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Throughout this talk A will be a unital C ∗-algebra with centre Z (A).

By an ideal of A we always mean a closed two-sided ideal of A. We
denote by Id(A) the set of all ideals of A. For each I ∈ Id(A), qI will
denote the quotient map A→ A/I .
An ideal P of A is said to be primitive if P is the kernel of some
irreducible representation of A.
The primitive spectrum of A, which we denote by Prim(A), is the
set of all primitive ideals of A equipped with the Jacobson topology.
Hence, if S is some set of primitive ideals, its closure is

S =

{
P ∈ Prim(A) : P ⊇

⋂
Q∈S

Q

}
.

Prim(A) is a compact space which in general satisfies only
T0-separation axiom.
Dauns-Hofmann Theorem (1968): There is a ∗-isomorphism ΦA

from C (Prim(A)) onto Z (A) such that

qP(ΦA(f )a) = f (P)qP(a)

for all f ∈ C (Prim(A)), a ∈ A and P ∈ Prim(A).
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Glimm ideals of A are the ideals of A generated by the maximal
ideals of Z (A). By the Hewitt-Cohen Factorization Theorem, each
Glimm ideal of A is of the form mA for some maximal ideal m of
Z (A). We denote the set of all Glimm ideals of A by Glimm(A).

Since the sum of two maximal ideals of Z (A) contains the identity, it
follows that the Glimm ideals of A are in one-to-one correspondence
with the maximal ideals of Z (A). Hence, we may equip Glimm(A)
with the topology from the maximal ideal space of Z (A) so that
Glimm(A) becomes a compact Hausdorff space, homeomorphic to
the maximal ideal space of Z (A).

In particular, we can identify Z (A) with the C ∗-algebra
C (Glimm(A)).

Each primitive ideal of A intersects Z (A) in a maximal ideal, and
therefore contains a (unique) Glimm ideal of A. In particular, Glimm
ideals of A have zero intersection.

For each a ∈ A the norm-function G 7→ ‖qG (a)‖ is upper
semicontinuous on Glimm(A).
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An ideal Q of A is said to be n-primal (n ≥ 2) if whenever I1, . . . , In
are ideals of A with I1 · · · In = {0}, then at least one Ii is contained in
Q.

An ideal Q of A is said to be primal if Q is n-primal for all n ≥ 2.

By Primaln(A), resp. Primal(A), we denote the set of all n-primal,
resp. all primal ideals of A.

It is not difficult to see that every 2-primal ideal contains a unique
Glimm ideal.

Also, one can show that an ideal Q of A is n-primal if and only if for
all P1, . . . ,Pn ∈ Prim(A/Q) there exists a net in Prim(A) which
converges simultaneously to each P1, . . . ,Pn.

In particular, Prim(A) is Hausdorff if and only if

Glimm(A) = Primal2(A) \ {A} = Prim(A).
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A linear map φ : A→ A is said to be completely bounded if

‖φ‖cb := sup
n∈N
‖φn‖ <∞,

where φn : Mn(A)→ Mn(A) denotes the induced map,

φn([ai ,j ]) := [φ(ai ,j)] ([ai ,j ] ∈ Mn(A)).

By IB(A) (resp. ICB(A)) we denote the set of all bounded (resp.
completely bounded) maps on A that preserve the ideals of A (i.e.
φ(I ) ⊆ I for all I ∈ Id(A)).

Eery φ ∈ IB(A) is Z (A)-(bi)modular. If S is any subset of Id(A) with
zero intersection, then the norm of φ can be recovered via the formula

‖φ‖ = sup{‖φI‖ : I ∈ S},

where for each I ∈ Id(A), φI : A/I → A/I denotes the induced map
qI (a) 7→ qI (φ(a)).

The analogues formula is valid for the cb-norm of maps in ICB(A).
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C ∗-algebraic formulation of Quantum Mechanics

In quantum mechanics a physical system is typically described via a unital
C ∗-algebra A.

