CB-norm approximation of derivations by elementary operators

Ilja Gogić

GPOTS 2015, Purude University West Lafayette, IN, USA May 26–30, 2015

(joint work in progress with Richard M. Timoney)

Throughout this talk, A will be a unital C^* -algebra.

Definition

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

Throughout this talk, A will be a unital C^* -algebra.

Definition

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

Basic properties of derivations on C*-algebras

All derivations δ satisfy the following properties:

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

Basic properties of derivations on *C**-algebras

All derivations δ satisfy the following properties:

They are completely bounded and their cb-norm coincides with their operator norm (i.e. ||δ||_{cb} = ||δ||).

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

Basic properties of derivations on C*-algebras

All derivations δ satisfy the following properties:

- They are completely bounded and their cb-norm coincides with their operator norm (i.e. ||δ||_{cb} = ||δ||).
- They preserve the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for all ideals I of A).

A derivation on A is a linear map $\delta : A \rightarrow A$ satisfying the Leibniz rule

 $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$.

Basic properties of derivations on C*-algebras

All derivations δ satisfy the following properties:

- They are completely bounded and their cb-norm coincides with their operator norm (i.e. ||δ||_{cb} = ||δ||).
- They preserve the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for all ideals I of A).
- They annihilate the centre of an underlying algebra. In particular, commutative *C**-algebras don't admit non-zero derivations.

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Main problem

Which C^* -algebras admit only inner derivations?

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C*-algebras which admit only inner derivations:

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

• von Neumann algebras (Kadison-Sakai 1966)

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966)
- simple C*-algebras (Sakai 1968)

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966)
- simple C*-algebras (Sakai 1968)
- AW*-algebras (Olesen 1974)

Each element $a \in A$ induces an **inner derivation** δ_a on A given by

$$\delta_a(x) := ax - xa$$
 $(x \in A).$

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai 1966)
- simple C*-algebras (Sakai 1968)
- AW*-algebras (Olesen 1974)
- homogeneous C*-algebras (Sproston 1976)

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

For a separable C^* -algebra A the following conditions are equivalent:

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

For a separable C^* -algebra A the following conditions are equivalent:

• A admits only inner derivations.

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

For a separable C^* -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C*-subalgebras which are either homogeneous or simple;

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

For a separable C^* -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C*-subalgebras which are either homogeneous or simple;
- Der(A) is separable in the operator norm.

Theorem (Akemann, Elliott, Pedersen and Tomiyama 1979)

For a separable C^* -algebra A the following conditions are equivalent:

- A admits only inner derivations.
- A is a direct sum of a finite number of C*-subalgebras which are either homogeneous or simple;
- Der(A) is separable in the operator norm.

On the other hand, for inseparable C^* -algebras the main problem remains widely open, even for the simplest cases such as subhomogeneous C^* -algebras (i.e. C^* -algebras which have finite-dimensional irreducible representations of bounded degree).

• We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C*-algebras A, however, it is natural to regard two-sided multiplication maps M_{a,b} : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C*-algebras A, however, it is natural to regard two-sided multiplication maps M_{a,b} : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on *A*, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by **elementary operators**.

- We often try to understand the structure of operators and spaces on which they act in terms of approximation by finite rank maps.
- On C*-algebras A, however, it is natural to regard two-sided multiplication maps M_{a,b} : x → axb (a, b ∈ A) as basic building blocks (instead of rank one operators).
- We can therefore try to approximate a more general map on *A*, one that preserves ideals, by finite sums of two-sided multiplication maps, that is, by **elementary operators**.

By $\mathcal{E}\ell(A)$ we denote the set of all elementary operators on A. It is easy to see that every elementary operator on A is completely bounded, with

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h},$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $A \otimes A$.

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{El}(A)}}^{cb}$?

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{El}(A)}}^{cb}$?

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations and the set of all inner derivations of A.

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{El}(A)}}^{cb}$?

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations and the set of all inner derivations of A.

