# CB-norm approximation of derivations by elementary operators

Ilja Gogić



Analysis Seminar

School of Mathematics and Statistics University of Glasgow 3rd March 2015

(joint work in progress with Richard Timoney)

• Throughout this talk A will be a unital  $C^*$ -algebra with centre Z(A).

- Throughout this talk A will be a unital C\*-algebra with centre Z(A).
- By an ideal of A we always mean a closed two-sided ideal of A. We denote by Id(A) the set of all ideals of A. For each I ∈ Id(A), q<sub>I</sub> will denote the quotient map A → A/I.

- Throughout this talk A will be a unital  $C^*$ -algebra with centre Z(A).
- By an **ideal** of A we always mean a closed two-sided ideal of A. We denote by Id(A) the set of all ideals of A. For each  $I \in Id(A)$ ,  $q_I$  will denote the quotient map  $A \to A/I$ .
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.

- Throughout this talk A will be a unital  $C^*$ -algebra with centre Z(A).
- By an ideal of A we always mean a closed two-sided ideal of A. We denote by Id(A) the set of all ideals of A. For each I ∈ Id(A), q<sub>I</sub> will denote the quotient map A → A/I.
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.
- The **primitive spectrum** of *A*, which we denote by Prim(A), is the set of all primitive ideals of *A* equipped with the Jacobson topology. Hence, if *S* is some set of primitive ideals, its closure is

$$\overline{S} = \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}.$$

Prim(A) is a compact space which in general satisfies only  $T_0$ -separation axiom.

- Throughout this talk A will be a unital  $C^*$ -algebra with centre Z(A).
- By an ideal of A we always mean a closed two-sided ideal of A. We denote by Id(A) the set of all ideals of A. For each I ∈ Id(A), q<sub>I</sub> will denote the quotient map A → A/I.
- An ideal *P* of *A* is said to be **primitive** if *P* is the kernel of some irreducible representation of *A*.
- The **primitive spectrum** of *A*, which we denote by Prim(A), is the set of all primitive ideals of *A* equipped with the Jacobson topology. Hence, if *S* is some set of primitive ideals, its closure is

$$\overline{S} = \left\{ P \in \operatorname{Prim}(A) : P \supseteq \bigcap_{Q \in S} Q \right\}.$$

Prim(A) is a compact space which in general satisfies only  $T_0$ -separation axiom.

Dauns-Hofmann Theorem (1968): There is a \*-isomorphism Φ<sub>A</sub> from C(Prim(A)) onto Z(A) such that

$$q_P(\Phi_A(f)a) = f(P)q_P(a)$$

for all  $f \in C(\operatorname{Prim}(A))$ ,  $a \in A$  and  $P \in \operatorname{Prim}(A)$ .

• Glimm ideals of A are the ideals of A generated by the maximal ideals of Z(A). By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of A is of the form mA for some maximal ideal m of Z(A). We denote the set of all Glimm ideals of A by Glimm(A).

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*(*A*). By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of *A* is of the form *mA* for some maximal ideal *m* of *Z*(*A*). We denote the set of all Glimm ideals of *A* by Glimm(*A*).
- Since the sum of two maximal ideals of Z(A) contains the identity, it follows that the Glimm ideals of A are in one-to-one correspondence with the maximal ideals of Z(A). Hence, we may equip Glimm(A) with the topology from the maximal ideal space of Z(A) so that Glimm(A) becomes a compact Hausdorff space, homeomorphic to the maximal ideal space of Z(A).

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*(*A*). By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of *A* is of the form *mA* for some maximal ideal *m* of *Z*(*A*). We denote the set of all Glimm ideals of *A* by Glimm(*A*).
- Since the sum of two maximal ideals of Z(A) contains the identity, it follows that the Glimm ideals of A are in one-to-one correspondence with the maximal ideals of Z(A). Hence, we may equip Glimm(A) with the topology from the maximal ideal space of Z(A) so that Glimm(A) becomes a compact Hausdorff space, homeomorphic to the maximal ideal space of Z(A).
- In particular, we can identify *Z*(*A*) with the *C*\*-algebra *C*(Glimm(*A*)).

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*(*A*). By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of *A* is of the form *mA* for some maximal ideal *m* of *Z*(*A*). We denote the set of all Glimm ideals of *A* by Glimm(*A*).
- Since the sum of two maximal ideals of Z(A) contains the identity, it follows that the Glimm ideals of A are in one-to-one correspondence with the maximal ideals of Z(A). Hence, we may equip Glimm(A) with the topology from the maximal ideal space of Z(A) so that Glimm(A) becomes a compact Hausdorff space, homeomorphic to the maximal ideal space of Z(A).
- In particular, we can identify *Z*(*A*) with the *C*\*-algebra *C*(Glimm(*A*)).
- Each primitive ideal of A intersects Z(A) in a maximal ideal, and therefore contains a (unique) Glimm ideal of A. In particular, Glimm ideals of A have zero intersection.

- **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of *Z*(*A*). By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of *A* is of the form *mA* for some maximal ideal *m* of *Z*(*A*). We denote the set of all Glimm ideals of *A* by Glimm(*A*).
- Since the sum of two maximal ideals of Z(A) contains the identity, it follows that the Glimm ideals of A are in one-to-one correspondence with the maximal ideals of Z(A). Hence, we may equip Glimm(A) with the topology from the maximal ideal space of Z(A) so that Glimm(A) becomes a compact Hausdorff space, homeomorphic to the maximal ideal space of Z(A).
- In particular, we can identify *Z*(*A*) with the *C*\*-algebra *C*(Glimm(*A*)).
- Each primitive ideal of A intersects Z(A) in a maximal ideal, and therefore contains a (unique) Glimm ideal of A. In particular, Glimm ideals of A have zero intersection.
- For each a ∈ A the norm-function G → ||q<sub>G</sub>(a)|| is upper semicontinuous on Glimm(A).

• An ideal Q of A is said to be n-primal  $(n \ge 2)$  if whenever  $I_1, \ldots, I_n$  are ideals of A with  $I_1 \cdots I_n = \{0\}$ , then at least one  $I_i$  is contained in Q.