The self-adjoint elements of A are thought of as the observables;
they are the measurable quantities of the system.

A state of the system is defined as a positive functional on A (i.e. a
linear map ω : A→ C such that ω(a∗a) ≥ 0 for all a ∈ A) with
ω(1A) = 1. If the system is in the state ω, then ω(a) is the expected
value of the observable a.

Automorphisms correspond to the symmetries, while one-parameter
automorphism groups {Φt}t∈R describe the reversible time evolution
of the system (in the Heisenberg picture). Their infinitesimal
generators

δ(x) := lim
t→0

1

t
(Φt(x)− x)

are the (∗-)derivations.
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Definition

A derivation of an algebra A is a linear map δ : A→ A satisfying the
Leibniz rule

δ(xy) = δ(x)y + xδ(y) for all x , y ∈ A.

Basic properties of derivations of C ∗-algebras

Every derivation δ of a C ∗-algebra A satisfies the following properties:

δ ∈ ICB(A) and ‖δ‖cb = ‖δ‖.
δ vanishes on Z (A). In particular, commutative C ∗-algebras do not
admit non-zero derivations.

The second adjoint δ∗∗, defined on the von Neumann envelope A∗∗, is
also a derivation (of A∗∗), so ‖δ∗∗‖cb = ‖δ∗∗‖ = ‖δ‖.

Each element a ∈ A induces an inner derivation δa on A given by

δa(x) := ax − xa (x ∈ A).
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In application to physics, innerness of derivations corresponds to the
question whether the Hamiltonian of the system under consideration
belongs to the algebraic model.

Stampfli’s formula, 1970

For each a ∈ A let λ(a) be the nearest scalar to a. If A is primitive, then

‖δa‖ = 2‖a− λ(a)1‖.

Main problem

Which C ∗-algebras admit only inner derivations?

Some classes of C ∗-algebras which admit only inner derivations:

von Neumann algebras (Kadison-Sakai, 1966).

simple C ∗-algebras (Sakai, 1968).

AW ∗-algebras (Olesen, 1974).

homogeneous C ∗-algebras (Sproston, 1976).
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In particular, by the Kadison-Sakai Theorem, every derivation of A
becomes inner in A∗∗.

For separable C ∗-algebras the problem of innerness of derivations was
completely solved back in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

For a separable C ∗-algebra A the following conditions are equivalent:

A admits only inner derivations.

A is a direct sum of a finite number of C ∗-subalgebras which are
either homogeneous or simple.

The set of derivations of A is separable in the operator norm.

On the other hand, for inseparable C ∗-algebras the main problem remains
widely open, even for the simplest cases such as subhomogeneous
C ∗-algebras (i.e. C ∗-algebras which have finite-dimensional irreducible
representations of bounded degree).
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Motivation

We often try to understand the structure of operators and spaces on
which they act in terms of approximation by finite rank maps.

On C ∗-algebras A, however, it is natural to regard two-sided
multiplication maps Ma,b : x 7→ axb (a, b ∈ A) as basic building
blocks (instead of rank one operators).

We can therefore try to approximate a more general map on A, one
that preserves ideals, by finite sums of two-sided multiplication maps,
that is, by elementary operators.

By E`(A) we denote the set of all elementary operators on A. It is easy to
see that every elementary operator on A is completely bounded, with the
following estimate for its cb-norm:∥∥∥∥∥∑

i

Mai ,bi

∥∥∥∥∥
cb

≤

∥∥∥∥∥∑
i

aia
∗
i

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1
2

.
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Hence, if we endow the algebraic tensor product A⊗ A with the
Haagerup norm

‖t‖h := inf


∥∥∥∥∥∑

i

aia
∗
i

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1
2

: t =
∑
i

ai ⊗ bi

 ,

we obtain a well-defined contraction

(A⊗ A, ‖ · ‖h)→ (E`(A), ‖ · ‖cb),

given by ∑
i

ai ⊗ bi 7→
∑
i

Mai ,bi .

