The centre-quotient property and weak centrality for *C**-algebras

Ilja Gogić

University of Zagreb

The 48th Canadian Operator Symposium May 25 - 29, 2020, The Fields Institute

joint work with Robert J. Archbold (to appear in IMRN)

< □ > < □ > < □ > < □ > < □ > < □ >

This research was supported by the Croatian Science Foundation under the project IP-2016-06-1046.

Introduction

Let A be a C^* -algebra with centre Z(A). If I is a (closed two-sided) ideal of A, it is immediate that

$$(Z(A)+I)/I = q_I(Z(A)) \subseteq Z(A/I), \tag{1}$$

where $q_I : A \rightarrow A/I$ is the canonical map.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction

Let A be a C^* -algebra with centre Z(A). If I is a (closed two-sided) ideal of A, it is immediate that

$$(Z(A)+I)/I = q_I(Z(A)) \subseteq Z(A/I), \tag{1}$$

where $q_I : A \rightarrow A/I$ is the canonical map.

A C^* -algebra A is said to have the *centre-quotient property* (CQ-property) if for any ideal I of A, equality holds in (1).

Introduction

Let A be a C^* -algebra with centre Z(A). If I is a (closed two-sided) ideal of A, it is immediate that

$$(Z(A)+I)/I = q_I(Z(A)) \subseteq Z(A/I), \tag{1}$$

where $q_I : A \rightarrow A/I$ is the canonical map.

A C^* -algebra A is said to have the *centre-quotient property* (CQ-property) if for any ideal I of A, equality holds in (1).

In the unital case we have the following beautiful characterization of CQ-property due to Vesterstrøm.

Theorem (Vesterstrøm 1971)

If A is a unital C^* -algebra, then the following conditions are equivalent:

(i) A has the CQ-property.

(ii) A is weakly central, that is for any pair of maximal ideals M and N of A, $M \cap Z(A) = N \cap Z(A)$ implies M = N.

• Weakly central C*-algebras were introduced by Misonou and Nakamura in 1951, in the unital context.

(日) (四) (日) (日) (日)

- Weakly central C*-algebras were introduced by Misonou and Nakamura in 1951, in the unital context.
- The most prominent examples of weakly central C*-algebras A are those satisfying the *Dixmier property*, that is for each x ∈ A the closure of the convex hull of the unitary orbit of x intersects Z(A) (Archbold 1972). In particular, von Neumann algebras are weakly central (Dixmier 1949, Misonou 1952).

.

- Weakly central C*-algebras were introduced by Misonou and Nakamura in 1951, in the unital context.
- The most prominent examples of weakly central C*-algebras A are those satisfying the *Dixmier property*, that is for each x ∈ A the closure of the convex hull of the unitary orbit of x intersects Z(A) (Archbold 1972). In particular, von Neumann algebras are weakly central (Dixmier 1949, Misonou 1952).
- A unital simple C*-algebra satisfies the Dixmier property if and only if it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, weak centrality does not imply the Dixmier property.

< 同 > < 三 > < 三 >

- Weakly central C*-algebras were introduced by Misonou and Nakamura in 1951, in the unital context.
- The most prominent examples of weakly central C*-algebras A are those satisfying the *Dixmier property*, that is for each x ∈ A the closure of the convex hull of the unitary orbit of x intersects Z(A) (Archbold 1972). In particular, von Neumann algebras are weakly central (Dixmier 1949, Misonou 1952).
- A unital simple C*-algebra satisfies the Dixmier property if and only if it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, weak centrality does not imply the Dixmier property.
- In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging that involves unital completely positive elementary operators.