- An ideal Q of A is said to be n-primal  $(n \ge 2)$  if whenever  $I_1, \ldots, I_n$  are ideals of A with  $I_1 \cdots I_n = \{0\}$ , then at least one  $I_i$  is contained in Q.
- An ideal Q of A is said to be **primal** if Q is n-primal for all  $n \ge 2$ .

- An ideal Q of A is said to be n-primal  $(n \ge 2)$  if whenever  $I_1, \ldots, I_n$  are ideals of A with  $I_1 \cdots I_n = \{0\}$ , then at least one  $I_i$  is contained in Q.
- An ideal Q of A is said to be **primal** if Q is n-primal for all  $n \ge 2$ .
- By  $Primal_n(A)$ , resp. Primal(A), we denote the set of all *n*-primal, resp. all primal ideals of A.

- An ideal Q of A is said to be n-primal  $(n \ge 2)$  if whenever  $I_1, \ldots, I_n$  are ideals of A with  $I_1 \cdots I_n = \{0\}$ , then at least one  $I_i$  is contained in Q.
- An ideal Q of A is said to be **primal** if Q is n-primal for all  $n \ge 2$ .
- By  $Primal_n(A)$ , resp. Primal(A), we denote the set of all *n*-primal, resp. all primal ideals of *A*.
- It is not difficult to see that every 2-primal ideal contains a unique Glimm ideal.

- An ideal Q of A is said to be n-primal  $(n \ge 2)$  if whenever  $I_1, \ldots, I_n$  are ideals of A with  $I_1 \cdots I_n = \{0\}$ , then at least one  $I_i$  is contained in Q.
- An ideal Q of A is said to be **primal** if Q is n-primal for all  $n \ge 2$ .
- By  $\operatorname{Primal}_n(A)$ , resp.  $\operatorname{Primal}(A)$ , we denote the set of all *n*-primal, resp. all primal ideals of *A*.
- It is not difficult to see that every 2-primal ideal contains a unique Glimm ideal.
- Also, one can show that an ideal Q of A is n-primal if and only if for all P<sub>1</sub>,..., P<sub>n</sub> ∈ Prim(A/Q) there exists a net in Prim(A) which converges simultaneously to each P<sub>1</sub>,..., P<sub>n</sub>.

- An ideal Q of A is said to be n-primal  $(n \ge 2)$  if whenever  $I_1, \ldots, I_n$  are ideals of A with  $I_1 \cdots I_n = \{0\}$ , then at least one  $I_i$  is contained in Q.
- An ideal Q of A is said to be **primal** if Q is n-primal for all  $n \ge 2$ .
- By  $\operatorname{Primal}_n(A)$ , resp.  $\operatorname{Primal}(A)$ , we denote the set of all *n*-primal, resp. all primal ideals of *A*.
- It is not difficult to see that every 2-primal ideal contains a unique Glimm ideal.
- Also, one can show that an ideal Q of A is n-primal if and only if for all P<sub>1</sub>,..., P<sub>n</sub> ∈ Prim(A/Q) there exists a net in Prim(A) which converges simultaneously to each P<sub>1</sub>,..., P<sub>n</sub>.
- In particular, Prim(A) is Hausdorff if and only if

 $\operatorname{Glimm}(A) = \operatorname{Primal}_2(A) \setminus \{A\} = \operatorname{Prim}(A).$ 

• A linear map  $\phi : A \to A$  is said to be **completely bounded** if  $\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$ 

where  $\phi_n : M_n(A) \to M_n(A)$  denotes the induced map,

 $\phi_n([a_{i,j}]) := [\phi(a_{i,j})] \quad ([a_{i,j}] \in \mathcal{M}_n(A)).$ 

• A linear map  $\phi : A \to A$  is said to be **completely bounded** if

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where  $\phi_n : M_n(A) \to M_n(A)$  denotes the induced map,

$$\phi_n([a_{i,j}]) := [\phi(a_{i,j})] \quad ([a_{i,j}] \in \mathcal{M}_n(A)).$$

By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp. completely bounded) maps on A that preserve the ideals of A (i.e. φ(I) ⊆ I for all I ∈ Id(A)).

• A linear map  $\phi: A \rightarrow A$  is said to be **completely bounded** if

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where  $\phi_n : M_n(A) \to M_n(A)$  denotes the induced map,

 $\phi_n([a_{i,j}]) := [\phi(a_{i,j})] \quad ([a_{i,j}] \in \mathcal{M}_n(A)).$ 

- By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp. completely bounded) maps on A that preserve the ideals of A (i.e. φ(I) ⊆ I for all I ∈ Id(A)).
- Eery  $\phi \in IB(A)$  is Z(A)-(bi)modular. If S is any subset of Id(A) with zero intersection, then the norm of  $\phi$  can be recovered via the formula

$$\|\phi\| = \sup\{\|\phi_I\| : I \in S\},\$$

where for each  $I \in Id(A)$ ,  $\phi_I : A/I \to A/I$  denotes the induced map  $q_I(a) \mapsto q_I(\phi(a))$ .

• A linear map  $\phi: A \rightarrow A$  is said to be **completely bounded** if

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where  $\phi_n : M_n(A) \to M_n(A)$  denotes the induced map,

 $\phi_n([a_{i,j}]) := [\phi(a_{i,j})] \quad ([a_{i,j}] \in \mathcal{M}_n(A)).$ 

- By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp. completely bounded) maps on A that preserve the ideals of A (i.e. φ(I) ⊆ I for all I ∈ Id(A)).
- Eery  $\phi \in IB(A)$  is Z(A)-(bi)modular. If S is any subset of Id(A) with zero intersection, then the norm of  $\phi$  can be recovered via the formula

$$\|\phi\| = \sup\{\|\phi_I\| : I \in S\},\$$

where for each  $I \in Id(A)$ ,  $\phi_I : A/I \to A/I$  denotes the induced map  $q_I(a) \mapsto q_I(\phi(a))$ .

• The analogues formula is valid for the cb-norm of maps in ICB(A).

In quantum mechanics a physical system is typically described via a unital  $C^*$ -algebra A.

In quantum mechanics a physical system is typically described via a unital  $C^*$ -algebra A.

• The self-adjoint elements of A are thought of as the **observables**; they are the measurable quantities of the system.

