Topologically finitely generated Hilbert C(X)-modules

Ilja Gogić

Department of Mathematics University of Zagreb

24th International Conference on Operator Theory Timisoara, Romania July 2-7, 2012 This talk is based on my papers:

- I. Gogić, *Topologically finitely generated Hilbert C(X)-modules* (2011), submitted to J.M.A.A.
- I. Gogić, On derivations and elementary operators on C*-algebras (2011), submitted to Proc. Edinburgh Math. Soc.
- I. Gogić, *Elementary operators and subhomogeneous C*-algebras*, Proc. Edinburgh Math. Soc. 54 (2011), no. 1, 99–111.

Introduction

- Hilbert C*-modules form a category in between Banach spaces (they have a little extra geometrical structure) and Hilbert spaces (they are not as well behaving as these).
- A Hilbert C*-module obeys the same axioms as an ordinary Hilbert space, except that the inner product takes values in a more general C*-algebras than ℂ.
- Hilbert C*-modules were first introduced in the work of I. Kaplansky in 1953, who developed the theory for unital commutative C*-algebras. In the 1970s the theory was extended to non-commutative C*-algebras independently by W. Paschke and M. Rieffel.
- Hilbert C*-modules appear naturally in many areas of C*-algebra theory, such as KK-theory, Morita equivalence of C*-algebras, and completely positive operators.

Definition

Let A be a C*-algebra. A (left) **Hilbert** A-module is a left A-module V, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle$ which is A-linear in the first and conjugate linear in the second variable, such that V is a Banach space with the norm

$$\|\mathbf{v}\| := \sqrt{\|\langle \mathbf{v}, \mathbf{v} \rangle\|_{\mathcal{A}}}.$$

Example

Every C^* -algebra A becomes a Hilbert A-module with respect to the inner product

$$\langle a,b\rangle := ab^*.$$

Introduction

Example (continued)

Similarly, the direct sum A^n of *n*-copies of A becomes a A-Hilbert module with respect to the pointwise operations and the inner product

$$\langle a_1 \oplus \cdots \oplus a_n, b_1 \oplus \cdots \oplus b_n \rangle := \sum_{k=1}^n a_k b_k^*.$$

More generally, let

$$\mathcal{H}_{\mathcal{A}} := \{(a_k) \in \prod_1^\infty : \sum_{k=1}^\infty a_k a_k^* ext{ is norm convergent}\}.$$

Then the pointwise operations and the inner product

$$\langle (a_k), (b_k) \rangle := \sum_{k=1}^{\infty} a_k b_k^*$$

turn \mathcal{H}_A into a Hilbert A-module.

Ilja Gogić (University of Zagreb)

 \mathcal{H}_A is known as a **standard Hilbert** A-module.

Definition

Let V be a Hilbert A-module. We say that V is

- algebraically finitely generated if there exists a finite subset of V whose A-linear span equals V;
- **topologically finitely generated** if there exists a finite subset of *V* whose *A*-linear span is dense in *V*;
- **countably generated** if there exists a countable subset of V whose A-linear span is dense in V.

When the C^* -algebra A is unital and commutative, there exists a categorical equivalence between Hilbert A-modules and (F) Hilbert bundles over the spectrum of the algebra. (F) Hilbert bundles provide a natural generalization of standard vector bundles from topology.

Definition

By an **(F)** Hilbert bundle ((F) stands for Fell) we mean a triple $\mathcal{E} := (p, E, X)$ where E and X are topological spaces with a continuous open surjection $p : E \to X$, together with operations and norms making each fibre $E_x := p^{-1}(x)$ ($x \in X$) into a complex Hilbert space, such that the following conditions are satisfied:

(A1) The maps $\mathbb{C} \times E \to E$, $E \times_X E \to E$ and $E \to \mathbb{R}$, given in each fibre by scalar multiplication, addition, and the norm, respectively, are continuous. Here $E \times_X E$ denotes the Whitney sum

$$\{(e,f)\in E\times E : p(e)=p(f)\}.$$

(A2) If $x \in X$ and if (e_{α}) is a net in E such that $||e_{\alpha}|| \to 0$ and $p(e_{\alpha}) \to x$ in X, then $e_{\alpha} \to 0_x$ in E (where 0_x is the zero-element of E_x).