・ 回 ト ・ ヨ ト ・ ヨ ト

- Weakly central C*-algebras were introduced by Misonou and Nakamura in 1951, in the unital context.
- The most prominent examples of weakly central C*-algebras A are those satisfying the *Dixmier property*, that is for each x ∈ A the closure of the convex hull of the unitary orbit of x intersects Z(A) (Archbold 1972). In particular, von Neumann algebras are weakly central (Dixmier 1949, Misonou 1952).
- A unital simple C*-algebra satisfies the Dixmier property if and only if it admits at most one tracial state (Haagerup-Zsidó 1984). In particular, weak centrality does not imply the Dixmier property.
- In 2008 Magajna gave a characterisation of weak centrality in terms of more general averaging that involves unital completely positive elementary operators.
- Finally, in 2017 Archbold, Robert and Tikuisis found the exact gap between weak centrality and the Dixmier property for unital C*-algebras and showed that a postliminal C*-algebra has the (singleton) Dixmier property if and only if it has the CQ-property.

・ロト ・ 同ト ・ ヨト ・ ヨト

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

(日) (四) (日) (日) (日)

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

Let us first fix the notation. Throughout, A will be a C^* -algebra.

・ 何 ト ・ ヨ ト ・ ヨ ト

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

Let us first fix the notation. Throughout, A will be a C^* -algebra.

 If A is non-unital, we denote the (minimal) unitization of A by A[#]. If A is unital we assume that A[#] = A.

A B A A B A

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

Let us first fix the notation. Throughout, A will be a C^* -algebra.

- If A is non-unital, we denote the (minimal) unitization of A by A[♯]. If A is unital we assume that A[♯] = A.
- An ideal I of A is said to be *modular* if the quotient A/I is unital.

A B A A B A

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

Let us first fix the notation. Throughout, A will be a C^* -algebra.

- If A is non-unital, we denote the (minimal) unitization of A by A[♯]. If A is unital we assume that A[♯] = A.
- An ideal I of A is said to be *modular* if the quotient A/I is unital.
- The set of all primitive ideals of A is denoted by Prim(A). As usual, we equip Prim(A) with the Jacobson topology.

• • = • • = •

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

Let us first fix the notation. Throughout, A will be a C^* -algebra.

- If A is non-unital, we denote the (minimal) unitization of A by A[#]. If A is unital we assume that A[#] = A.
- An ideal I of A is said to be *modular* if the quotient A/I is unital.
- The set of all primitive ideals of A is denoted by Prim(A). As usual, we equip Prim(A) with the Jacobson topology.
- It is well-known that any proper modular ideal of A (if such exists) is contained in some modular maximal ideal of A and that all modular maximal ideals of A are primitive. We denote the set of all modular maximal ideals of A by Max(A).

We begin by extending the definition of weak centrality to non-unital C^* -algebras.

Let us first fix the notation. Throughout, A will be a C^* -algebra.

- If A is non-unital, we denote the (minimal) unitization of A by A[#]. If A is unital we assume that A[#] = A.
- An ideal I of A is said to be *modular* if the quotient A/I is unital.
- The set of all primitive ideals of A is denoted by Prim(A). As usual, we equip Prim(A) with the Jacobson topology.
- It is well-known that any proper modular ideal of A (if such exists) is contained in some modular maximal ideal of A and that all modular maximal ideals of A are primitive. We denote the set of all modular maximal ideals of A by Max(A).
- Max(A) can be empty (e.g. the algebra A = K(H) of compact operators on a separable infinite-dimensional Hilbert space H).

イロト イポト イヨト イヨト

Definition

We say that a C^* -algebra A is weakly central if:

- (a) no modular maximal ideal of A contains Z(A), and
- (b) for each pair of modular maximal ideals M_1 and M_2 of A, $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.

Definition

We say that a C^* -algebra A is weakly central if:

- (a) no modular maximal ideal of A contains Z(A), and
- (b) for each pair of modular maximal ideals M_1 and M_2 of A, $M_1 \cap Z(A) = M_2 \cap Z(A)$ implies $M_1 = M_2$.

Theorem (Archbold-G. 2020)

For a C^* -algebra A the following conditions are equivalent:

- (i) A has the CQ-property.
- (ii) A is weakly central.
- (iii) A^{\sharp} is weakly central.
- (iv) There is a weakly central ideal J of A such that all primitive ideals of A that contain J are non-modular.
- (v) There is an ideal J of A such that both J and A/J have the CQ-property and Z(A/J) = (Z(A) + J)/J.