• Since each inner derivation is an elementary operator (of length 2) on A, $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ includes the cb-corm closure of Inn(A).

Problem

Which derivations of a C^* -algebra A admit a completely bounded approximation by elementary operators? That is, which derivations of A lie in the cb-norm closure $\overline{\overline{\mathcal{El}(A)}}^{cb}$?

Let us by Der(A) and Inn(A) denote, respectively, the set of all derivations and the set of all inner derivations of A.

- Since each inner derivation is an elementary operator (of length 2) on $A, \overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ includes the cb-corm closure of Inn(A).
- Since the cb-norm of (inner) derivations coincides with their operator norm, the cb-norm closure of Inn(A) coincides with the operator norm closure of Inn(A). We denote this closure by Inn(A).

Problem (G. 2013)

Does every C^* -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

Problem (G. 2013)

Does every C^* -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

In many cases the set Inn(A) is already closed in the operator norm. However, this is not always true.

Problem (G. 2013)

Does every C^* -algebra satisfy the condition

$$\operatorname{Der}(A) \cap \overline{\overline{\mathcal{E}\ell(A)}}^{cb} = \overline{\overline{\operatorname{Inn}(A)}}?$$

In many cases the set Inn(A) is already closed in the operator norm. However, this is not always true.

In fact, we have the following beautiful characterization:

Theorem (Somerset 1993)

The set Inn(A) is closed in the operator norm, as a subset of Der(A), if and only if A has a finite connecting order.

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

• Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \le i \le n$.

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \le i \le n$.
- The distance d(P, Q) from P to Q is defined as follows:
 - $\triangleright \ d(P,P) := 1.$
 - ▷ If $P \neq Q$ and there exists a path from P to Q, then d(P, Q) is equal to the minimal length of a path from P to Q.
 - ▷ If there is no path from P to Q, $d(P,Q) := \infty$.

The connecting order of a C^* -algebra is a constant in $\mathbb{N} \cup \{\infty\}$ arising from a certain graph structure on the primitive spectrum Prim(A):

- Two primitive ideals *P*, *Q* of *A* are said to be **adjacent**, if *P* and *Q* cannot be separated by disjoint open subsets of Prim(*A*).
- A path of length *n* from *P* to *Q* is a sequence of points $P = P_0, P_1, \ldots, P_n = Q$ such that P_{i-1} is adjacent to P_i for all $1 \le i \le n$.
- The distance d(P, Q) from P to Q is defined as follows:
 - $\triangleright \ d(P,P) := 1.$
 - ▷ If $P \neq Q$ and there exists a path from P to Q, then d(P, Q) is equal to the minimal length of a path from P to Q.
 - ▷ If there is no path from P to Q, $d(P,Q) := \infty$.
- The connecting order Orc(A) of A is then defined by

 $\operatorname{Orc}(A) := \sup\{d(P,Q): P, Q \in \operatorname{Prim}(A) \text{ such that } d(P,Q) < \infty\}.$

Theorem (G. 2013)

The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{\overline{Inn}(A)}$ holds true for all C*-algebras A in which every Glimm ideal is prime.

Theorem (G. 2013)

The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{\overline{Inn}(A)}$ holds true for all C*-algebras A in which every Glimm ideal is prime.

Glimm ideals

Recall that the **Glimm ideals** of a C^* -algebra A are the ideals generated by the maximal ideals of the centre of A.

Theorem (G. 2013)

The equality $Der(A) \cap \overline{\overline{\mathcal{E}\ell}(A)}^{cb} = \overline{\overline{Inn}(A)}$ holds true for all C*-algebras A in which every Glimm ideal is prime.

Glimm ideals

Recall that the **Glimm ideals** of a C^* -algebra A are the ideals generated by the maximal ideals of the centre of A.