In quantum mechanics a physical system is typically described via a unital  $C^*$ -algebra A.

- The self-adjoint elements of A are thought of as the **observables**; they are the measurable quantities of the system.
- A state of the system is defined as a positive functional on A (i.e. a linear map ω : A → C such that ω(a\*a) ≥ 0 for all a ∈ A) with ω(1<sub>A</sub>) = 1. If the system is in the state ω, then ω(a) is the expected value of the observable a.

In quantum mechanics a physical system is typically described via a unital  $C^*$ -algebra A.

- The self-adjoint elements of A are thought of as the **observables**; they are the measurable quantities of the system.
- A state of the system is defined as a positive functional on A (i.e. a linear map ω : A → C such that ω(a\*a) ≥ 0 for all a ∈ A) with ω(1<sub>A</sub>) = 1. If the system is in the state ω, then ω(a) is the expected value of the observable a.
- Automorphisms correspond to the symmetries, while one-parameter automorphism groups  $\{\Phi_t\}_{t\in\mathbb{R}}$  describe the reversible time evolution of the system (in the Heisenberg picture). Their infinitesimal generators

$$\delta(x) := \lim_{t\to 0} \frac{1}{t} (\Phi_t(x) - x)$$

are the (\*-)derivations.

A derivation of an algebra A is a linear map  $\delta: A \to A$  satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all  $x, y \in A$ .

A derivation of an algebra A is a linear map  $\delta : A \to A$  satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all  $x, y \in A$ .

## **Basic properties of derivations of** C\*-algebras

Every derivation  $\delta$  of a C<sup>\*</sup>-algebra A satisfies the following properties:

A derivation of an algebra A is a linear map  $\delta : A \to A$  satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all  $x, y \in A$ .

# Basic properties of derivations of C\*-algebras

Every derivation  $\delta$  of a C\*-algebra A satisfies the following properties:

•  $\delta \in ICB(A)$  and  $\|\delta\|_{cb} = \|\delta\|$ .

A derivation of an algebra A is a linear map  $\delta : A \to A$  satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all  $x, y \in A$ .

# **Basic properties of derivations of** C\*-algebras

Every derivation  $\delta$  of a  $C^*$ -algebra A satisfies the following properties:

- $\delta \in ICB(A)$  and  $\|\delta\|_{cb} = \|\delta\|$ .
- $\delta$  vanishes on Z(A). In particular, commutative  $C^*$ -algebras do not admit non-zero derivations.

A derivation of an algebra A is a linear map  $\delta : A \to A$  satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all  $x, y \in A$ .

### **Basic properties of derivations of** C\*-algebras

Every derivation  $\delta$  of a  $C^*$ -algebra A satisfies the following properties:

- $\delta \in ICB(A)$  and  $\|\delta\|_{cb} = \|\delta\|$ .
- δ vanishes on Z(A). In particular, commutative C\*-algebras do not admit non-zero derivations.
- The second adjoint δ<sup>\*\*</sup>, defined on the von Neumann envelope A<sup>\*\*</sup>, is also a derivation (of A<sup>\*\*</sup>), so ||δ<sup>\*\*</sup>||<sub>cb</sub> = ||δ<sup>\*\*</sup>|| = ||δ||.

A derivation of an algebra A is a linear map  $\delta : A \to A$  satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all  $x, y \in A$ .

## **Basic properties of derivations of** C\*-algebras

Every derivation  $\delta$  of a C\*-algebra A satisfies the following properties:

- $\delta \in ICB(A)$  and  $\|\delta\|_{cb} = \|\delta\|$ .
- δ vanishes on Z(A). In particular, commutative C\*-algebras do not admit non-zero derivations.
- The second adjoint δ<sup>\*\*</sup>, defined on the von Neumann envelope A<sup>\*\*</sup>, is also a derivation (of A<sup>\*\*</sup>), so ||δ<sup>\*\*</sup>||<sub>cb</sub> = ||δ<sup>\*\*</sup>|| = ||δ||.

Each element  $a \in A$  induces an **inner derivation**  $\delta_a$  on A given by

$$\delta_a(x) := ax - xa$$
  $(x \in A).$ 

## Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_{\boldsymbol{a}}\| = 2\|\boldsymbol{a} - \lambda(\boldsymbol{a})\mathbf{1}\|.$$

# Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_a\| = 2\|a - \lambda(a)1\|.$$

#### Main problem

Which  $C^*$ -algebras admit only inner derivations?

# Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_{\boldsymbol{a}}\| = 2\|\boldsymbol{a} - \lambda(\boldsymbol{a})\mathbf{1}\|.$$

### Main problem

Which  $C^*$ -algebras admit only inner derivations?

Some classes of  $C^*$ -algebras which admit only inner derivations:

# Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_{\boldsymbol{a}}\| = 2\|\boldsymbol{a} - \lambda(\boldsymbol{a})\mathbf{1}\|.$$

#### Main problem

Which  $C^*$ -algebras admit only inner derivations?

# Some classes of $C^*$ -algebras which admit only inner derivations:

• von Neumann algebras (Kadison-Sakai, 1966).

In application to physics, innerness of derivations corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

### Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_{\boldsymbol{a}}\| = 2\|\boldsymbol{a} - \lambda(\boldsymbol{a})\mathbf{1}\|.$$

#### Main problem

Which  $C^*$ -algebras admit only inner derivations?

Some classes of  $C^*$ -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C\*-algebras (Sakai, 1968).

In application to physics, innerness of derivations corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

#### Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_{\boldsymbol{a}}\| = 2\|\boldsymbol{a} - \lambda(\boldsymbol{a})\mathbf{1}\|.$$

#### Main problem

Which  $C^*$ -algebras admit only inner derivations?

Some classes of  $C^*$ -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple  $C^*$ -algebras (Sakai, 1968).
- AW\*-algebras (Olesen, 1974).

In application to physics, innerness of derivations corresponds to the question whether the Hamiltonian of the system under consideration belongs to the algebraic model.

### Stampfli's formula, 1970

For each  $a \in A$  let  $\lambda(a)$  be the nearest scalar to a. If A is primitive, then

$$\|\delta_{\boldsymbol{a}}\| = 2\|\boldsymbol{a} - \lambda(\boldsymbol{a})\mathbf{1}\|.$$

#### Main problem

Which  $C^*$ -algebras admit only inner derivations?