7 / 34

As usual, we say that p is the **projection**, E is the **bundle space** and X is the **base space** of \mathcal{E} .

If in (A2) one only requires that the norm function is upper semicontinuous, one gets the notion of an **(H) Hilbert bundle** ((H) stands for Hofmann).

If \mathcal{E} is an (F) Hilbert bundle, then using a polarization identity together with the continuity of the norm and operations, it is an immediate consequence that the map $E \times_X E \to \mathbb{C}$ given by the inner product in each fibre is continuous.

Introduction

For the (F) Hilbert bundles $\mathcal{E} = (p, E, X)$ and $\mathcal{E}' = (p', E', X')$ we say that $\Phi : \mathcal{E} \to \mathcal{E}'$ is a **Hilbert bundle map** if Φ is a pair $\Phi = (\phi, f)$ of maps, where $\phi : E \to E'$ and $f : X \to X'$ are continuous maps such that

(i) the following diagram

is commutative,

(ii) for each $x \in X$, ϕ defines a linear map from E_x into $E'_{f(x)}$. It is usually said that Φ covers f. If in addition ϕ defines an isometric isomorphism of each fibre E_x onto $E'_{f(x)}$, then we say that Φ is a strong Hilbert bundle map. If X' = X, we write $\Phi : \mathcal{E} \cong \mathcal{E}'$ to say that Φ is an isomorphism of Hilbert bundles, that is, Φ is a strong Hilbert bundle map covering the identity map $id_X : X \to X$.

Example

The simplest example of an (F) Hilbert bundle is the **product bundle** over X with fibre H,

$$\epsilon(X, H) := (\operatorname{proj}_1, X \times H, H),$$

where H is a Hilbert space.

Example

Suppose that \mathcal{E} is an *n*-dimensional (locally trivial) complex vector bundle over a compact Hausdorff space. Then \mathcal{E} becomes an (F) Hilbert bundle if one chooses a Riemannian metric on \mathcal{E} . Furthermore, if $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are two Riemannian metrics on \mathcal{E} , then the formal identity map $\mathrm{id} : (\mathcal{E}, \langle \cdot, \cdot \rangle_1) \rightarrow (\mathcal{E}, \langle \cdot, \cdot \rangle_2)$ defines an isomorphism of (F) Hilbert bundles. If we make a polar decomposition $\mathrm{id} = UP$, where P is positive and U is unitary, then U provides a strong Hilbert bundle map between these two bundles. Hence, an (F) Hilbert bundle structure on a vector bundle is essentially unique. If $\mathcal{E} = (p, E, X)$ is an (F) Hilbert bundle and $Y \subseteq X$ then we denote by

$$\mathcal{E}|_{Y} := (p|_{p^{-1}(Y)}, p^{-1}(Y), Y)$$

the **restriction** of \mathcal{E} to Y.

We say that $\mathcal{E} = (p, E, X)$ is

- trivial if $\mathcal{E} \cong \epsilon(X, H)$ for some Hilbert space H;
- locally trivial if there exists a Hilbert space H and an open cover U
 of X such that for each U ∈ U we have E|U ≅ e(U, H).
- If in addition X admits a finite open cover over which E is locally trivial, we say that E is of finite type.

If all fibres of an (F) Hilbert bundle \mathcal{E} have the same finite dimension *n*, then we say that \mathcal{E} is *n*-homogeneous.

The next fact is an easy consequence of the continuity of the operations, and a pointwise application of the Gram-Schmidt orthonormalization process.

Proposition

If \mathcal{E} is an n-homogeneous (F) Hilbert bundle, then \mathcal{E} is locally trivial. In particular, if the base space X of \mathcal{E} is compact, then \mathcal{E} is of finite type.

Remark

Hence, the category of n-homogeneous (F) Hilbert bundles over compact Hausdorff spaces is equivalent to the category of n-dimensional (locally trivial) complex vector bundles.