A B A A B A

However, we take a different approach that has the merit of obtaining a formula for this ideal in terms of the set of those modular maximal ideals of A which witness the failure of the weak centrality of A:

However, we take a different approach that has the merit of obtaining a formula for this ideal in terms of the set of those modular maximal ideals of A which witness the failure of the weak centrality of A:

- T_A^1 as the set of all $M \in Max(A)$ such that $Z(A) \subseteq M$.
- T_A^2 as the set of all $M \in Max(A)$ for which exists $N \in Max(A)$ such that $M \neq N$, $Z(A) \nsubseteq M$, N and $M \cap Z(A) = N \cap Z(A)$.
- $T_A := T_A^1 \cup T_A^2.$

- 本間下 本臣下 本臣下 三臣

However, we take a different approach that has the merit of obtaining a formula for this ideal in terms of the set of those modular maximal ideals of A which witness the failure of the weak centrality of A:

- T_A^1 as the set of all $M \in Max(A)$ such that $Z(A) \subseteq M$.
- T_A^2 as the set of all $M \in Max(A)$ for which exists $N \in Max(A)$ such that $M \neq N$, $Z(A) \nsubseteq M$, N and $M \cap Z(A) = N \cap Z(A)$.
- $T_A := T_A^1 \cup T_A^2.$

We define $J_{wc}(A) := \ker T_A$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

However, we take a different approach that has the merit of obtaining a formula for this ideal in terms of the set of those modular maximal ideals of A which witness the failure of the weak centrality of A:

- T^1_A as the set of all $M \in Max(A)$ such that $Z(A) \subseteq M$.
- T_A^2 as the set of all $M \in Max(A)$ for which exists $N \in Max(A)$ such that $M \neq N$, $Z(A) \nsubseteq M$, N and $M \cap Z(A) = N \cap Z(A)$.
- $T_A := T_A^1 \cup T_A^2$.

We define $J_{wc}(A) := \ker T_A$.

Theorem (Archbold-G. 2020)

If A is a C^* -algebra then $J_{wc}(A)$ is the largest weakly central ideal of A.

イロト 不得 トイラト イラト 一日

Example

- (a) If A is the Dixmier's classic example of a C^* -algebra in which the Dixmier property fails, i.e. $A := K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset B(\mathcal{H})$, where \mathcal{H} is a separable infinite-dimensional Hilbert space and $p \in B(\mathcal{H})$ a projection with infinite-dimensional kernel and image, then $J_{wc}(A) = K(\mathcal{H})$.
- (b) If A either the rotation algebra (the C*-algebra of the discrete three-dimensional Heisenberg group, or A = C*(F₂) (the full C*-algebra of the free group on two generators, then J_{wc}(A) = {0}.

< □ > < □ > < □ > < □ > < □ > < □ >

Example

- (a) If A is the Dixmier's classic example of a C^* -algebra in which the Dixmier property fails, i.e. $A := K(\mathcal{H}) + \mathbb{C}p + \mathbb{C}(1-p) \subset B(\mathcal{H})$, where \mathcal{H} is a separable infinite-dimensional Hilbert space and $p \in B(\mathcal{H})$ a projection with infinite-dimensional kernel and image, then $J_{wc}(A) = K(\mathcal{H})$.
- (b) If A either the rotation algebra (the C*-algebra of the discrete three-dimensional Heisenberg group, or A = C*(F₂) (the full C*-algebra of the free group on two generators, then J_{wc}(A) = {0}.

The CQ-property/weak centrality is well-behaved with respect to the C^* -tensor products.

Theorem (Archbold 1971, Archbold-G. 2020)

Let A_1 and A_2 be C^* -algebras. The following conditions are equivalent:

- (i) Both A_1 and A_2 have the CQ-property.
- (ii) $A_1 \otimes_{\beta} A_2$ has the CQ-property for every C^* -norm β .

(iii) $A_1 \otimes_{\beta} A_2$ has the CQ-property for some C^{*}-norm β .

We now undertake the more difficult task of describing the individual elements which prevent a C^* -algebra A from having the CQ-property.

