*}-algebra with centre Z.
- An ideal P of A is said to be primitive if P is the kernel of some irreducible representation of A.
- The primitive spectrum of A, which we denote by $\operatorname{Prim}(A)$, is the set of all primitive ideals of A equipped with the Jacobson topology. Hence, if S is some set of primitive ideals, its closure is

$$
\bar{S}=\left\{P \in \operatorname{Prim}(A): P \supseteq \bigcap_{Q \in S} Q\right\}
$$

$\operatorname{Prim}(A)$ is a compact space which in general satisfies only T_{0}-separation axiom.

- A linear map $\phi: A \rightarrow A$ is said to be completely bounded if

$$
\|\phi\|_{c b}:=\sup _{n \in \mathbb{N}}\left\|\phi \otimes \operatorname{id}_{\mathbb{M}_{n}}\right\|<\infty .
$$

As usual, by $\operatorname{CB}(A)$ we denote the set of all completely bounded maps on A.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form $m A$ for some maximal ideal m of Z and the map $m \mapsto m A$ defines a bijection of $\operatorname{Max}(Z)$ onto $\operatorname{Glimm}(A)$.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form $m A$ for some maximal ideal m of Z and the map $m \mapsto m A$ defines a bijection of $\operatorname{Max}(Z)$ onto $\operatorname{Glimm}(A)$.
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with $I \cdot J=\{0\}$, then $I \subseteq Q$ or $J \subseteq Q$.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form $m A$ for some maximal ideal m of Z and the map $m \mapsto m A$ defines a bijection of $\operatorname{Max}(Z)$ onto $\operatorname{Glimm}(A)$.
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with $I \cdot J=\{0\}$, then $I \subseteq Q$ or $J \subseteq Q$.
- We denote the set of all 2-primal ideals by $\operatorname{Primal}_{2}(A)$.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form $m A$ for some maximal ideal m of Z and the map $m \mapsto m A$ defines a bijection of $\operatorname{Max}(Z)$ onto $\operatorname{Glimm}(A)$.
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with $I \cdot J=\{0\}$, then $I \subseteq Q$ or $J \subseteq Q$.
- We denote the set of all 2-primal ideals by $\operatorname{Primal}_{2}(A)$.
- It is not difficult to see that an ideal Q of A is 2-primal if and only if for all $P_{1}, P_{2} \in \operatorname{Prim}(A / Q)$ there exists a net in $\operatorname{Prim}(A)$ which converges simultaneously to P_{1} and P_{2}.

Glimm and 2-primal ideals

- Glimm ideals of A are the ideals of A generated by the maximal ideals of Z.
- We denote the set of all Glimm ideals of A by $\operatorname{Glimm}(A)$.
- By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form $m A$ for some maximal ideal m of Z and the map $m \mapsto m A$ defines a bijection of $\operatorname{Max}(Z)$ onto $\operatorname{Glimm}(A)$.
- An ideal Q of A is said to be 2-primal if whenever I and J are closed two-sided ideals of A with $I \cdot J=\{0\}$, then $I \subseteq Q$ or $J \subseteq Q$.
- We denote the set of all 2-primal ideals by $\operatorname{Primal}_{2}(A)$.
- It is not difficult to see that an ideal Q of A is 2-primal if and only if for all $P_{1}, P_{2} \in \operatorname{Prim}(A / Q)$ there exists a net in $\operatorname{Prim}(A)$ which converges simultaneously to P_{1} and P_{2}.
- In particular, $\operatorname{Prim}(A)$ is Hausdorff if and only if

$$
\operatorname{Glimm}(A)=\operatorname{Primal}_{2}(A) \backslash\{A\}=\operatorname{Prim}(A)
$$

Basic example

Let A be a C^{*}-algebra consisting of all elements $a \in C\left([0,1], \mathbb{M}_{3}\right)$ s.t.