If all fibres of an (F) Hilbert bundle \mathcal{E} are finite dimensional with

$$n:=\sup_{x\in X}\dim E_x<\infty,$$

then we say that \mathcal{E} is *n*-subhomogeneous. In this case every restriction bundle of \mathcal{E} over a set where dim E_x is constant is locally trivial, by the previous Proposition. If in addition every such restriction bundle is of finite type, then we say that \mathcal{E} is *n*-subhomogeneous of finite type. By a **section** of an (F) Hilbert bundle $\mathcal{E} = (p, E, X)$ we mean a map $s : X \to E$ such that

$$p(s(x)) = x \quad (x \in X).$$

By $\Gamma(\mathcal{E})$ we denote the set of all continuous of sections of \mathcal{E} .

If X is compact, then $\Gamma(\mathcal{E})$ becomes a Hilbert C(X)-module with respect to the action

$$(\varphi s)(x) := \varphi(x)s(x)$$

and inner product

$$\langle s, u \rangle(x) := \langle s(x), u(x) \rangle_x,$$

where $\langle \cdot, \cdot \rangle_x$ denotes the inner product on fibre E_x .

Introduction

At the end of this introductory, let us briefly describe how for a given Hilbert C(X)-module V (X is a compact Hausdorff space) one constructs a canonical Hilbert bundle \mathcal{E}_V .

For x ∈ X let I_x be the maximal ideal of C(X) consisting of all functions which vanish at x, and put

$$J_{\mathsf{x}} := I_{\mathsf{x}} \mathsf{V} = \{ \varphi \mathsf{v} : \varphi \in I_{\mathsf{x}}, \mathsf{v} \in \mathsf{V} \}.$$

Then J_x is a closed submodule of V, by the Hewitt-Cohen factorization theorem.

• Set $E_x := V/J_x$, let $\pi_x : V \to E_x$ be the quotient map, let

$$E:=\bigsqcup_{x\in X}E_x,$$

and let $p: E \rightarrow X$ be the canonical projection.

- Since for each $v \in V$ and $x \in X$ we have $\|\pi_x(v)\| = \sqrt{\langle v, v \rangle(x)}$, the function $X \to \mathbb{R}_+$, $x \mapsto \|\pi_x(v)\|$ is continuous.
- Hence, by Fell's theorem, there exists a unique topology on *E* for which *E_V* := (*p*, *E*, *X*) becomes an (F) Hilbert bundle. We say that *E_V* is the canonical (F) Hilbert bundle associated to *V*.

Now we can define the **generalized Gelfand transform** $\Gamma_V : V \to \Gamma(\mathcal{E}_V)$, which sends $v \in V$ to $\hat{v} \in \Gamma(\mathcal{E}_V)$, where

$$\hat{v}(x):=v(x):=\pi_x(v)\quad (x\in X).$$

Theorem

 Γ_V is an isometric C(X)-linear isomorphism between Hilbert C(X)-modules V and $\Gamma(\mathcal{E}_V)$.

The next theorem is just a Hilbert module version of the celebrated Serre-Swan theorem.

Theorem

Let V be a Hilbert C(X)-module, where X is a compact Hausdorff space, and let $\mathcal{E} := \mathcal{E}_V$. Then the following conditions are equivalent:

- (i) V is a.f.g.;
- (ii) V is a.f.g. and projective;
- (iii) there exists a finite clopen partition $X = X_1 \sqcup \cdots \sqcup X_k$ such that each restriction bundle $\mathcal{E}|_{X_i}$ is homogeneous.

Proof.

(i) \Rightarrow (ii). Every a.f.g. Hilbert module over a unital (not necessarily commutative) C^* -algebra A is automatically projective. This is a consequence of the Kasparov stabilization theorem, which says that if W is a c.g. Hilbert A-module, then $E \oplus \mathcal{H}_A \cong \mathcal{H}_A$, where \mathcal{H}_A is a standard Hilbert A-module.

Proof (continued).