### Some classes of $C^*$ -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple  $C^*$ -algebras (Sakai, 1968).
- AW\*-algebras (Olesen, 1974).
- homogeneous C\*-algebras (Sproston, 1976).

For separable  $C^*$ -algebras the problem of innerness of derivations was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable  $C^*$ -algebra A the following conditions are equivalent:

For separable  $C^*$ -algebras the problem of innerness of derivations was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable  $C^*$ -algebra A the following conditions are equivalent:

• A admits only inner derivations.

For separable  $C^*$ -algebras the problem of innerness of derivations was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable  $C^*$ -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C\*-subalgebras which are either homogeneous or simple.

For separable  $C^*$ -algebras the problem of innerness of derivations was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable  $C^*$ -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C\*-subalgebras which are either homogeneous or simple.
- The set of derivations of A is separable in the operator norm.

For separable  $C^*$ -algebras the problem of innerness of derivations was completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable  $C^*$ -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C\*-subalgebras which are either homogeneous or simple.
- The set of derivations of A is separable in the operator norm.

On the other hand, for inseparable  $C^*$ -algebras the main problem remains widely open, even for the simplest cases such as subhomogeneous  $C^*$ -algebras (i.e.  $C^*$ -algebras which have finite-dimensional irreducible representations of bounded degree).

• We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C\*-algebras A, however, it is natural to regard two-sided multiplication maps M<sub>a,b</sub> : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C\*-algebras A, however, it is natural to regard two-sided multiplication maps M<sub>a,b</sub> : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on *A*, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by **elementary operators**.

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C\*-algebras A, however, it is natural to regard two-sided multiplication maps M<sub>a,b</sub> : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on *A*, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by **elementary operators**.

By  $\mathcal{E}\ell(A)$  we denote the set of all elementary operators on A. It is easy to see that every elementary operator on A is completely bounded, with the following estimate for its cb-norm:

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i}a_{i}^{*}\right\|^{\frac{1}{2}} \left\|\sum_{i} b_{i}^{*}b_{i}\right\|^{\frac{1}{2}}$$

• Hence, if we endow the algebraic tensor product  $A\otimes A$  with the Haagerup norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

we obtain a well-defined contraction

$$(A \otimes A, \|\cdot\|_h) \to (\mathcal{E}\ell(A), \|\cdot\|_{cb}),$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

• Hence, if we endow the algebraic tensor product  $A \otimes A$  with the Haagerup norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

we obtain a well-defined contraction

$$(A \otimes A, \|\cdot\|_h) \to (\mathcal{E}\ell(A), \|\cdot\|_{cb}),$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

• Its continuous extension to the completed Haagerup tensor product  $A \otimes_h A$  is known as a **canonical contraction** from  $A \otimes_h A$  to ICB(A) and is denoted by  $\theta_A$ .

• Hence, if we endow the algebraic tensor product  $A \otimes A$  with the Haagerup norm

$$\|t\|_h := \inf \left\{ \left\| \sum_i a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_i b_i^* b_i \right\|^{\frac{1}{2}} : t = \sum_i a_i \otimes b_i \right\},\$$

we obtain a well-defined contraction

$$(A \otimes A, \|\cdot\|_h) \to (\mathcal{E}\ell(A), \|\cdot\|_{cb}),$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

- Its continuous extension to the completed Haagerup tensor product  $A \otimes_h A$  is known as a **canonical contraction** from  $A \otimes_h A$  to ICB(A) and is denoted by  $\theta_A$ .
- If A contains a pair of non-zero orthogonal ideals, then θ<sub>A</sub> cannot be injective. Hence, the necessary condition for the injectivity of θ<sub>A</sub> is that A must be a prime C<sup>\*</sup>-algebra.

Ilja Gogić (TCD)

## Theorem (Mathieu, 2003)

A is prime  $\iff \theta_A$  is injective  $\iff \theta_A$  is isometric.

#### Theorem (Mathieu, 2003)

A is prime  $\iff \theta_A$  is injective  $\iff \theta_A$  is isometric.

This result was first proved by Haagerup in 1980 when  $A = B(\mathcal{H})$ . Chatterjee and Sinclair in 1992 showed that  $\theta_A$  is isometric if A is a separably-acting von Neumann factor. Finally, Mathieu extended this result to all prime  $C^*$ -algebras.

## Theorem (Mathieu, 2003)

A is prime  $\iff \theta_A$  is injective  $\iff \theta_A$  is isometric.

This result was first proved by Haagerup in 1980 when  $A = B(\mathcal{H})$ . Chatterjee and Sinclair in 1992 showed that  $\theta_A$  is isometric if A is a separably-acting von Neumann factor. Finally, Mathieu extended this result to all prime  $C^*$ -algebras.

If A is a general C<sup>\*</sup>-algebra, then using the Mathieu's theorem we obtain the following formula for the cb-norm of  $\theta_A(t)$ :

$$\|\theta_A(t)\|_{cb} = \sup\{\|t^P\|_h : P \in Prim(A)\},\$$

where for each  $I \in Id(A)$  by  $t^{I}$  we denote the quotient image of t in  $(A \otimes_{h} A)/(I \otimes_{h} A + A \otimes_{h} I)$ , which is isometrically isomorphic to  $(A/I) \otimes_{h} (A/I)$  (a result due to Allen, Sinclair and Smith), so that  $||t^{I}|| = ||(q_{I} \otimes q_{I})(t)||_{h}$ .

Ilja Gogić (TCD)

If A has a non-trivial centre, one can consider the closed ideal  $J_A$  of  $A \otimes_h A$  generated by the tensors of the form  $az \otimes b - a \otimes zb$  $(a, b \in A, z \in Z(A))$  (note that  $J_A \subseteq \ker \theta_A$ ), the induced contraction  $\theta_A^Z$ :  $(A \otimes_h A)/J_A \to \operatorname{ICB}(A)$ , and ask when is  $\theta_A^Z$  is injective or isometric. If A has a non-trivial centre, one can consider the closed ideal  $J_A$  of  $A \otimes_h A$  generated by the tensors of the form  $az \otimes b - a \otimes zb$  $(a, b \in A, z \in Z(A))$  (note that  $J_A \subseteq \ker \theta_A$ ), the induced contraction  $\theta_A^Z$ :  $(A \otimes_h A)/J_A \to \operatorname{ICB}(A)$ , and ask when is  $\theta_A^Z$  is injective or isometric.

