On derivations and elementary operators on *C**-algebras

Ilja Gogić

Trinity College Dublin

Infinite Dimensional Function Theory: Present Progress and Future Problems

> University College Dublin January 8-9, 2015

(joint work in progress with Richard Timoney)

A *C**-algebra is a (complex) Banach *-algebra *A* whose norm $\|\cdot\|$ satisfies the *C**-identity. More precisely:

A C^* -algebra is a (complex) Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

• A is a Banach algebra over the field \mathbb{C} .

A C^* -algebra is a (complex) Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra over the field \mathbb{C} .
- A is equipped with an involution, i.e. a map * : A → A, a → a^{*} satisfying the properties:

$$(lpha a + eta b)^* = \overline{lpha} a^* + \overline{eta} b^*, \hspace{1em} (ab)^* = b^* a^*, \hspace{1em} ext{and} \hspace{1em} (a^*)^* = a,$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

A C^* -algebra is a (complex) Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra over the field \mathbb{C} .
- A is equipped with an involution, i.e. a map * : A → A, a → a^{*} satisfying the properties:

$$(lpha a + eta b)^* = \overline{lpha} a^* + \overline{eta} b^*, \hspace{0.3cm} (ab)^* = b^* a^*, \hspace{0.3cm} ext{and} \hspace{0.3cm} (a^*)^* = a,$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

• Norm $\|\cdot\|$ satisfies the C^* -identity, i.e.

$$||a^*a|| = ||a||^2$$

for all $a \in A$.

A C^* -algebra is a (complex) Banach *-algebra A whose norm $\|\cdot\|$ satisfies the C^* -identity. More precisely:

- A is a Banach algebra over the field \mathbb{C} .
- A is equipped with an involution, i.e. a map * : A → A, a → a^{*} satisfying the properties:

$$(lpha a + eta b)^* = \overline{lpha} a^* + \overline{eta} b^*, \hspace{0.3cm} (ab)^* = b^* a^*, \hspace{0.3cm} ext{and} \hspace{0.3cm} (a^*)^* = a,$$

for all $a, b \in A$ and $\alpha, \beta \in \mathbb{C}$.

• Norm $\|\cdot\|$ satisfies the C*-identity, i.e.

$$||a^*a|| = ||a||^2$$

for all $a \in A$.

Throughout this talk, we assume that all C^* -algebras have identity elements.

Ilja Gogić (TCD)

Derivations and elem. operators

Fundamental examples

Let X be a compact Hausdorff space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C*-algebra with respect to the pointwise operations, involution f*(x) := f(x), and max-norm ||f||_∞ := sup{|f(x)| : x ∈ X}. Obviously, C(X) is commutative C*-algebra. Moreover, every commutative C*-algebra arises in this fashion (Gelfand-Naimark theorem).

Fundamental examples

- Let X be a compact Hausdorff space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C*-algebra with respect to the pointwise operations, involution f*(x) := f(x), and max-norm ||f||_∞ := sup{|f(x)| : x ∈ X}. Obviously, C(X) is commutative C*-algebra. Moreover, every commutative C*-algebra arises in this fashion (Gelfand-Naimark theorem).
- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In fact, every C*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H (Gelfand-Naimark theorem).

Fundamental examples

- Let X be a compact Hausdorff space and let C(X) be the set of all continuous complex-valued functions on X. Then C(X) becomes a C*-algebra with respect to the pointwise operations, involution f*(x) := f(x), and max-norm ||f||_∞ := sup{|f(x)| : x ∈ X}. Obviously, C(X) is commutative C*-algebra. Moreover, every commutative C*-algebra arises in this fashion (Gelfand-Naimark theorem).
- The set B(H) of bounded linear operators on a Hilbert space H becomes a C*-algebra with respect to the standard operations, usual adjoint and operator norm. In fact, every C*-algebra can be isometrically embedded as a norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H (Gelfand-Naimark theorem).

The category of C^* -algebras is closed under the formation of direct products, direct sums, extensions, direct limits, pullbacks, pushouts, (some) tensor products, etc.