Its continuous extension to the completed Haagerup tensor product
A⊗h A is known as a canonical contraction from A⊗h A to ICB(A)
and is denoted by θA.

If A contains a pair of non-zero orthogonal ideals, then θA cannot be
injective. Hence, the necessary condition for the injectivity of θA is
that A must be a prime C ∗-algebra.
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In fact, we have the following equivalences:

Theorem (Mathieu, 2003)

A is prime ⇐⇒ θA is injective ⇐⇒ θA is isometric.

This result was first proved by Haagerup in 1980 when A = B(H).
Chatterjee and Sinclair in 1992 showed that θA is isometric if A is a
separably-acting von Neumann factor. Finally, Mathieu extended this
result to all prime C ∗-algebras.

If A is a general C ∗-algebra, then using the Mathieu’s theorem we obtain
the following formula for the cb-norm of θA(t):

‖θA(t)‖cb = sup{‖tP‖h : P ∈ Prim(A)},

where for each I ∈ Id(A) by t I we denote the quotient image of t in
(A⊗h A)/(I ⊗h A + A⊗h I ), which is isometrically isomorphic to
(A/I )⊗h (A/I ) (a result due to Allen, Sinclair and Smith), so that
‖t I‖ = ‖(qI ⊗ qI )(t)‖h.
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If A has a non-trivial centre, one can consider the closed ideal JA of
A⊗h A generated by the tensors of the form az ⊗ b − a⊗ zb
(a, b ∈ A, z ∈ Z (A)) (note that JA ⊆ ker θA), the induced contraction
θZA : (A⊗h A)/JA → ICB(A), and ask when is θZA is injective or isometric.

Definition

The Banach algebra (A⊗h A)/JA with the quotient norm ‖ · ‖Z ,h is known
as the central Haagerup tensor product of A, and is denoted by
A⊗Z ,h A.

When is θZA isometric or injective?

Chatterjee and Smith in 1993 first showed that θZA is isometric if A is
a von Neumann algebra or if Prim(A) is Hausdorff.

Ara and Mathieu in 1994 showed that θZA is isometric if A is
boundedly centrally closed.

A further generalization was obtained by Somerset in 1998:
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Theorem (Somerset, 1998)

(a)
‖θA(t)‖cb = sup{‖tQ‖h : Q ∈ Primal(A)}.

(b) ‖t‖Z ,h = sup{‖tG‖h : G ∈ Glimm(A)}. Hence,

JA =
⋂
{G ⊗h A + A⊗h G : G ∈ Glimm(A)}.

(c) Q ∈ Id(A) is 2-primal if and only if ker θA ⊆ Q ⊗h A + A⊗h Q, so

ker θA =
⋂
{Q ⊗h A + A⊗h Q : Q ∈ Primal2(A)}.

In particular, θZA is isometric if every Glimm ideal of A is primal and θZA is
injective if and only if every Glimm ideal of A is 2-primal.
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Finally, Archbold, Somerset and Timoney proved in 2005 that the
primality condition of Glimm ideals of A is also a necessary one for θZA
being isometric. In particular, the isometry problem of θZA was completely
solved in terms of the ideal structure of A:

Theorem (Archbold, Somerset and Timoney, 2005)

θZA is isometric if and only if every Glimm ideal of A is primal.
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Ilja Gogić (TCD) Derivations and elem. operators Glasgow, 3rd March 2015 15 / 25



Since the derivations of C ∗-algebras preserve the ideals and are completely
bounded, the approximation procedure by elementary operators in
particular applies to derivations:

Problem

Which derivations of a C ∗-algebra A admit a completely bounded
approximation by elementary operators? That is, which derivations of A lie

in the cb-norm closure E`(A)
cb

?

Remark

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations
and the set of all inner derivations of A.

Since each inner derivation is an elementary operator (of length 2) on

A, E`(A)
cb

includes the cb-corm closure of Inn(A).