$$
a(1)=\left[\begin{array}{ccc}
\lambda_{1}(a) & 0 & 0 \\
0 & \lambda_{2}(a) & 0 \\
0 & 0 & \lambda_{3}(a)
\end{array}\right]
$$

for some $\lambda_{i}(a) \in \mathbb{C}$. Let $P_{t}(t \in[0,1))$ and $R_{i}(i=1,2,3)$ be, respectively, the kernels of irreducible representations $A \rightarrow \mathbb{M}_{3}$, $a \mapsto a(t)$ and $A \rightarrow \mathbb{C}, a \mapsto \lambda_{i}(a)$. Then:

Basic example

Let A be a C^{*}-algebra consisting of all elements $a \in C\left([0,1], \mathbb{M}_{3}\right)$ s.t.

$$
a(1)=\left[\begin{array}{ccc}
\lambda_{1}(a) & 0 & 0 \\
0 & \lambda_{2}(a) & 0 \\
0 & 0 & \lambda_{3}(a)
\end{array}\right]
$$

for some $\lambda_{i}(a) \in \mathbb{C}$. Let $P_{t}(t \in[0,1))$ and $R_{i}(i=1,2,3)$ be, respectively, the kernels of irreducible representations $A \rightarrow \mathbb{M}_{3}$, $a \mapsto a(t)$ and $A \rightarrow \mathbb{C}, a \mapsto \lambda_{i}(a)$. Then:

$$
\operatorname{Prim}(A)=\left\{P_{t}: t \in[0,1)\right\} \cup\left\{R_{1}, R_{2}, R_{3}\right\},
$$

Basic example

Let A be a C^{*}-algebra consisting of all elements $a \in C\left([0,1], \mathbb{M}_{3}\right)$ s.t.

$$
a(1)=\left[\begin{array}{ccc}
\lambda_{1}(a) & 0 & 0 \\
0 & \lambda_{2}(a) & 0 \\
0 & 0 & \lambda_{3}(a)
\end{array}\right]
$$

for some $\lambda_{i}(a) \in \mathbb{C}$. Let $P_{t}(t \in[0,1))$ and $R_{i}(i=1,2,3)$ be, respectively, the kernels of irreducible representations $A \rightarrow \mathbb{M}_{3}$, $a \mapsto a(t)$ and $A \rightarrow \mathbb{C}, a \mapsto \lambda_{i}(a)$. Then:

$$
\begin{aligned}
\operatorname{Prim}(A) & =\left\{P_{t}: t \in[0,1)\right\} \cup\left\{R_{1}, R_{2}, R_{3}\right\}, \\
\operatorname{Glimm}(A) & =\left\{P_{t}: t \in[0,1)\right\} \cup\left\{R_{1} \cap R_{2} \cap R_{3}\right\},
\end{aligned}
$$

Basic example

Let A be a C^{*}-algebra consisting of all elements $a \in C\left([0,1], \mathbb{M}_{3}\right)$ s.t.

$$
a(1)=\left[\begin{array}{ccc}
\lambda_{1}(a) & 0 & 0 \\
0 & \lambda_{2}(a) & 0 \\
0 & 0 & \lambda_{3}(a)
\end{array}\right]
$$

for some $\lambda_{i}(a) \in \mathbb{C}$. Let $P_{t}(t \in[0,1))$ and $R_{i}(i=1,2,3)$ be, respectively, the kernels of irreducible representations $A \rightarrow \mathbb{M}_{3}$, $a \mapsto a(t)$ and $A \rightarrow \mathbb{C}, a \mapsto \lambda_{i}(a)$. Then:

$$
\operatorname{Prim}(A)=\left\{P_{t}: t \in[0,1)\right\} \cup\left\{R_{1}, R_{2}, R_{3}\right\},
$$

$$
\operatorname{Glimm}(A)=\left\{P_{t}: t \in[0,1)\right\} \cup\left\{R_{1} \cap R_{2} \cap R_{3}\right\}
$$

$$
\begin{aligned}
\operatorname{Primal}_{2}(A)= & \{A\} \cup\left\{P_{t}: t \in[0,1)\right\} \cup\left\{R_{1}, R_{2}, R_{3}\right\} \\
& \cup\left\{R_{1} \cap R_{2}, R_{1} \cap R_{3}, R_{2} \cap R_{3}\right\} \cup\left\{R_{1} \cap R_{2} \cap R_{3}\right\} .
\end{aligned}
$$

Homogeneous and subhomogeneous C^{*}-algebras
Let B be a (not necessarily unital) C^{*}-algebra.