A derivation on a C*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

A derivation on a C*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

Basic properties of derivations on C^* -algebras

Every derivation δ on a C^* -algebra A satisfies the following properties:

A derivation on a C*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Basic properties of derivations on C*-algebras

Every derivation δ on a C^* -algebra A satisfies the following properties:

• δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).

A derivation on a C*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Basic properties of derivations on C^* -algebras

Every derivation δ on a C^{*}-algebra A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. ||δ||_{cb} = ||δ||).
- δ preserves the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for every ideal I of A).

A derivation on a C*-algebra A is a linear map $\delta : A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Basic properties of derivations on C^* -algebras

Every derivation δ on a C*-algebra A satisfies the following properties:

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. ||δ||_{cb} = ||δ||).
- δ preserves the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for every ideal I of A).
- δ vanishes on the centre of A (i.e. δ(z) = 0 for all z ∈ Z(A)). In particular, commutative C*-algebras don't admit non-zero derivations.

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^* -algebras admit only inner derivations?

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

• von Neumann algebras (Kadison-Sakai, 1966).

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C*-algebras (Sakai, 1968).

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C*-algebras (Sakai, 1968).
- AW*-algebras (Olesen, 1974).

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

By Der(A) and Inn(A) we denote, respectively, the set of all derivations on A and the set of all inner derivations on A.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C*-algebras (Sakai, 1968).
- AW*-algebras (Olesen, 1974).
- homogeneous C*-algebras (Sproston, 1976).

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^* -algebra A the following conditions are equivalent:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^* -algebra A the following conditions are equivalent:

• A admits only inner derivations.

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^* -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C*-subalgebras which are either homogeneous or simple.

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^* -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C*-subalgebras which are either homogeneous or simple.
- Der(A) is separable in the operator norm.

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C^* -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C*-subalgebras which are either homogeneous or simple.
- Der(A) is separable in the operator norm.

On the other hand, for inseparable C^* -algebras the main problem remains widely open, even for the simplest cases such as subhomogeneous C^* -algebras (i.e. C^* -algebras which have finite-dimensional irreducible representations of bounded degree).

• We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C*-algebras A, however, it is natural to regard two-sided multiplication maps M_{a,b} : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C*-algebras A, however, it is natural to regard two-sided multiplication maps M_{a,b} : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on *A*, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by **elementary operators**.

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C*-algebras A, however, it is natural to regard two-sided multiplication maps M_{a,b} : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on *A*, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by **elementary operators**.

By $\mathcal{E}\ell(A)$ we denote the set of all elementary operators on A. It is easy to see that every elementary operator on A is completely bounded, with

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h},$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $A \otimes A$.

Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^* -algebras:

Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^* -algebras:

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ of $\mathcal{E}\ell(A)$? Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^* -algebras:

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ of $\mathcal{E}\ell(A)$?

Remark

• Since each inner derivation is an elementary operator (of length 2) on $A, \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ includes the cb-corm closure of Inn(A).

Since every $\delta \in \text{Der}(A)$ preserve the ideals of A and is completely bounded, the above approximation procedure in particular applies to the derivations of C^{*}-algebras:

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ of $\mathcal{E}\ell(A)$?

Remark

- Since each inner derivation is an elementary operator (of length 2) on $A, \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ includes the cb-corm closure of Inn(A).
- Since the cb-norm of an inner derivation of a C*-algebra coincides with its operator norm (easy to verify), the cb-norm closure of Inn(A) coincides with the operator norm closure of Inn(A). We denote this closure by Inn(A).

Problem (G., 2013)

Does every C^* -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

Problem (G., 2013)

Does every C^* -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

In many cases the set Inn(A) is closed in the operator norm. However, this is not always true.

Problem (G., 2013)

Does every C^* -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

In many cases the set Inn(A) is closed in the operator norm. However, this is not always true.

In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if and only if A has a finite connecting order.

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

• Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \le i \le n$.