(ii) \Rightarrow (iii). We may assume that

$$V = PC(X)^n \quad (n \in \mathbb{N})$$

for some (C(X)-linear self-adjoint) projection $P \in \mathbb{B}(C(X)^n) = M_n(C(X))$. Then $E_x = P(x)\ell_2^n$ for all $x \in X$. Since $\operatorname{rank}(P(x)) = \operatorname{trace}(P(x))$, the dimension function

$$\dim: X \to \{0, 1, \dots, n\}, \quad x \mapsto \dim E_x = \operatorname{rank}(P(x))$$

is continuous. If $0 \le n_1 < \ldots < n_k \le n$ are its values, put

$$X_i := \{x \in X : \dim E_x = n_i\}.$$

Then $X = X_1 \sqcup \cdots \sqcup X_k$ is a desired clopen partition of X. (iii) \Rightarrow (i). This is easy. The main difference between a.f.g and t.f.g. Hilbert C(X)-modules is the fact that t.f.g. Hilbert C(X)-modules are not generally projective. Hence, the dimension of the fibres of the canonical (F) Hilbert bundle may vary, even if X is connected.

Example

let X be the unit interval [0,1] and let $V := C_0((0,1])$. Then V becomes a Hilbert C([0,1])-module with respect to the standard action and inner product $\langle f,g \rangle = f^*g$. Note that V is topologically singly generated (for instance, the identity function f(x) = x is such generator, by the Weierstrass approximation theorem). On the other hand, each fibre E_x of \mathcal{E}_V is one-dimensional, except E_0 , which is zero.

However, this phenomenon is in fact the only major difference between the classes of a.f.g. and t.f.g. Hilbert C(X)-modules, at least when X is metrizable.

Theorem (G. 2011)

Let X be a compact metrizable space and let V be a Hilbert C(X)-module with the canonical (F) Hilbert bundle \mathcal{E}_V . Then the following conditions are equivalent:

- (i) V is t.f.g.;
- (ii) \mathcal{E}_V is subhomogeneous of finite type.

The proof of the theorem relays on the next two facts:

Lemma

Let \mathcal{E} be an (F) Hilbert bundle over a compact metrizable space X. Then the following conditions are equivalent:

- (i) \mathcal{E} is subhomogeneous of finite type;
- (ii) There exists a finite number of sections $s_1,\ldots,s_m\in\Gamma(\mathcal{E})$ which satisfy

$$\operatorname{span}_{\mathbb{C}}\{s_1(x),\ldots,s_m(x)\}=E_x$$

for all $x \in X$.

Proposition

Let \mathcal{E} be an (F) Banach bundle over a compact space X. A C(X)-submodule $W \subseteq \Gamma(\mathcal{E})$ is dense in $\Gamma(\mathcal{E})$ if and only if for each $x \in X$,

 $\{s(x) : s \in W\}$

is dense in E_x .

Proof of theorem.

Let $\mathcal{E} := \mathcal{E}_V$. We identify V with $\Gamma(\mathcal{E})$ using the generalized Gelfand transform.

(i) \Rightarrow (ii). Let $s_1, \ldots, s_m \in \Gamma(\mathcal{E})$ be sections whose C(X)-linear span is dense in $\Gamma(\mathcal{E})$. Obviously,

$$W_x := \operatorname{span}_{\mathbb{C}} \{ s_1(x), \ldots, s_m(x) \}$$

is dense in E_x for each $x \in X$. Since obviously dim $W_x < \infty$, we conclude that $W_x = E_x$ for each $x \in X$. Now we apply our lemma.

Proof of theorem (continued).

(ii) \Rightarrow (i). By lemma, there exist $s_1, \ldots, s_m \in \Gamma(\mathcal{E})$ which satisfy

$$\operatorname{span}_{\mathbb{C}}\{s_1(x),\ldots,s_m(x)\}=E_x$$

for all $x \in X$. The claim now follows from proposition.

Now we shall present another characterizations of t.f.g. Hilbert C(X)-modules.

First recall that if X is a locally compact Hausdroff space and if V and W are (left) Banach $C_0(X)$ -modules, then the $C_0(X)$ -projective tensor product $V \bigotimes_{C_0(X)}^{\pi} W$ of V and W is by definition the quotient of the (completed) projective tensor product $V \bigotimes_{W}^{\pi} W$ by the closure of the liner span of tensors of the form

 $\varphi \mathbf{v} \otimes \mathbf{w} - \mathbf{v} \otimes \varphi \mathbf{w},$

where $v \in V$, $w \in W$ and $\varphi \in C_0(X)$. For $t \in V \overset{\pi}{\otimes} W$, by t_X we denote the canonical image of t in $V \overset{\pi}{\otimes}_{C_0(X)} W$.