#### Definition

The Banach algebra  $(A \otimes_h A)/J_A$  with the quotient norm  $\|\cdot\|_{Z,h}$  is known as the **central Haagerup tensor product** of A, and is denoted by  $A \otimes_{Z,h} A$ .

If A has a non-trivial centre, one can consider the closed ideal  $J_A$  of  $A \otimes_h A$  generated by the tensors of the form  $az \otimes b - a \otimes zb$  $(a, b \in A, z \in Z(A))$  (note that  $J_A \subseteq \ker \theta_A$ ), the induced contraction  $\theta_A^Z$ :  $(A \otimes_h A)/J_A \to \operatorname{ICB}(A)$ , and ask when is  $\theta_A^Z$  is injective or isometric.

#### Definition

The Banach algebra  $(A \otimes_h A)/J_A$  with the quotient norm  $\|\cdot\|_{Z,h}$  is known as the **central Haagerup tensor product** of A, and is denoted by  $A \otimes_{Z,h} A$ .

## When is $\theta_A^Z$ isometric or injective?

• Chatterjee and Smith in 1993 first showed that  $\theta_A^Z$  is isometric if A is a von Neumann algebra or if Prim(A) is Hausdorff.

If A has a non-trivial centre, one can consider the closed ideal  $J_A$  of  $A \otimes_h A$  generated by the tensors of the form  $az \otimes b - a \otimes zb$  $(a, b \in A, z \in Z(A))$  (note that  $J_A \subseteq \ker \theta_A$ ), the induced contraction  $\theta_A^Z : (A \otimes_h A)/J_A \to \operatorname{ICB}(A)$ , and ask when is  $\theta_A^Z$  is injective or isometric.

#### Definition

The Banach algebra  $(A \otimes_h A)/J_A$  with the quotient norm  $\|\cdot\|_{Z,h}$  is known as the **central Haagerup tensor product** of A, and is denoted by  $A \otimes_{Z,h} A$ .

## When is $\theta_A^Z$ isometric or injective?

- Chatterjee and Smith in 1993 first showed that  $\theta_A^Z$  is isometric if A is a von Neumann algebra or if Prim(A) is Hausdorff.
- Ara and Mathieu in 1994 showed that  $\theta_A^Z$  is isometric if A is boundedly centrally closed.

If A has a non-trivial centre, one can consider the closed ideal  $J_A$  of  $A \otimes_h A$  generated by the tensors of the form  $az \otimes b - a \otimes zb$  $(a, b \in A, z \in Z(A))$  (note that  $J_A \subseteq \ker \theta_A$ ), the induced contraction  $\theta_A^Z : (A \otimes_h A)/J_A \to \operatorname{ICB}(A)$ , and ask when is  $\theta_A^Z$  is injective or isometric.

#### Definition

The Banach algebra  $(A \otimes_h A)/J_A$  with the quotient norm  $\|\cdot\|_{Z,h}$  is known as the **central Haagerup tensor product** of A, and is denoted by  $A \otimes_{Z,h} A$ .

## When is $\theta_A^Z$ isometric or injective?

- Chatterjee and Smith in 1993 first showed that  $\theta_A^Z$  is isometric if A is a von Neumann algebra or if Prim(A) is Hausdorff.
- Ara and Mathieu in 1994 showed that  $\theta_A^Z$  is isometric if A is boundedly centrally closed.
- A further generalization was obtained by Somerset in 1998:

# Theorem (Somerset, 1998)

# (a)

$$\|\theta_A(t)\|_{cb} = \sup\{\|t^Q\|_h : Q \in \operatorname{Primal}(A)\}$$

# Theorem (Somerset, 1998) (a) $\|\theta_A(t)\|_{t} = \sup\{\|t^Q\|_{t} : Q \in \operatorname{Primal}(A)\}$

$$\|\theta_A(t)\|_{cb} = \sup\{\|t^Q\|_h : Q \in \operatorname{Primal}(A)\}$$

(b)  $||t||_{Z,h} = \sup\{||t^G||_h : G \in \operatorname{Glimm}(A)\}$ . Hence,

 $J_{A} = \bigcap \{ G \otimes_{h} A + A \otimes_{h} G : G \in \operatorname{Glimm}(A) \}.$ 

# Theorem (Somerset, 1998) (a) $\|\theta_A(t)\|_{cb} = \sup\{\|t^Q\|_b : Q \in \operatorname{Primal}(A)\}.$

(b) 
$$||t||_{Z,h} = \sup\{||t^G||_h : G \in \operatorname{Glimm}(A)\}$$
. Hence,  
$$J_A = \bigcap\{G \otimes_h A + A \otimes_h G : G \in \operatorname{Glimm}(A)\}.$$

(c)  $Q \in Id(A)$  is 2-primal if and only if ker  $\theta_A \subseteq Q \otimes_h A + A \otimes_h Q$ , so

$$\ker \theta_A = \bigcap \{ Q \otimes_h A + A \otimes_h Q : Q \in \operatorname{Primal}_2(A) \}.$$

# Theorem (Somerset, 1998) (a) $\|\theta_A(t)\|_{cb} = \sup\{\|t^Q\|_h : Q \in \operatorname{Primal}(A)\}.$

(b) 
$$||t||_{Z,h} = \sup\{||t^G||_h : G \in \operatorname{Glimm}(A)\}$$
. Hence,  
$$J_A = \bigcap\{G \otimes_h A + A \otimes_h G : G \in \operatorname{Glimm}(A)\}.$$

(c)  $Q \in Id(A)$  is 2-primal if and only if ker  $\theta_A \subseteq Q \otimes_h A + A \otimes_h Q$ , so

$$\ker \theta_A = \bigcap \{ Q \otimes_h A + A \otimes_h Q : Q \in \operatorname{Primal}_2(A) \}.$$

In particular,  $\theta_A^Z$  is isometric if every Glimm ideal of A is primal and  $\theta_A^Z$  is injective if and only if every Glimm ideal of A is 2-primal.