Homogeneous and subhomogeneous C^{*}-algebras
Let B be a (not necessarily unital) C^{*}-algebra.

- B is said to be $(n-)$ homogeneous if $B / P \cong \mathbb{M}_{n}$ for all $P \in \operatorname{Prim}(B)$.

Homogeneous and subhomogeneous C^{*}-algebras
Let B be a (not necessarily unital) C^{*}-algebra.

- B is said to be $(n-)$ homogeneous if $B / P \cong \mathbb{M}_{n}$ for all $P \in \operatorname{Prim}(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C^{*}-algebra B with primitive spectrum X there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_{n} and structure group $P U(n)=\operatorname{Aut}\left(\mathbb{M}_{n}\right)$ such that A is isomorphic to the algebra $\Gamma_{0}(\mathcal{E})$ of sections of \mathcal{E} which vanish at infinity.

Homogeneous and subhomogeneous C^{*}-algebras
Let B be a (not necessarily unital) C^{*}-algebra.

- B is said to be $(n-)$ homogeneous if $B / P \cong \mathbb{M}_{n}$ for all $P \in \operatorname{Prim}(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C^{*}-algebra B with primitive spectrum X there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_{n} and structure group $P U(n)=\operatorname{Aut}\left(\mathbb{M}_{n}\right)$ such that A is isomorphic to the algebra $\Gamma_{0}(\mathcal{E})$ of sections of \mathcal{E} which vanish at infinity.
- If the bundle \mathcal{E} can be trivialized over some finite open cover of X, we say that $B=\Gamma_{0}(\mathcal{E})$ has the finite type property.

Homogeneous and subhomogeneous C^{*}-algebras
Let B be a (not necessarily unital) C^{*}-algebra.

- B is said to be $(n-)$ homogeneous if $B / P \cong \mathbb{M}_{n}$ for all $P \in \operatorname{Prim}(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C^{*}-algebra B with primitive spectrum X there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_{n} and structure group $P U(n)=\operatorname{Aut}\left(\mathbb{M}_{n}\right)$ such that A is isomorphic to the algebra $\Gamma_{0}(\mathcal{E})$ of sections of \mathcal{E} which vanish at infinity.
- If the bundle \mathcal{E} can be trivialized over some finite open cover of X, we say that $B=\Gamma_{0}(\mathcal{E})$ has the finite type property.
- B is said to be subhomogeneous if

$$
\sup \{\operatorname{dim}(B / P): P \in \operatorname{Prim}(B)\}<\infty
$$

Homogeneous and subhomogeneous C^{*}-algebras
Let B be a (not necessarily unital) C^{*}-algebra.

- B is said to be $(n-)$ homogeneous if $B / P \cong \mathbb{M}_{n}$ for all $P \in \operatorname{Prim}(B)$.
- A famous theorem of Fell and Tomiyama-Takesaki asserts that for any n-homogeneous C^{*}-algebra B with primitive spectrum X there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_{n} and structure group $P U(n)=\operatorname{Aut}\left(\mathbb{M}_{n}\right)$ such that A is isomorphic to the algebra $\Gamma_{0}(\mathcal{E})$ of sections of \mathcal{E} which vanish at infinity.
- If the bundle \mathcal{E} can be trivialized over some finite open cover of X, we say that $B=\Gamma_{0}(\mathcal{E})$ has the finite type property.
- B is said to be subhomogeneous if

$$
\sup \{\operatorname{dim}(B / P): P \in \operatorname{Prim}(B)\}<\infty
$$

- If each homogeneous sub-quotient of B has the finite type property, we say that B has the finite type property.