If a C^* -algebra A has only prime Glimm ideals, then Orc(A) = 1, so Somerset's theorem yields that Inn(A) is closed in the operator norm. Hence:

Corollary

If every Glimm ideal of a C^{*}-algebra A is prime, then every derivation of A which lies in $\overline{\overline{\mathcal{E}\ell(A)}}^{cb}$ is inner.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

• Prime C*-algebras

- Prime C*-algebras
- C*-algebras with Hausdorff primitive spectrum

- Prime C*-algebras
- C*-algebras with Hausdorff primitive spectrum
- Quotients of AW*-algebras

- Prime C*-algebras
- C*-algebras with Hausdorff primitive spectrum
- Quotients of AW*-algebras
- Local multiplier algebras

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C*-algebras
- C*-algebras with Hausdorff primitive spectrum
- Quotients of AW*-algebras
- Local multiplier algebras

By **elementary derivation** on A we mean every derivation on A which is also an elementary operator on A.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C*-algebras
- C*-algebras with Hausdorff primitive spectrum
- Quotients of AW*-algebras
- Local multiplier algebras

By **elementary derivation** on A we mean every derivation on A which is also an elementary operator on A.

Question

Does there exist a C^* -algebra A which admits an outer elementary derivation?

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes:

- Prime C*-algebras
- C*-algebras with Hausdorff primitive spectrum
- Quotients of AW*-algebras
- Local multiplier algebras

By **elementary derivation** on A we mean every derivation on A which is also an elementary operator on A.

Question

Does there exist a C^* -algebra A which admits an outer elementary derivation?

Motivated by the previous discussion, it is natural to start looking for possible examples in the class of C^* -algebras with $Orc(A) = \infty$.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

• $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $Orc(A) = \infty$.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $Orc(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $Orc(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits outer elementary derivations.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $Orc(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits outer elementary derivations.

More recently, we showed that A admits outer derivations of the form $M_{a,b} - M_{b,a}$ for some $a, b \in A$. In particular A has outer elementary derivations of length 2. Also, A satisfies $\overline{\overline{\text{Inn}(A)}} = \text{Der}(A) \cap \mathcal{E}\ell(A)$.

Let A be a C*-algebra consisting of all elements $a \in C([0,\infty],\mathrm{M}_2(\mathbb{C}))$ such that

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \quad (n \in \mathbb{N}),$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then:

- $d(\ker \lambda_1, \ker \lambda_n) = n$ for all $n \in \mathbb{N}$. In particular, $Orc(A) = \infty$.
- $\mathcal{E}\ell(A)$ is closed in the cb-norm.

In particular, A admits outer elementary derivations.

More recently, we showed that A admits outer derivations of the form $M_{a,b} - M_{b,a}$ for some $a, b \in A$. In particular A has outer elementary derivations of length 2. Also, A satisfies $\overline{\overline{\text{Inn}(A)}} = \text{Der}(A) \cap \mathcal{E}\ell(A)$.

Prposition (G. & Timoney 2015)

Every elementary derivation of length 2 on a C*-algebra A is of the form $M_{a,b} - M_{b,a}$ for some $a, b \in A$.

Problem

What can be said about the lengths of outer elementary derivations? In particular, is it possible for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

What can be said about the lengths of outer elementary derivations? In particular, is it possible for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^* -algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

What can be said about the lengths of outer elementary derivations? In particular, is it possible for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^* -algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

When do we have $\overline{\operatorname{Inn}(A)} \subseteq \mathcal{E}\ell(A)$?

Problem

What can be said about the lengths of outer elementary derivations? In particular, is it possible for each $n \ge 2$ find a C^* -algebra A which admits an (outer) elementary derivation of length n?

Problem

Does every unital C^* -algebra A with $Orc(A) = \infty$ admit an outer elementary derivation?

Problem

When do we have $\overline{\operatorname{Inn}(A)} \subseteq \mathcal{E}\ell(A)$?

Problem

When is the set of all elementary operators of the form $M_{a,b} - M_{b,a}$ $(a, b \in A)$ closed in the operator (~ cb-)norm?