Since the cb-norm of (inner) derivations coincides with their operator
norm, the cb-norm closure of Inn(A) coincides with the operator

norm closure of Inn(A). We denote this closure by Inn(A).
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Problem (G., 2013)

Does every C ∗-algebra satisfy the condition

Der(A) ∩ E`(A)
cb

= Inn(A)?

In many cases the set Inn(A) is closed in the operator norm. However, this
is not always true.

In fact, we have the following beautiful characterization:

Theorem (Somerset, 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if
and only if A has a finite connecting order.
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Connecting order of a C ∗-algebra

The connecting order of a C ∗-algebra is a constant in N ∪ {∞} arising
from a certain graph structure on the primitive spectrum Prim(A):

Two primitive ideals P,Q of A are said to be adjacent, if P and Q
cannot be separated by disjoint open subsets of Prim(A).

A path of length n from P to Q is a sequence of points
P = P0,P1, . . . ,Pn = Q such that Pi−1 is adjacent to Pi for all
1 ≤ i ≤ n.

The distance d(P,Q) from P to Q is defined as follows:

. d(P,P) := 1.

. If P 6= Q and there exists a path from P to Q, then d(P,Q) is equal
to the minimal length of a path from P to Q.

. If there is no path from P to Q, d(P,Q) :=∞.

The connecting order Orc(A) of A is then defined by

Orc(A) := sup{d(P,Q) : P,Q ∈ Prim(A) such that d(P,Q) <∞}.
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Theorem (G., 2013)

The equality Der(A) ∩ E`(A)
cb

= Inn(A) holds true for all C ∗-algebras A
in which every Glimm ideal is prime.

Proof

Using Somerset’s Theorem from 1998, θA is isometric in our case, so

E`(A)
cb

= Im θA.

Fix a derivation δ ∈ Der(A) ∩ Im θA and choose a tensor t ∈ A⊗h A
such that δ = θA(t).

First assume that A is prime. In this case, we can use Mathieu’s
Theorem to identify Im θA with A⊗h A and then work inside A⊗h A.
Using the Leibniz rule, appropriate decompositions of the tensors (due
to R. Smith) and the partition of unity argument, it is not difficult to
see that δ is inner in this (prime) case.
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Proof (continuation)

The next step is to show that the norm function G 7→ ‖δG‖ is upper
semicontinuous on Glimm(A). To do this, we first fix some
G ∈ Glimm(A). It is easy to see that the following diagram

A⊗h A
θA−−−−→ ICB(A)

qG⊗qG
y QG

y
(A/G )⊗h (A/G )

θA/G−−−−→ ICB(A/G )

commutes, where QG : ICB(A)→ ICB(A/G ) is a map given by
QG (φ)(qG (a)) = qG (φ(a)) (φ ∈ ICB(A), a ∈ A), so that

‖δG‖ = ‖δG‖cb = ‖θA/G ((qG ⊗ qG )(t))‖cb = ‖(qG ⊗ qG )(t)‖h
= ‖tG‖h.

Here we used again the Mathieu’s Theorem (A/G is prime by
assumption).
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Proof (continuation)

Using the fact that the norm functions G 7→ ‖qG (a)‖ (a ∈ A) are
upper semicontinuous on Glimm(A), one can now show that the map
G 7→ ‖tG‖h is also upper semicontinuous on Glimm(A).

The next step is to show that δ can be approximated in the (cb-)norm
by inner derivations. Indeed, let ε > 0. Since each Glimm quotient
A/G is prime, by the first part of the proof, the upper semicontinuity
of the norm function G 7→ ‖δG‖ = ‖tG‖h and a simple compactness
argument, we obtain a finite number of elements {ai} and a finite
open cover {Ui} of Glimm(A) such that ‖(δG − (δai )G‖ < ε for all
G ∈ Ui . Choose a partition of unity {fi} of Glimm(A) subordinated
to the cover {Ui} and define a :=

∑
i fiai ∈ A (here we used the

identification C (Glimm(A)) = Z (A)). Using the fact that Glimm
ideals have zero intersection, it is easy to verify that ‖δ − δa‖ < ε.