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \le i \le n$.
- The distance d(P, Q) from P to Q is defined as follows:
 - $\triangleright \ d(P,P) := 1.$
 - ▷ If $P \neq Q$ and there exists a path from P to Q, then d(P, Q) is equal to the minimal length of a path from P to Q.
 - ▷ If there is no path from P to Q, $d(P,Q) := \infty$.

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \le i \le n$.
- The distance d(P, Q) from P to Q is defined as follows:
 - $\triangleright \ d(P,P) := 1.$
 - ▷ If $P \neq Q$ and there exists a path from P to Q, then d(P,Q) is equal to the minimal length of a path from P to Q.
 - ▷ If there is no path from P to Q, $d(P,Q) := \infty$.
- The connecting order Orc(A) of A is then defined by

 $\operatorname{Orc}(A) := \sup\{d(P,Q): P, Q \in \operatorname{Prim}(A) \text{ such that } d(P,Q) < \infty\}.$

Theorem (G., 2013)

The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{\overline{Inn}(A)}$ holds true for all C*-algebras A in which every Glimm ideal is prime.

Theorem (G., 2013)

The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{Inn(A)}}$ holds true for all C^{*}-algebras A in which every Glimm ideal is prime.

Recall that the **Glimm ideals** of a C^* -algebra A are the ideals generated by the maximal ideals of the centre of A.

Theorem (G., 2013)

The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{\overline{Inn}(A)}$ holds true for all C*-algebras A in which every Glimm ideal is prime.

Recall that the **Glimm ideals** of a C^* -algebra A are the ideals generated by the maximal ideals of the centre of A.

If a C^* -algebra A has only prime Glimm ideals, then Orc(A) = 1, so Somerset's theorem yields that Inn(A) is closed in the operator norm. Hence:

Corollary

If every Glimm ideal of a C^{*}-algebra A is prime, then every derivation of A which lies in $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ is inner.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

• Prime C*-algebras.

- Prime C*-algebras.
- C*-algebras with Hausdorff primitive spectrum.

- Prime C*-algebras.
- C^* -algebras with Hausdorff primitive spectrum.
- Quotients of AW*-algebras.

- Prime *C**-algebras.
- C*-algebras with Hausdorff primitive spectrum.
- Quotients of AW*-algebras.
- Local multiplier algebras.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C*-algebras.
- C*-algebras with Hausdorff primitive spectrum.
- Quotients of AW*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a C^* -algebra A we mean every derivation on A which is also an elementary operator on A.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C*-algebras.
- C*-algebras with Hausdorff primitive spectrum.
- Quotients of AW*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a C^* -algebra A we mean every derivation on A which is also an elementary operator on A.

Question

Does there exist a C^* -algebra A which admits an outer elementary derivation?

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C*-algebras.
- C*-algebras with Hausdorff primitive spectrum.
- Quotients of AW*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a C^* -algebra A we mean every derivation on A which is also an elementary operator on A.

Question

Does there exist a C^* -algebra A which admits an outer elementary derivation?

Motivated by our previous discussion, it is natural to start looking for possible examples in the class of C^* -algebras with $Orc(A) = \infty$.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty]) \otimes \mathbb{M}_2$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty]) \otimes \mathbb{M}_2$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

• $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $\operatorname{Orc}(A) = \infty$.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty]) \otimes \mathbb{M}_2$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $\operatorname{Orc}(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits an outer elementary derivation.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty]) \otimes \mathbb{M}_2$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $\operatorname{Orc}(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits an outer elementary derivation.

More recently, Richard Timoney showed that the above C^* -algebra admits outer derivations δ of the form $\delta = M_{a,b} - M_{b,a}$ for some $a, b \in A$. In particular A has outer elementary derivations of length 2.

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^* -algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^* -algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

When do we have $\overline{\mathrm{Inn}(A)} \subseteq \mathcal{E}\ell(A)$?

Problem

What can be said about the lengths of outer elementary derivations? In particular, can one for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^* -algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

When do we have $\overline{\mathrm{Inn}(A)} \subseteq \mathcal{E}\ell(A)$?

Problem

What can be said about $Der(A) \cap \overline{\mathcal{E}\ell(A)}$?