We now undertake the more difficult task of describing the individual elements which prevent a C^* -algebra A from having the CQ-property.

Definition

Let A be a C^{*}-algebra. We say that an element $a \in A$ is a CQ-element of A if for every ideal I of A, $a + I \in Z(A/I)$ implies $a \in Z(A) + I$.

We now undertake the more difficult task of describing the individual elements which prevent a C^* -algebra A from having the CQ-property.

Definition

Let A be a C^{*}-algebra. We say that an element $a \in A$ is a CQ-element of A if for every ideal I of A, $a + I \in Z(A/I)$ implies $a \in Z(A) + I$.

By CQ(A) we denote the set of all CQ-elements of A. Obviously A has the CQ-property if and only if CQ(A) = A.

We now undertake the more difficult task of describing the individual elements which prevent a C^* -algebra A from having the CQ-property.

Definition

Let A be a C^{*}-algebra. We say that an element $a \in A$ is a CQ-element of A if for every ideal I of A, $a + I \in Z(A/I)$ implies $a \in Z(A) + I$.

By CQ(A) we denote the set of all CQ-elements of A. Obviously A has the CQ-property if and only if CQ(A) = A.

Proposition

CQ(A) is a self-adjoint subset of A that is closed under scalar multiplication and contains $Z(A) + J_{wc}(A)$. Moreover, CQ(A) contains all commutators [a, b] = ab - ba $(a, b \in A)$, quasi-nilpotent elements and products by quasi-nilpotent elements. In particular, CQ(A) = Z(A) if and only if A is abelian.

・ロト ・四ト ・ヨト ・ヨト

In order to identify the set CQ(A) we shall need the following result that for a unital C^* -algebra A gives a necessary and sufficient condition for a central element of A/I to lift to a central element of A.

In order to identify the set CQ(A) we shall need the following result that for a unital C^* -algebra A gives a necessary and sufficient condition for a central element of A/I to lift to a central element of A. If A is unital, first recall that by the Dauns-Hofmann theorem there exists an isomorphism

 $\Psi_A: Z(A) \to C(\operatorname{Prim}(A))$ such that $z + P = \Psi_A(z)(P)1 + P$

for all $z \in Z(A)$ and $P \in Prim(A)$ (as A is unital, Prim(A) is compact).

- 本間下 本臣下 本臣下 三臣

In order to identify the set CQ(A) we shall need the following result that for a unital C^* -algebra A gives a necessary and sufficient condition for a central element of A/I to lift to a central element of A. If A is unital, first recall that by the Dauns-Hofmann theorem there exists an isomorphism

 $\Psi_A: Z(A) o C(\operatorname{Prim}(A))$ such that $z + P = \Psi_A(z)(P)1 + P$

for all $z \in Z(A)$ and $P \in Prim(A)$ (as A is unital, Prim(A) is compact).

Theorem (Archbold-G. 2020)

Let A be a unital C^{*}-algebra and let I be an ideal of A. A central element \dot{z} of A/I can be lifted to a central element of A if and only if

$$\Psi_{A/I}(\dot{z})(P_1/I) = \Psi_{A/I}(\dot{z})(P_2/I)$$

for all $P_1, P_2 \in Prim(A)$ that contain I and $P_1 \cap Z(A) = P_2 \cap Z(A)$.

イロト 不得 トイラト イラト 一日

Theorem (Archbold-G. 2020)

If A is a C^{*}-algebra then $A \setminus CQ(A) = V_A^1 \cup V_A^2$, where:

- V_A^1 is the set of all $a \in A$ for which there exists $M \in Max(A)$ such that $Z(A) \subseteq M$ and a + M is a non-zero scalar in A/M,
- V_A^2 is the set of all $a \in A$ for which there exist $M_1, M_2 \in Max(A)$ and scalars $\lambda_1 \neq \lambda_2$ such that $Z(A) \nsubseteq M_i, M_1 \cap Z(A) = M_2 \cap Z(A)$ and $a + M_i = \lambda_i \mathbb{1}_{A/M_i}$ (i = 1, 2).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Archbold-G. 2020)