Definition

Let V be a non-degenerate Banach $C_0(X)$ -module, where X is a locally compact Hausdorff space.

- (i) If W is another Banach C₀(X)-module, then for t ∈ V ^π⊗ W we define a C₀(X)-projective rank of t, denoted by rank^π_X(t), as the smallest nonnegative integer k for which there exists a rank k tensor u ∈ V ⊗ W such that t_X = u_X in V ^π⊗_{C₀(X)} W. If such k does not exist, we define rank^π_X(t) := ∞.
- (ii) If there exists $K \in \mathbb{N}$ such that for every Banach $C_0(X)$ -module W, and every tensor $t \in V \overset{\pi}{\otimes} W$ we have $\operatorname{rank}_X^{\pi}(t) \leq K$, then we say that V is of **finite** $C_0(X)$ -**projective rank**. The smallest number Kwith this property is denoted by $\operatorname{rank}_X^{\pi}(V)$. If such K does not exist, we define $\operatorname{rank}_X^{\pi}(V) := \infty$.

Topologically finitely generated Hilbert C(X)-modules

Here is a sufficient condition for V to be of finite $C_0(X)$ -projective rank.

Proposition

Let V be a non-degenerate Banach $C_0(X)$ -module, where X is a locally compact Hausdorff space. Let us say that V satisfies the **condition (P)** if there exists $K \in \mathbb{N}$ such that for every sequence $(a_i) \in \ell^1(V)$ there exist $k \leq K$, elements $v_1, \ldots, v_k \in V$ and sequences $(\varphi_{i,1})_i, \ldots, (\varphi_{i,k})_i \in \ell^1(C_0(X))$ such that

$$a_i = \sum_{j=1}^k \varphi_{i,j} v_j$$

for all $i \in \mathbb{N}$. If V satisfies (P), then $\operatorname{rank}_{X}^{\pi}(V) \leq K$.

Remark

Note that the condition (P) in particulary implies that V is **weakly** algebraically finitely generated, in a sense that every a.f.g. submodule of V can be generated by $k \leq K$ generators.

Ilja Gogić (University of Zagreb)

Now we are ready to state the final result.

Theorem (G. 2011)

Let V be Hilbert C(X)-module, where X is a compact metrizable space. The following conditions are equivalent:

(i) V is t.f.g.;

```
(ii) V satisfies the condition (P);
```

```
(iii) V is of finite C(X)-projective rank;
```

(iv) V is weakly a.f.g.

Remark

Our proof of the above theorem essentially relies on sectional representation $V = \Gamma(\mathcal{E}_V)$.

- We can also try to generalize obtained results for a larger class of Banach C(X)-modules.
- One can similarly define a notion of an (F) and (H) Banach bundle.
- If M a Banach C(X)-module, one can also similarly construct the canonical Banach bundle \mathcal{E}_M . However, \mathcal{E}_M is only an (H) bundle in general, and the generalized Gelfand transform $\Gamma_M : M \to \Gamma(\mathcal{E}_M)$ fails to be isometric.

If M is a Banach C(X)-module one can of course look for conditions which might guarantee that Γ_M is isometric. This was solved by K. Hofmann in 1974.

Definition

Let *M* be a banach C(X)-module. We say that *M* is C(X)-locally convex if for any pair $\varphi_1, \varphi_2 \in C(X)_+$ with $\varphi_1 + \varphi_2 = 1$ and $s_1, s_2 \in M$, we have

 $\|\varphi_1 s_1 + \varphi_2 s_2\| \le \max\{\|s_1\|, \|s_2\|\}.$

Theorem

If M is a Banach C(X)-module, then Γ_M is an isometric isomorphism from M onto $\Gamma(\mathcal{E}_M)$ if and only if M is C(X)-locally convex.