Elementary operators and canonical contraction θ_{A}

Definition

An elementary operator on A is a map $\phi: A \rightarrow A$ which can be written as a finite sum of two-sided multiplication maps $M_{a, b}: x \mapsto a x b$ $(a, b \in A)$. By $\mathcal{E} \ell(A)$ we denote the set of all elementary operators on A

Elementary operators and canonical contraction θ_{A}

Definition

An elementary operator on A is a map $\phi: A \rightarrow A$ which can be written as a finite sum of two-sided multiplication maps $M_{a, b}: x \mapsto a x b$ $(a, b \in A)$. By $\mathcal{E} \ell(A)$ we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with

$$
\left\|\sum_{i} M_{a_{i}, b_{i}}\right\|_{c b} \leq\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}
$$

Elementary operators and canonical contraction θ_{A}

Definition

An elementary operator on A is a map $\phi: A \rightarrow A$ which can be written as a finite sum of two-sided multiplication maps $M_{a, b}: x \mapsto a x b$ $(a, b \in A)$. By $\mathcal{E} \ell(A)$ we denote the set of all elementary operators on A

It is easy to see that all elementary operators are completely bounded with

$$
\left\|\sum_{i} M_{a_{i}, b_{i}}\right\|_{c b} \leq\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}
$$

Hence, if we endow the algebraic tensor product $A \otimes A$ with the Haagerup norm

$$
\|t\|_{h}:=\inf \left\{\left\|\sum_{i} a_{i} a_{i}^{*}\right\|^{\frac{1}{2}}\left\|\sum_{i} b_{i}^{*} b_{i}\right\|^{\frac{1}{2}}: t=\sum_{i} a_{i} \otimes b_{i}\right\}
$$

we obtain a well-defined contraction

$$
\left(A \otimes A,\|\cdot\|_{h}\right) \rightarrow\left(\mathcal{E} \ell(A),\|\cdot\|_{c b}\right), \quad \text { given by } \quad \sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

we obtain a well-defined contraction

$$
\left(A \otimes A,\|\cdot\|_{h}\right) \rightarrow\left(\mathcal{E} \ell(A),\|\cdot\|_{c b}\right), \quad \text { given by } \quad \sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_{h} A$ is known as a canonical contraction from $A \otimes_{h} A$ to $\mathrm{CB}(A)$ and is denoted by θ_{A}.
we obtain a well-defined contraction

$$
\left(A \otimes A,\|\cdot\|_{h}\right) \rightarrow\left(\mathcal{E} \ell(A),\|\cdot\|_{c b}\right), \quad \text { given by } \quad \sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_{h} A$ is known as a canonical contraction from $A \otimes_{h} A$ to $\mathrm{CB}(A)$ and is denoted by θ_{A}.

Remark

If A contains a pair of non-zero orthogonal ideals, then θ_{A} cannot be injective. Hence, the necessary condition for the injectivity of θ_{A} is that A must be a prime C^{*}-algebra.
we obtain a well-defined contraction

$$
\left(A \otimes A,\|\cdot\|_{h}\right) \rightarrow\left(\mathcal{E} \ell(A),\|\cdot\|_{c b}\right), \quad \text { given by } \quad \sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_{h} A$ is known as a canonical contraction from $A \otimes_{h} A$ to $\mathrm{CB}(A)$ and is denoted by θ_{A}.

Remark

If A contains a pair of non-zero orthogonal ideals, then θ_{A} cannot be injective. Hence, the necessary condition for the injectivity of θ_{A} is that A must be a prime C^{*}-algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)
A is prime $\Longleftrightarrow \theta_{A}$ is injective $\Longleftrightarrow \theta_{A}$ is isometric.
we obtain a well-defined contraction

$$
\left(A \otimes A,\|\cdot\|_{h}\right) \rightarrow\left(\mathcal{E} \ell(A),\|\cdot\|_{c b}\right), \quad \text { given by } \quad \sum_{i} a_{i} \otimes b_{i} \mapsto \sum_{i} M_{a_{i}, b_{i}}
$$

Its continuous extension to the completed Haagerup tensor product $A \otimes_{h} A$ is known as a canonical contraction from $A \otimes_{h} A$ to $\operatorname{CB}(A)$ and is denoted by θ_{A}.

Remark

If A contains a pair of non-zero orthogonal ideals, then θ_{A} cannot be injective. Hence, the necessary condition for the injectivity of θ_{A} is that A must be a prime C^{*}-algebra.

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003)
A is prime $\Longleftrightarrow \theta_{A}$ is injective $\Longleftrightarrow \theta_{A}$ is isometric.