Finally, Archbold, Somerset and Timoney proved in 2005 that the primality condition of Glimm ideals of A is also a necessary one for  $\theta_A^Z$  being isometric. In particular, the isometry problem of  $\theta_A^Z$  was completely solved in terms of the ideal structure of A:

Finally, Archbold, Somerset and Timoney proved in 2005 that the primality condition of Glimm ideals of A is also a necessary one for  $\theta_A^Z$  being isometric. In particular, the isometry problem of  $\theta_A^Z$  was completely solved in terms of the ideal structure of A:

Theorem (Archbold, Somerset and Timoney, 2005)

 $\theta_A^Z$  is isometric if and only if every Glimm ideal of A is primal.

#### Problem

Which derivations of a  $C^*$ -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure  $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ ?

#### Problem

Which derivations of a  $C^*$ -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure  $\overline{\overline{\mathcal{El}(A)}}^{cb}$ ?

### Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations and the set of all inner derivations of A.

#### Problem

Which derivations of a  $C^*$ -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure  $\overline{\overline{\mathcal{El}(A)}}^{cb}$ ?

#### Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations and the set of all inner derivations of A.

• Since each inner derivation is an elementary operator (of length 2) on  $A, \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$  includes the cb-corm closure of Inn(A).

Since the derivations of  $C^*$ -algebras preserve the ideals and are completely bounded, the approximation procedure by elementary operators in particular applies to derivations:

## Problem

Which derivations of a  $C^*$ -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure  $\overline{\overline{\mathcal{El}(A)}}^{cb}$ ?

# Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations and the set of all inner derivations of A.

- Since each inner derivation is an elementary operator (of length 2) on  $A, \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$  includes the cb-corm closure of Inn(A).
- Since the cb-norm of (inner) derivations coincides with their operator norm, the cb-norm closure of Inn(A) coincides with the operator norm closure of Inn(A). We denote this closure by Inn(A).

# Problem (G., 2013)

Does every  $C^*$ -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

# Problem (G., 2013)

Does every  $C^*$ -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

In many cases the set Inn(A) is closed in the operator norm. However, this is not always true.

# Problem (G., 2013)

Does every  $C^*$ -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

In many cases the set Inn(A) is closed in the operator norm. However, this is not always true.

In fact, we have the following beautiful characterization:

#### Theorem (Somerset, 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if and only if A has a finite connecting order.

The connecting order of a  $C^*$ -algebra is a constant in  $\mathbb{N} \cup \{\infty\}$  arising from a certain graph structure on the primitive spectrum Prim(A):

The connecting order of a  $C^*$ -algebra is a constant in  $\mathbb{N} \cup \{\infty\}$  arising from a certain graph structure on the primitive spectrum Prim(A):

• Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).

The connecting order of a  $C^*$ -algebra is a constant in  $\mathbb{N} \cup \{\infty\}$  arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points  $P = P_0, P_1, \ldots, P_n = Q$  such that  $P_{i-1}$  is adjacent to  $P_i$  for all  $1 \le i \le n$ .

The connecting order of a  $C^*$ -algebra is a constant in  $\mathbb{N} \cup \{\infty\}$  arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points  $P = P_0, P_1, \ldots, P_n = Q$  such that  $P_{i-1}$  is adjacent to  $P_i$  for all  $1 \le i \le n$ .
- The distance d(P, Q) from P to Q is defined as follows:
  - $\triangleright \ d(P,P) := 1.$
  - ▷ If  $P \neq Q$  and there exists a path from P to Q, then d(P, Q) is equal to the minimal length of a path from P to Q.
  - ▷ If there is no path from P to Q,  $d(P, Q) := \infty$ .

The connecting order of a  $C^*$ -algebra is a constant in  $\mathbb{N} \cup \{\infty\}$  arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points  $P = P_0, P_1, \ldots, P_n = Q$  such that  $P_{i-1}$  is adjacent to  $P_i$  for all  $1 \le i \le n$ .
- The distance d(P, Q) from P to Q is defined as follows:
  - $\triangleright \ d(P,P) := 1.$
  - ▷ If  $P \neq Q$  and there exists a path from P to Q, then d(P, Q) is equal to the minimal length of a path from P to Q.
  - ▷ If there is no path from P to Q,  $d(P,Q) := \infty$ .
- The connecting order Orc(A) of A is then defined by

 $\operatorname{Orc}(A) := \sup\{d(P,Q): P, Q \in \operatorname{Prim}(A) \text{ such that } d(P,Q) < \infty\}.$ 

# The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{Inn(A)}}$ holds true for all C\*-algebras A in which every Glimm ideal is prime.

The equality  $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{\overline{Inn}(A)}$  holds true for all C\*-algebras A in which every Glimm ideal is prime.

#### Proof

• Using Somerset's Theorem from 1998,  $\theta_A$  is isometric in our case, so

$$\overline{\overline{\mathcal{E}\ell}(A)}^{\,cb} = \operatorname{Im} \theta_A.$$

The equality  $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{Inn(A)}$  holds true for all C\*-algebras A in which every Glimm ideal is prime.

#### Proof

• Using Somerset's Theorem from 1998,  $\theta_A$  is isometric in our case, so

$$\overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \operatorname{Im} \theta_A.$$

Fix a derivation δ ∈ Der(A) ∩ Im θ<sub>A</sub> and choose a tensor t ∈ A ⊗<sub>h</sub> A such that δ = θ<sub>A</sub>(t).

The equality  $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{Inn(A)}$  holds true for all C\*-algebras A in which every Glimm ideal is prime.

## Proof

• Using Somerset's Theorem from 1998,  $\theta_A$  is isometric in our case, so

$$\overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \operatorname{Im} \theta_A.$$

- Fix a derivation δ ∈ Der(A) ∩ Im θ<sub>A</sub> and choose a tensor t ∈ A ⊗<sub>h</sub> A such that δ = θ<sub>A</sub>(t).
- First assume that A is prime. In this case, we can use Mathieu's Theorem to identify Im θ<sub>A</sub> with A ⊗<sub>h</sub> A and then work inside A ⊗<sub>h</sub> A. Using the Leibniz rule, appropriate decompositions of the tensors (due to R. Smith) and the partition of unity argument, it is not difficult to see that δ is inner in this (prime) case.