Example

Suppose that A is a unital Banach algebra with the center Z. If C is a C^* -subalgebra of Z, then A can be viewed as a Banach C-module, under the natural action. If in addition A is a C^* -algebra, then using the Dauns-Hofmann it is easy to see that A is C-locally convex. In particular, $A = \Gamma(\mathcal{E}_A)$, where \mathcal{E}_A is the canonical bundle of A over Max(Z).

We have a similar characterization of a.f.g. C^* -algebras over Z:

Theorem (G. 2011)

Let A be a unital C^* -algebra and let X be the spectrum of Z.

• A as a Banach Z-module if a.f.g.;

A is necessarily unital, *E_A* is an (F) bundle, and there exists a finite clopen partition X = X₁ ⊔ · · · ⊔ X_k such that every fibre of each restriction bundle *E*|_{X_i} is *-isomorphic to some fix matrix algebra M_{n_i}(ℂ).

In particular, every a.f.g. C*-algebra over Z is projective over Z.

Remark

One can briefly say that A is a.f.g. over Z if and only if A is a finite direct sum of unital homogeneous C^* -algebras.

As we saw, the canonical bundle \mathcal{E}_A of an a.f.g. C^* -algebra over Z is automatically an (F) bundle. However, this is not true in general for t.f.g. C^* -algebras over Z.

Example

Let $B := C([0,1], M_2(\mathbb{C})) = M_2(C([0,1]))$ and let A be a C*-subalgebra of B consisting of all functions $f \in B$ such that

$$f(0) = \left[egin{array}{cc} \lambda(f) & 0 \ 0 & \lambda(f) \end{array}
ight] \ \ ext{and} \ \ f(1) = \left[egin{array}{cc} \lambda(f) & 0 \ 0 & \mu(f) \end{array}
ight],$$

for some complex numbers $\lambda(a)$ and $\mu(a)$. One easily checks that matrices

$$\begin{bmatrix} \sin(\pi x) & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \sin(\pi x) \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \sin(\pi x) & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & \sin(\pi x) \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} \cos(2\pi x) & 0 \\ 0 & \cos(\pi x) \end{bmatrix}$$

Example (continued)

generate a dense Z-submodule of A. On the other hand, note that the spectrum of Z can be identified with \mathbb{T} . Hence, the canonical bundle of A over \mathbb{T} is not and (F) bundle, since the quotient map $[0,1] \to \mathbb{T}$ is not open.

Hoewever, under the assumption that \mathcal{E}_A is an (F) bundle we have the following result for t.f.g. C^* -algebras over Z, at least for separable ones:

Theorem (G. 2011)

Assume that A is a unital separable C^* -algebra. If \mathcal{E}_A is an (F) bundle, then the following conditions are equivalent:

- (i) A is t.f.g. over Z,
- (ii) Fibres E_x of \mathcal{E}_A have uniformly finite dimensions, and each restriction bundle of \mathcal{E}_A over a set where dim E_x is constant is of finite type (as a vector bundle).
- (iii) V satisfies the condition (P) over Z;
- (iv) A is of finite Z-projective rank;
- (v) A is weakly a.f.g over Z.

Question

- Are the conditions (i), (iii), (iv) and (v) also equivalent without the assumption that \mathcal{E}_A is an (F) bundle?
- More generally, are these conditions also equivalent for all C(X)-locally convex Banach modules?

Remark

Unlike a.f.g. Hilbert C(X)-modules, a.f.g. C(X)-locally convex Banach modules are not generally projective. For example, a C^* -algebra A := C([0, 1]) is a.f.g. as a module over $C(\mathbb{T})$, with respect to the action

$$(\varphi f)(x) := \varphi(e^{2\pi i x})f(x).$$

On the other hance, A is clearly not projective over $C(\mathbb{T})$.

However, if we assume the continuity of \mathcal{E}_M from the start, we can state the following question:

Question

Suppose that M is an a.f.g. C(X)-locally convex Banach module such that \mathcal{E}_M is an (F) bundle. Is M necessarily projective? In particular, is a dimension function $x \mapsto \dim E_x$ necessarily continuous?