Theorem (Somerset 1998)

$$
\operatorname{ker} \theta_{A}=\bigcap\left\{Q \otimes_{h} A+A \otimes_{h} Q: Q \in \operatorname{Primal}_{2}(A)\right\}
$$

Length of elementary operators

The length of an elementary operator $\phi \neq 0$ is the smallest $\ell=\ell(\phi) \in \mathbb{N}$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in A$. We also define $\ell(0)=0$.

Length of elementary operators

The length of an elementary operator $\phi \neq 0$ is the smallest $\ell=\ell(\phi) \in \mathbb{N}$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in A$. We also define $\ell(0)=0$.

Problem

Determine the length of an elementary operator $\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ in terms of its coefficients a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}.

Length of elementary operators

The length of an elementary operator $\phi \neq 0$ is the smallest $\ell=\ell(\phi) \in \mathbb{N}$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in A$. We also define $\ell(0)=0$.

Problem

Determine the length of an elementary operator $\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ in terms of its coefficients a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}.

If A is prime, then θ_{A} is injective, so for any $\phi=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ we have

$$
\ell(\phi)=\min \left\{\operatorname{dim} \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}, \operatorname{dim} \operatorname{span}\left\{b_{1}, \ldots, b_{n}\right\}\right\} .
$$

Length of elementary operators

The length of an elementary operator $\phi \neq 0$ is the smallest $\ell=\ell(\phi) \in \mathbb{N}$ such that $\phi=\sum_{i=1}^{\ell} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in A$. We also define $\ell(0)=0$.

Problem

Determine the length of an elementary operator $\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ in terms of its coefficients a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}.

If A is prime, then θ_{A} is injective, so for any $\phi=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ we have

$$
\ell(\phi)=\min \left\{\operatorname{dim} \operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}, \operatorname{dim} \operatorname{span}\left\{b_{1}, \ldots, b_{n}\right\}\right\} .
$$

In particular, if $A=\mathbb{M}_{n}$, then $\ell(\phi) \leq n^{2}$ for all $\phi \in \mathcal{E} \ell(A)$. Further, if ϕ is the transpose map $X \mapsto X^{\tau}$, then $\phi=\sum_{i, j=1}^{n} M_{e_{i j}, e_{i j}}$ (where $\left(e_{i j}\right)$ are standard matrix units in \mathbb{M}_{n}), so $\ell(\phi)=n^{2}$. Hence,

$$
\sup \left\{\ell(\phi): \phi \in \mathcal{E} \ell\left(\mathbb{M}_{n}\right)\right\}=n^{2}
$$

Let us consider the following conditions of a C^{*}-algebra A :
(P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_{1}, \ldots, a_{n} \in A$ such that every $a \in A$ can be written as $a=\sum_{i=1}^{n} z_{i} a_{i}$ for some $z_{i} \in Z$.

Let us consider the following conditions of a C^{*}-algebra A :
(P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_{1}, \ldots, a_{n} \in A$ such that every $a \in A$ can be written as $a=\sum_{i=1}^{n} z_{i} a_{i}$ for some $z_{i} \in Z$.
(P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.

Let us consider the following conditions of a C^{*}-algebra A :
(P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_{1}, \ldots, a_{n} \in A$ such that every $a \in A$ can be written as $a=\sum_{i=1}^{n} z_{i} a_{i}$ for some $z_{i} \in Z$.
(P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.
(P3) $\sup \{\ell(\phi): \phi \in \mathcal{E} \ell(A)\}<\infty$.

Let us consider the following conditions of a C^{*}-algebra A :
(P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_{1}, \ldots, a_{n} \in A$ such that every $a \in A$ can be written as $a=\sum_{i=1}^{n} z_{i} a_{i}$ for some $z_{i} \in Z$.
(P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.
(P3) $\sup \{\ell(\phi): \phi \in \mathcal{E} \ell(A)\}<\infty$.
Obviously $(P 1) \Rightarrow(P 2) \Rightarrow(P 3)$.