By the Somerset’s Theorem from 1993, Inn(A) is (cb-)closed in our
case (since Orc(A) = 1), which completes the proof.
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ideals have zero intersection, it is easy to verify that ‖δ − δa‖ < ε.

By the Somerset’s Theorem from 1993, Inn(A) is (cb-)closed in our
case (since Orc(A) = 1), which completes the proof.
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Unfortunately, the presented proof cannot be generalized for some
larger reasonable class of C ∗-algebras (e.g. for those in which every
Glimm ideal is primal). There are two main obstacles in the proof:
The first one is that we do not know whether each Glimm quotient
A/G admits only inner derivations lying in Im θA/G . The second one

is that for δ ∈ Der(A) ∩ E`(A)
cb

, the function G 7→ ‖δG‖ does not
need be upper semicontinuous on Glimm(A), even if δ is already inner.

Indeed, let A be a C ∗-algebra consisting of all functions
a ∈ C ([0, 1],M2(C)) such that a(1) is a diagonal matrix. Then
Glimm(A) is canonically homeomorphic to [0, 1] and let us denote this
correspondence by x ↔ G (x). Further, each Glimm ideal of A is
primal. On the other hand, let a be an element of A defined by
a(x) := e1,1 for all x ∈ [0, 1] (where e1,1 is the matrix unit which has
a non-zero entry 1 at (1, 1)-position) and let δ := δa. By Stampfli’s
formula we have ‖δG(x)‖ = 1 for all 0 ≤ x < 1 and ‖δG(1)‖ = 0 (since
A/G (1) ∼= C⊕ C). Therefore, the function G 7→ ‖δG‖ is not upper
semicontinuous on [0, 1] = Glimm(A).
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Remark

The class of C ∗-algebras in which every Glimm ideal is prime is fairly large.
It includes:

Prime C ∗-algebras.

C ∗-algebras with Hausdorff primitive spectrum.

Quotients of AW ∗-algebras.

Local multiplier algebras.

By an elementary derivation on a C ∗-algebra A we mean every
derivation on A which is also an elementary operator on A.

Question

Does there exist a C ∗-algebra A which admits an outer elementary
derivation?

Motivated by our previous discussion, it is natural to start looking for
possible examples in the class of C ∗-algebras with Orc(A) =∞.
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Example (G., 2010)

Let A be a C ∗-algebra consisting of all elements a ∈ C ([0,∞],M2(C))
such that

a(n) =

[
λn(a) 0

0 λn+1(a)

]
(n ∈ N),

for some convergent sequence (λn(a)) of complex numbers. Then:

d(ker λ1, ker λn) = n for all n ∈ N. In particular, Orc(A) =∞.

E`(A) is closed in the cb-norm.

In particular, A admits outer elementary derivations.

More recently, R. Timoney showed that the above C ∗-algebra A admits
outer derivations δ of the form δ = Ma,b −Mb,a for some a, b ∈ A. In
particular A has outer elementary derivations of length 2. Further, this

C ∗-algebra satisfies Inn(A) = Der(A) ∩ E`(A).
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I end this lecture with some problems of current interest:

Problem

What can be said about the lengths of outer elementary derivations? In
particular, can we for each n ≥ 2 find a C ∗-algebra A which admits an
(outer) elementary derivation of length n?

Problem

Does every unital C ∗-algebra A with Orc(A) =∞ admit an outer
elementary derivation?

Problem

When do we have Inn(A) ⊆ E`(A)?

Problem

What can be said about Der(A) ∩ E`(A)?
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Ilja Gogić (TCD) Derivations and elem. operators Glasgow, 3rd March 2015 25 / 25


	Preliminaries
	Derivations of C*-algebras
	Canonical contraction a : A h A ICB(A)
	CB-norm approximation of derivations by elementary operators