If A is a C^{*}-algebra then $A \setminus CQ(A) = V_A^1 \cup V_A^2$, where:

- V_A^1 is the set of all $a \in A$ for which there exists $M \in Max(A)$ such that $Z(A) \subseteq M$ and a + M is a non-zero scalar in A/M,
- V_A^2 is the set of all $a \in A$ for which there exist $M_1, M_2 \in Max(A)$ and scalars $\lambda_1 \neq \lambda_2$ such that $Z(A) \nsubseteq M_i, M_1 \cap Z(A) = M_2 \cap Z(A)$ and $a + M_i = \lambda_i \mathbb{1}_{A/M_i}$ (i = 1, 2).

If A is a C^* -algebra then all commutators belong to CQ(A). Let [A, A] be the linear span of all commutators of A and $\overline{[A, A]}$ its norm-closure. We now characterise when CQ(A) contains $\overline{[A, A]}$ (using a result of Pop 2002).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Archbold-G. 2020)

If A is a C^{*}-algebra then $A \setminus CQ(A) = V_A^1 \cup V_A^2$, where:

- V_A^1 is the set of all $a \in A$ for which there exists $M \in Max(A)$ such that $Z(A) \subseteq M$ and a + M is a non-zero scalar in A/M,
- V_A^2 is the set of all $a \in A$ for which there exist $M_1, M_2 \in Max(A)$ and scalars $\lambda_1 \neq \lambda_2$ such that $Z(A) \nsubseteq M_i, M_1 \cap Z(A) = M_2 \cap Z(A)$ and $a + M_i = \lambda_i \mathbb{1}_{A/M_i}$ (i = 1, 2).

If A is a C^* -algebra then all commutators belong to CQ(A). Let [A, A] be the linear span of all commutators of A and $\overline{[A, A]}$ its norm-closure. We now characterise when CQ(A) contains $\overline{[A, A]}$ (using a result of Pop 2002).

Theorem (Archbold-G. 2020)

Let A be a C^* -algebra that is not weakly central.

(a) If for all $M \in T_A$, A/M admits a tracial state then $\overline{[A, A]} \subseteq CQ(A)$.

(b) If there is M ∈ T_A such that A/M does not admit a tracial state, then [A, A] ⊈ CQ(A).

If A is a postliminal C^{*}-algebra or an AF-algebra, then $\overline{[A,A]} \subseteq CQ(A)$.

< □ > < 同 > < 回 > < 回 > < 回 >

If A is a postliminal C^{*}-algebra or an AF-algebra, then $\overline{[A, A]} \subseteq CQ(A)$.

As already mentioned, CQ(A) always contains $Z(A) + J_{wc}(A)$. The next result in particular demonstrates that CQ(A) is a C^* -subalgebra of A if and only if $CQ(A) = Z(A) + J_{wc}(A)$. In fact, when this does not hold, CQ(A) fails dramatically to be a C^* -algebra.

If A is a postliminal C^{*}-algebra or an AF-algebra, then $\overline{[A, A]} \subseteq CQ(A)$.

As already mentioned, CQ(A) always contains $Z(A) + J_{wc}(A)$. The next result in particular demonstrates that CQ(A) is a C^* -subalgebra of A if and only if $CQ(A) = Z(A) + J_{wc}(A)$. In fact, when this does not hold, CQ(A) fails dramatically to be a C^* -algebra.

Theorem (Archbold-G. 2020)

Let A be a C^* -algebra. The following conditions are equivalent:

- (i) CQ(A) is closed under addition.
- (ii) CQ(A) is closed under multiplication.
- (iii) CQ(A) is norm-closed.

(iv)
$$\operatorname{CQ}(A) = Z(A) + J_{wc}(A)$$
.

(v) $A/J_{wc}(A)$ is abelian.

イロト イボト イヨト イヨト

If A is a postliminal C^* -algebra or an AF-algebra, then the conditions (i)-(v) of previous theorem are also equivalent to:

(vi) For any $x \in CQ(A)$, $x^n \in CQ(A)$ for all $n \in \mathbb{N}$.

