On automorphisms, derivations and elementary operators of *C**-algebras

Ilja Gogić

University of Zagreb

Great Plains Operator Theory Symposium (online) Washington University in St. Louis May 10-14, 2021 Throughout, A will be a C^* -algebra.

As usual, by M(A) we denote the **multiplier algebra** of A, i.e.

$$M(A) = \{ x \in A^{**} : ax \in A \text{ and } xa \in A \text{ for all } a \in A \}.$$

Throughout, A will be a C^* -algebra.

As usual, by M(A) we denote the **multiplier algebra** of A, i.e.

$$M(A) = \{ x \in A^{**} : ax \in A \text{ and } xa \in A \text{ for all } a \in A \}.$$

Definition

Derivation of A is a linear map $d : A \rightarrow A$ satisfying the Leibniz rule

$$d(xy) = d(x)y + xd(y)$$

for all $x, y \in A$.

As usual, by M(A) we denote the **multiplier algebra** of A, i.e.

$$M(A) = \{ x \in A^{**} : ax \in A \text{ and } xa \in A \text{ for all } a \in A \}.$$

Definition

Derivation of A is a linear map $d : A \rightarrow A$ satisfying the Leibniz rule

$$d(xy) = d(x)y + xd(y)$$

for all $x, y \in A$.

If there exists a multiplier $a \in M(A)$ such that d(x) = ax - xa for all $x \in A$, d is said to be an **inner derivation**. Otherwise, d is said to be an **outer derivation**.

The class of C^* -algebras which admit only inner derivations include:

• von Neumann algebras (Kadison-Sakai 1966);

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
- homogeneous C*-algebras (Sproston 1976 unital case; G. 2013 extension to the non-unital case).

The class of C^* -algebras which admit only inner derivations include:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
- homogeneous C*-algebras (Sproston 1976 unital case; G. 2013 extension to the non-unital case).

For separable C^* -algebras the problem was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C*-algebra. TFAE:

(i) A admits only inner derivations.

(ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C*-algebra, and A_2 is a direct sum of simple C*-algebras.

The class of C^* -algebras which admit only inner derivations include:

- von Neumann algebras (Kadison-Sakai 1966);
- simple C*-algebras (Sakai 1968);
- AW*-algebras (Olesen 1974);
- homogeneous C*-algebras (Sproston 1976 unital case; G. 2013 extension to the non-unital case).

For separable C^* -algebras the problem was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

Let A be a separable C*-algebra. TFAE:

(i) A admits only inner derivations.

(ii) $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^* -algebra, and A_2 is a direct sum of simple C^* -algebras.

For inseparable C^* -algebras the problem of innerness of derivations remains widely open, even for the simplest cases such as subhomogeneous C^* -algebras.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\to \infty} \{ M(I) : I \in \mathrm{Id}_{ess}(A) \}.$$

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\to \infty} \{ M(I) : I \in \mathrm{Id}_{ess}(A) \}.$$

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$.

If I and J are two essential ideals of A such that $J \subseteq I$, then there is an embedding $M(I) \hookrightarrow M(J)$.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{\longrightarrow} \{M(I) : I \in \mathrm{Id}_{ess}(A)\}.$$

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$.

Example

If A is an AW^* -algebra, then $M_{loc}(A) = A$.

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation of a C^* -algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ -unital), this extension becomes inner in $M_{loc}(A)$.

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

The concept of the local multiplier algebra was introduced by Pedersen in 1978 (he called it the " C^* -algebra of essential multipliers").

Theorem (Pedersen 1978)

Every derivation of a C^{*}-algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$. Moreover, if A is separable (or more generally, if every essential closed ideal of A is σ -unital), this extension becomes inner in $M_{loc}(A)$.

In particular, Pedersen's result implies Sakai's theorem that every derivation of a simple unital C^* -algebra is inner.

This led Pedersen to ask:

This led Pedersen to ask:

Problem of innerness of derivations of $M_{loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

• Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

- Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

It is known that $M_{loc}(A)$ has only inner derivations for:

- Simple C*-algebras and AW*-algebras (Kadison, Sakai, Olesen);
- quasi-central separable C*-algebras such that Prim(A) contains a dense G_δ subset consisting of closed points (Somerset 2000, Ara-Mathieu 2011);
- C^* -algebras with finite-dimensional irreducible representations; in this case $M_{loc}(A)$ coincides with the injective envelope of A (G. 2013).

The cb-norm approximation by elementary operators

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathsf{a}_{i},\mathsf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$.

The cb-norm approximation by elementary operators

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are **completely bounded** (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

The cb-norm approximation by elementary operators

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$. In fact, elementary operators are **completely bounded** (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$, i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

Let us denote by $\mathcal{E}\ell(A)$ the set of all elementary operators on A and by $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ its cb-norm closure.

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Since all derivations and *-automorphisms of C^* -algebras A are completely bounded, the above question in particular applies to those class of maps.

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Since all derivations and *-automorphisms of C^* -algebras A are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation d of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if d is an inner derivation.

Question

Which completely bounded operators $\phi : A \to A$ admit a cb-norm approximation by elementary operators, i.e. when do we have $\phi \in \overline{\overline{\mathcal{E}\ell(A)}}_{cb}$?

Since all derivations and *-automorphisms of C^* -algebras A are completely bounded, the above question in particular applies to those class of maps.

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation d of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if d is an inner derivation.

The **Glimm ideals** of A are the ideals of A generated by the maximal ideals of Z(A).

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^* -algebra A, every derivation of $M_{loc}(A)$ lies in $\overline{\mathcal{E}\ell(M_{loc}(A))}_{cb}$.

The class of C^* -algebras whose every Glimm ideal is prime includes:

- prime C*-algebras;
- C*-algebras with Hausdorff primitive spectrum;
- quotients of AW*-algebras;
- local multiplier algebras.

Corollary

The Pederesen's problem has a positive solution if and only if for each C^* -algebra A, every derivation of $M_{\text{loc}}(A)$ lies in $\overline{\overline{\mathcal{E}\ell(M_{\text{loc}}(A))}}_{cb}$.

For prime C^* -algebras we also established the following result:

Theorem (G. 2019)

If A is a prime C^{*}-algebra then an (algebra) epimorphism $\sigma : A \to A$ lies in $\overline{\overline{\mathcal{E\ell}(A)}}_{cb}$ if and only if σ is an (algebra) inner automorphism of A.

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

On the other hand:

Proposition

Let A be a separable n-homogeneous C^* -algebra whose primitive spectrum X is locally contractable. Then every Z(M(A))-linear automorphism of A becomes inner when extended to $M_{loc}(A)$.

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

On the other hand:

Proposition

Let A be a separable n-homogeneous C^* -algebra whose primitive spectrum X is locally contractable. Then every Z(M(A))-linear automorphism of A becomes inner when extended to $M_{loc}(A)$.

In particular, all (outer) elementary automorphisms of $A_n = C(PU(n), \mathbb{M}_n)$ become inner in $M_{loc}(A_n)$.

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators: Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ that consists of all $a \in B$ such that If

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \qquad (n \in \mathbb{N}).$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $d = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ that consists of all $a \in B$ such that If

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \qquad (n \in \mathbb{N}).$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $d = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Problem

Does every automorphism of a C^* -algebra A that is also an elementary operator become inner when extended to $M_{loc}(A)$?