The next step is to show that the norm function G → ||δ<sub>G</sub>|| is upper semicontinuous on Glimm(A). To do this, we first fix some G ∈ Glimm(A). It is easy to see that the following diagram

$$\begin{array}{ccc} A \otimes_h A & \stackrel{\theta_A}{\longrightarrow} & \operatorname{ICB}(A) \\ & & & & \\ q_G \otimes q_G & & & \\ & & & & \\ (A/G) \otimes_h (A/G) & \stackrel{\theta_{A/G}}{\longrightarrow} & \operatorname{ICB}(A/G) \end{array}$$

commutes, where  $Q_G : ICB(A) \to ICB(A/G)$  is a map given by  $Q_G(\phi)(q_G(a)) = q_G(\phi(a)) \ (\phi \in ICB(A), a \in A)$ , so that

The next step is to show that the norm function G → ||δ<sub>G</sub>|| is upper semicontinuous on Glimm(A). To do this, we first fix some G ∈ Glimm(A). It is easy to see that the following diagram

$$\begin{array}{ccc} A \otimes_h A & \stackrel{\theta_A}{\longrightarrow} & \operatorname{ICB}(A) \\ & & & \\ q_G \otimes q_G & & & \\ & & & \\ (A/G) \otimes_h (A/G) & \stackrel{\theta_{A/G}}{\longrightarrow} & \operatorname{ICB}(A/G) \end{array}$$

commutes, where  $Q_G : ICB(A) \to ICB(A/G)$  is a map given by  $Q_G(\phi)(q_G(a)) = q_G(\phi(a)) \ (\phi \in ICB(A), a \in A)$ , so that

$$\begin{split} \|\delta_G\| &= \|\delta_G\|_{cb} = \|\theta_{A/G}((q_G \otimes q_G)(t))\|_{cb} = \|(q_G \otimes q_G)(t)\|_h \\ &= \|t^G\|_h. \end{split}$$

Here we used again the Mathieu's Theorem (A/G is prime by assumption).

Ilja Gogić (TCD)

Using the fact that the norm functions G → ||q<sub>G</sub>(a)|| (a ∈ A) are upper semicontinuous on Glimm(A), one can now show that the map G → ||t<sup>G</sup>||<sub>h</sub> is also upper semicontinuous on Glimm(A).

- Using the fact that the norm functions G → ||q<sub>G</sub>(a)|| (a ∈ A) are upper semicontinuous on Glimm(A), one can now show that the map G → ||t<sup>G</sup>||<sub>h</sub> is also upper semicontinuous on Glimm(A).
- The next step is to show that  $\delta$  can be approximated in the (cb-)norm by inner derivations. Indeed, let  $\varepsilon > 0$ . Since each Glimm quotient A/G is prime, by the first part of the proof, the upper semicontinuity of the norm function  $G \mapsto \|\delta_G\| = \|t^G\|_h$  and a simple compactness argument, we obtain a finite number of elements  $\{a_i\}$  and a finite open cover  $\{U_i\}$  of Glimm(A) such that  $\|(\delta_G - (\delta_{a_i})_G\| < \varepsilon$  for all  $G \in U_i$ . Choose a partition of unity  $\{f_i\}$  of Glimm(A) subordinated to the cover  $\{U_i\}$  and define  $a := \sum_i f_i a_i \in A$  (here we used the identification C(Glimm(A)) = Z(A)). Using the fact that Glimm ideals have zero intersection, it is easy to verify that  $\|\delta - \delta_a\| < \varepsilon$ .

- Using the fact that the norm functions G → ||q<sub>G</sub>(a)|| (a ∈ A) are upper semicontinuous on Glimm(A), one can now show that the map G → ||t<sup>G</sup>||<sub>h</sub> is also upper semicontinuous on Glimm(A).
- The next step is to show that  $\delta$  can be approximated in the (cb-)norm by inner derivations. Indeed, let  $\varepsilon > 0$ . Since each Glimm quotient A/G is prime, by the first part of the proof, the upper semicontinuity of the norm function  $G \mapsto \|\delta_G\| = \|t^G\|_h$  and a simple compactness argument, we obtain a finite number of elements  $\{a_i\}$  and a finite open cover  $\{U_i\}$  of Glimm(A) such that  $\|(\delta_G - (\delta_{a_i})_G\| < \varepsilon$  for all  $G \in U_i$ . Choose a partition of unity  $\{f_i\}$  of Glimm(A) subordinated to the cover  $\{U_i\}$  and define  $a := \sum_i f_i a_i \in A$  (here we used the identification C(Glimm(A)) = Z(A)). Using the fact that Glimm ideals have zero intersection, it is easy to verify that  $\|\delta - \delta_a\| < \varepsilon$ .
- By the Somerset's Theorem from 1993, Inn(A) is (cb-)closed in our case (since Orc(A) = 1), which completes the proof.

• Unfortunately, the presented proof cannot be generalized for some larger reasonable class of  $C^*$ -algebras (e.g. for those in which every Glimm ideal is primal). There are two main obstacles in the proof: The first one is that we do not know whether each Glimm quotient A/G admits only inner derivations lying in  $\operatorname{Im} \theta_{A/G}$ . The second one

is that for  $\delta \in \text{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ , the function  $G \mapsto \|\delta_G\|$  does not need be upper semicontinuous on Glimm(A), even if  $\delta$  is already inner.

• Unfortunately, the presented proof cannot be generalized for some larger reasonable class of  $C^*$ -algebras (e.g. for those in which every Glimm ideal is primal). There are two main obstacles in the proof: The first one is that we do not know whether each Glimm quotient A/G admits only inner derivations lying in  $\operatorname{Im} \theta_{A/G}$ . The second one

is that for  $\delta \in \text{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ , the function  $G \mapsto \|\delta_G\|$  does not need be upper semicontinuous on Glimm(A), even if  $\delta$  is already inner.