< □ > < 同 > < 回 > < 回 > < 回 >

If A is a postliminal C^* -algebra or an AF-algebra, then the conditions (i)-(v) of previous theorem are also equivalent to:

(vi) For any $x \in CQ(A)$, $x^n \in CQ(A)$ for all $n \in \mathbb{N}$.

Example

Let $B \neq \mathbb{C}$ be any unital simple projectionless C^* -algebra (e.g. the Jiang-Su algebra \mathcal{Z}) and let A be the C^* -algebra of all cts. functions $x : [0,1] \rightarrow M_2(B)$, such that $x(1) = \operatorname{diag}(b(x),0)$, for some $b(x) \in B$. If $M := C_0([0,1), M_2(B))$, then $M \in \operatorname{Max}(A)$ is (weakly) central so

$$T_A = T_A^1 = \{M\}, \qquad J_{wc}(A) = M$$
 and

 $CQ(A) = \{x \in A : b(x) \text{ is not a non-zero scalar}\}.$

As $A/J_{wc}(A) \cong B$ is non-abelian, CQ(A) is not norm-closed and is neither closed under addition nor under multiplication. On the other hand (as B is projectionless), for each $x \in CQ(A)$ and $n \in \mathbb{N}$ we have $x^n \in CQ(A)$.

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

A (1) > A (2) > A

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

Definition (Bešar-G. 2019)

An algebra A over a field \mathbb{F} is said to be *centrally stable (CS)* if for any ideal I of A we have (Z(A) + I)/I = Z(A/I).

▲ □ ▶ ▲ 三 ▶ ▲ 三

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

Definition (Bešar-G. 2019)

An algebra A over a field \mathbb{F} is said to be *centrally stable (CS)* if for any ideal I of A we have (Z(A) + I)/I = Z(A/I).

In contrast to the CQ-property for C^* -algebras, central stability turns out (expectedly) to be a more delicate property to deal with:

A (10) < A (10) < A (10) </p>

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

Definition (Bešar-G. 2019)

An algebra A over a field \mathbb{F} is said to be *centrally stable (CS)* if for any ideal I of A we have (Z(A) + I)/I = Z(A/I).

In contrast to the CQ-property for C^* -algebras, central stability turns out (expectedly) to be a more delicate property to deal with:

• It can easily happen that only central elements of a unital noncommutative algebra *A* are CS.

< 回 > < 三 > < 三

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

Definition (Bešar-G. 2019)

An algebra A over a field \mathbb{F} is said to be *centrally stable (CS)* if for any ideal I of A we have (Z(A) + I)/I = Z(A/I).

In contrast to the CQ-property for C^* -algebras, central stability turns out (expectedly) to be a more delicate property to deal with:

- It can easily happen that only central elements of a unital noncommutative algebra *A* are CS.
- Central stability do not passes to ideals and we do not know if the tensor product of two unital CS algebras is always CS.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

An analogous definition of the CQ-property makes sense for purely algebraic objects like groups, rings or algebras.

Definition (Bešar-G. 2019)

An algebra A over a field \mathbb{F} is said to be *centrally stable (CS)* if for any ideal I of A we have (Z(A) + I)/I = Z(A/I).

In contrast to the CQ-property for C^* -algebras, central stability turns out (expectedly) to be a more delicate property to deal with:

- It can easily happen that only central elements of a unital noncommutative algebra *A* are CS.
- Central stability do not passes to ideals and we do not know if the tensor product of two unital CS algebras is always CS.
- If A is a finite-dimensional unital algebra over a perfect field 𝔅, then A is CS if and only if there exist finite field extensions 𝔅₁,..., 𝔅_r of 𝔅, commutative unital 𝔅_i-algebras C₁,..., C_r, and central simple 𝔅_i-algebras A₁,..., A_r such that A ≅ (C₁ ⊗_{𝔅₁} A₁) ×···× (C_r ⊗_{𝔅_r} A_r) (Brešar-G. 2019).