Let us consider the following conditions of a C^{*}-algebra A :
(P1) A as a Z-module is finitely generated, i.e. there exists finitely many elements $a_{1}, \ldots, a_{n} \in A$ such that every $a \in A$ can be written as $a=\sum_{i=1}^{n} z_{i} a_{i}$ for some $z_{i} \in Z$.
(P2) A as a Z-module is weakly finitely generated, i.e. there exists a positive integer n such that every finitely generated Z-submodule of A can be generated with $\leq n$ generators.
(P3) $\sup \{\ell(\phi): \phi \in \mathcal{E} \ell(A)\}<\infty$.
Obviously $(P 1) \Rightarrow(P 2) \Rightarrow(P 3)$.

Theorem (G. 2011)

A C^{*}-algebra A satisfies (P1) if and only if A is a finite direct sum of unital homogeneous C^{*}-algebras.

Results

Theorem (G. 2011, 2012)
If A satisfies (P3) then

$$
\sup \left\{\operatorname{dim}(A / Q): Q \in \operatorname{Primal}_{2}(A)\right\}<\infty
$$

In particular, A is subhomogeneous. Further, if A is separable, A must have a finite type property.

Results

Theorem (G. 2011, 2012)
If A satisfies (P3) then

$$
\sup \left\{\operatorname{dim}(A / Q): Q \in \operatorname{Primal}_{2}(A)\right\}<\infty
$$

In particular, A is subhomogeneous. Further, if A is separable, A must have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If $\operatorname{Prim}(A)$ is Hausdorff, then A satisfies (P2).

Results

Theorem (G. 2011, 2012)
If A satisfies (P3) then

$$
\sup \left\{\operatorname{dim}(A / Q): Q \in \operatorname{Primal}_{2}(A)\right\}<\infty
$$

In particular, A is subhomogeneous. Further, if A is separable, A must have a finite type property.

Theorem (G. 2012; Partial converse)

Suppose that A is subhomogeneous with the finite type property. If $\operatorname{Prim}(A)$ is Hausdorff, then A satisfies (P2).

Theorem (G. 2012; Hausdorffness of $\operatorname{Prim}(A)$ is crucial)
There exists a compact subset X of \mathbb{R} and a unital C^{*}-subalgebra A of $C\left(X, \mathbb{M}_{2}\right)$ with trivial homogeneous sub-quotients such that $\sup \left\{\operatorname{dim}(A / Q): Q \in \operatorname{Primal}_{2}(A)\right\}=\infty$. Hence, A doesn't satisfy (P3).

Corollary

For every separable C^{*}-algebras with Hausdorff $\operatorname{Prim}(A)$, the conditions (P2) and (P3) are equivalent.

Corollary

For every separable C^{*}-algebras with Hausdorff $\operatorname{Prim}(A)$, the conditions (P2) and (P3) are equivalent.
$(P 3) \nRightarrow(P 2)$ when $\operatorname{Prim}(A)$ is not Hausdorff in general:

Proposition/Example (G. 2012)

- If A satisfies (P2) then $\sup \{\operatorname{dim}(A / G): G \in \operatorname{Glimm}(A)\}<\infty$.

Corollary

For every separable C^{*}-algebras with Hausdorff $\operatorname{Prim}(A)$, the conditions (P2) and (P3) are equivalent.
$(P 3) \nRightarrow(P 2)$ when $\operatorname{Prim}(A)$ is not Hausdorff in general:

Proposition/Example (G. 2012)

- If A satisfies $(\mathrm{P} 2)$ then $\sup \{\operatorname{dim}(A / G): G \in \operatorname{Glimm}(A)\}<\infty$.
- Let A be a C^{*}-algebra which consists of all $a \in C\left([0,1], \mathbb{M}_{2}\right)$ s.t.

$$
a(1 / n)=\left[\begin{array}{cc}
\lambda_{n}(a) & 0 \\
0 & \lambda_{n+1}(a)
\end{array}\right] \quad(n \in \mathbb{N})
$$

for some convergent sequence $\left(\lambda_{n}(a)\right)$ of complex numbers. Then A satisfies (P3) but has a Glimm ideal of infinite codimension (namely $G=\bigcap_{i=1}^{\infty} \mathrm{ker} \lambda_{i}$). In particular, A doesn't satisfy (P2).