 Indeed, let A be a C\*-algebra consisting of all functions  $a \in C([0,1], M_2(\mathbb{C}))$  such that a(1) is a diagonal matrix. Then Glimm(A) is canonically homeomorphic to [0, 1] and let us denote this correspondence by  $x \leftrightarrow G(x)$ . Further, each Glimm ideal of A is primal. On the other hand, let a be an element of A defined by  $a(x) := e_{1,1}$  for all  $x \in [0,1]$  (where  $e_{1,1}$  is the matrix unit which has a non-zero entry 1 at (1, 1)-position) and let  $\delta := \delta_a$ . By Stampfli's formula we have  $\|\delta_{G(x)}\| = 1$  for all  $0 \le x < 1$  and  $\|\delta_{G(1)}\| = 0$  (since  $A/G(1) \cong \mathbb{C} \oplus \mathbb{C}$ ). Therefore, the function  $G \mapsto ||\delta_G||$  is not upper semicontinuous on [0, 1] = Glimm(A).

The class of  $C^*$ -algebras in which every Glimm ideal is prime is fairly large. It includes:

• Prime C\*-algebras.

- Prime C\*-algebras.
- C\*-algebras with Hausdorff primitive spectrum.

- Prime C\*-algebras.
- $C^*$ -algebras with Hausdorff primitive spectrum.
- Quotients of AW\*-algebras.

- Prime C\*-algebras.
- C\*-algebras with Hausdorff primitive spectrum.
- Quotients of AW\*-algebras.
- Local multiplier algebras.

The class of  $C^*$ -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C\*-algebras.
- C\*-algebras with Hausdorff primitive spectrum.
- Quotients of AW\*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a  $C^*$ -algebra A we mean every derivation on A which is also an elementary operator on A.

The class of  $C^*$ -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C\*-algebras.
- C\*-algebras with Hausdorff primitive spectrum.
- Quotients of AW\*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a  $C^*$ -algebra A we mean every derivation on A which is also an elementary operator on A.

#### Question

Does there exist a  $C^*$ -algebra A which admits an outer elementary derivation?

The class of  $C^*$ -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C\*-algebras.
- C\*-algebras with Hausdorff primitive spectrum.
- Quotients of AW\*-algebras.
- Local multiplier algebras.

By an **elementary derivation** on a  $C^*$ -algebra A we mean every derivation on A which is also an elementary operator on A.

#### Question

Does there exist a  $C^*$ -algebra A which admits an outer elementary derivation?

Motivated by our previous discussion, it is natural to start looking for possible examples in the class of  $C^*$ -algebras with  $Orc(A) = \infty$ .

Let A be a C\*-algebra consisting of all elements  $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$  such that

$$a(n) = \left[ egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array} 
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence  $(\lambda_n(a))$  of complex numbers. Then:

Let A be a C\*-algebra consisting of all elements  $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$  such that

$$a(n) = \left[ egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array} 
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence  $(\lambda_n(a))$  of complex numbers. Then:

•  $d(\ker \lambda_1, \ker \lambda_n) = n$  for all  $n \in \mathbb{N}$ . In particular,  $\operatorname{Orc}(A) = \infty$ .

Let A be a C\*-algebra consisting of all elements  $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$  such that

$$a(n) = \left[ egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array} 
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence  $(\lambda_n(a))$  of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$  for all  $n \in \mathbb{N}$ . In particular,  $Orc(A) = \infty$ .
- $\mathcal{E}\ell(A)$  is closed in the cb-norm.

Let A be a C\*-algebra consisting of all elements  $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$  such that

$$a(n) = \left[ egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array} 
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence  $(\lambda_n(a))$  of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$  for all  $n \in \mathbb{N}$ . In particular,  $\operatorname{Orc}(A) = \infty$ .
- $\mathcal{E}\ell(A)$  is closed in the cb-norm.

In particular, A admits outer elementary derivations.

Let A be a C\*-algebra consisting of all elements  $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$  such that

$$a(n) = \left[ egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array} 
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence  $(\lambda_n(a))$  of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$  for all  $n \in \mathbb{N}$ . In particular,  $\operatorname{Orc}(A) = \infty$ .
- $\mathcal{E}\ell(A)$  is closed in the cb-norm.

In particular, A admits outer elementary derivations.

More recently, R. Timoney showed that the above  $C^*$ -algebra A admits outer derivations  $\delta$  of the form  $\delta = M_{a,b} - M_{b,a}$  for some  $a, b \in A$ . In particular A has outer elementary derivations of length 2. Further, this  $C^*$ -algebra satisfies  $\overline{\overline{\mathrm{Inn}(A)}} = \mathrm{Der}(A) \cap \mathcal{E}\ell(A)$ .

#### Problem

What can be said about the lengths of outer elementary derivations? In particular, can we for each  $n \ge 2$  find a  $C^*$ -algebra A which admits an (outer) elementary derivation of length n?

#### Problem

What can be said about the lengths of outer elementary derivations? In particular, can we for each  $n \ge 2$  find a  $C^*$ -algebra A which admits an (outer) elementary derivation of length n?

# Problem

Does every unital  $C^*$ -algebra A with  $Orc(A) = \infty$  admit an outer elementary derivation?

#### Problem

What can be said about the lengths of outer elementary derivations? In particular, can we for each  $n \ge 2$  find a  $C^*$ -algebra A which admits an (outer) elementary derivation of length n?

## Problem

Does every unital  $C^*$ -algebra A with  $Orc(A) = \infty$  admit an outer elementary derivation?

# Problem

When do we have  $\overline{\mathrm{Inn}(A)} \subseteq \mathcal{E}\ell(A)$ ?

#### Problem

What can be said about the lengths of outer elementary derivations? In particular, can we for each  $n \ge 2$  find a  $C^*$ -algebra A which admits an (outer) elementary derivation of length n?

## Problem

Does every unital  $C^*$ -algebra A with  $Orc(A) = \infty$  admit an outer elementary derivation?

## Problem

When do we have  $\overline{\mathrm{Inn}(A)} \subseteq \mathcal{E}\ell(A)$ ?

## Problem

What can be said about  $Der(A) \cap \overline{\mathcal{E}\ell(A)}$ ?