Derivations and local multipliers of C*-algebras

Ilja Gogić

Department of Mathematics, University of Zagreb

Great Plains Operator Theory Symposium 2014 Kansas State University Manhattan, Kansas, USA May 27-31, 2014

A derivation of an algebra A is a linear map $\delta: A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

A derivation of an algebra A is a linear map $\delta: A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Some properties of derivations of C^* -algebras

A derivation of an algebra A is a linear map $\delta: A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Some properties of derivations of C^* -algebras

If A is a C*-algebra, then every derivation δ of A satisfies the following properties:

• δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).

A derivation of an algebra A is a linear map $\delta: A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Some properties of derivations of C*-algebras

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for every ideal I of A).

A derivation of an algebra A is a linear map $\delta: A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Some properties of derivations of C*-algebras

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for every ideal I of A).
- δ vanishes on the centre of A (i.e. δ(z) = 0 for all z ∈ Z(A)). In particular, commutative C*-algebras don't admit non-zero derivations.

A derivation of an algebra A is a linear map $\delta: A \to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y)$$
 for all $x, y \in A$.

Some properties of derivations of C*-algebras

- δ is completely bounded and its cb-norm coincides with its operator norm (i.e. $\|\delta\|_{cb} = \|\delta\|$).
- δ preserves the (closed two-sided) ideals of A (i.e. δ(I) ⊆ I for every ideal I of A).
- δ vanishes on the centre of A (i.e. δ(z) = 0 for all z ∈ Z(A)). In particular, commutative C*-algebras don't admit non-zero derivations.
- δ extends uniquely and under preservation of the norm to a derivation of M(A) (the multiplier algebra of A).

$$\delta_{\mathsf{a}}(\mathsf{x}) := \mathsf{a}\mathsf{x} - \mathsf{x}\mathsf{a}.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^* -algebras admit only inner derivations?

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

• von Neumann algebras (Kadison-Sakai, 1966).

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^* -algebras admit only inner derivations?

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C*-algebras (Sakai, 1968).

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^* -algebras admit only inner derivations?

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C*-algebras (Sakai, 1968).
- AW*-algebras (Olesen, 1974).

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^* -algebras admit only inner derivations?

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C^* -algebras (Sakai, 1968).
- AW*-algebras (Olesen, 1974).
- homogeneous C*-algebras (Sproston, 1976; G., 2013).

$$\delta_a(x) := ax - xa.$$

A derivation δ of A is said to be an **inner derivation** if there exists a multiplier $a \in M(A)$ such that $\delta = \delta_a$.

Main problem

Which C^* -algebras admit only inner derivations?

Some classes of C^* -algebras which admit only inner derivations:

- von Neumann algebras (Kadison-Sakai, 1966).
- simple C^* -algebras (Sakai, 1968).
- AW*-algebras (Olesen, 1974).
- homogeneous C*-algebras (Sproston, 1976; G., 2013).
- σ-unital continuous-trace C*-algebras (Akemann-Elliott-Pedersen-Tomiyama, 1976).

Ilja Gogić (University of Zagreb)

Derivations of C^{*}-algebras

Moreover, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

Let A be a separable C^{*}-algebra, Then A admits only inner derivations if and only if $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^{*}-algebra, and A_2 is a direct sum of simple C^{*}-algebras. Moreover, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

Let A be a separable C^{*}-algebra, Then A admits only inner derivations if and only if $A = A_1 \oplus A_2$, where A_1 is a continuous-trace C^{*}-algebra, and A_2 is a direct sum of simple C^{*}-algebras.

On the other hand, for inseparable C^* -algebras the problem of innerness of derivations remains widely open, even for the simplest cases such as subhomogeneous C^* -algebras (i.e. C^* -algebras which have finite-dimensional irreducible representations of bounded degree).

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{M \to \infty} \{ M(I) : I \in \mathrm{Id}_{ess}(A) \}.$$

In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set $\mathrm{Id}_{ess}(A)$ of all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) := (C^* -) \lim_{M \to \infty} \{ M(I) : I \in \mathrm{Id}_{ess}(A) \}.$$

Iterating the construction of $M_{loc}(A)$, one obtains the following tower of C^* -algebras which, a priori, does not have the largest element:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M^{(2)}_{\mathrm{loc}}(A) \subseteq \cdots \subseteq M^{(n)}_{\mathrm{loc}}(A) \subseteq \cdots,$$

where $M_{
m loc}^{(2)}(A) = M_{
m loc}(M_{
m loc}(A))$, $M_{
m loc}^{(3)}(A) = M_{
m loc}(M_{
m loc}^{(2)}(A))$, etc.

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$.

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$.

Example

If A is an AW^* -algebra, then $M_{loc}(A) = A$.

Example

If A is simple, then obviously $M_{loc}(A) = M(A)$.

Example

If A is an AW*-algebra, then $M_{loc}(A) = A$.

Example

If $A = C_0(X)$ is a commutative C^* -algebra, then $M_{loc}(A)$ is a commutative AW^* -algebra whose maximal ideal space can be identified with the inverse limit $\lim_{\leftarrow} \beta U$ of Stone-Čech compactifications βU of dense open subsets U of X.

Every derivation of a C^* -algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$.

Every derivation of a C^* -algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$.

Theorem (Pedersen, 1978)

Every derivation δ of a separable C*-algebra A is implemented by a local multiplier (i.e. δ becomes inner when extended to a derivation of $M_{\text{loc}}(A)$).

Every derivation of a C^* -algebra A extends uniquely and under preservation of the norm to a derivation of $M_{loc}(A)$.

Theorem (Pedersen, 1978)

Every derivation δ of a separable C*-algebra A is implemented by a local multiplier (i.e. δ becomes inner when extended to a derivation of $M_{\text{loc}}(A)$).

Moreover, it suffices to assume that every essential closed ideal of A is σ -unital. In particular, Pedersen's result entails Sakai's theorem that every derivation of a simple unital C^* -algebra is inner.

This led Pedersen to ask:

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^{*}-algebra, is every derivation of $M_{loc}(A)$ inner?

This led Pedersen to ask:

Problem of innerness of derivations of $M_{\rm loc}(A)$

If A is an arbitrary C^* -algebra, is every derivation of $M_{\text{loc}}(A)$ inner?

Stability problem of $M_{\rm loc}(A)$

Is
$$M^{(2)}_{
m loc}(A)=M_{
m loc}(A)$$
 for every C^* -algebra A?

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \to I(A)$ has a completely positive extension $\widetilde{\phi} : F \to I(A)$.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \to I(A)$ has a completely positive extension $\widetilde{\phi} : F \to I(A)$.

However, it turns out that (nevertheless) I(A) is a C^* -algebra canonically containing A as a C^* -subalgebra. Moreover, I(A) is monotone complete, so in particular, I(A) is an AW^* -algebra.

For a C^* -algebra A, let us denote by I(A) its **injective envelope** as introduced by Hamana in 1979.

I(A) is not an injective object in the category of C^* -algebras and *-homomorphisms, but in the category of operator spaces and complete positive maps, i.e. for every inclusion $E \subseteq F$ of operator systems, each completely positive map $\phi : E \to I(A)$ has a completely positive extension $\widetilde{\phi} : F \to I(A)$.

However, it turns out that (nevertheless) I(A) is a C^* -algebra canonically containing A as a C^* -subalgebra. Moreover, I(A) is monotone complete, so in particular, I(A) is an AW^* -algebra.

Theorem (Hamana, 1981)

All AW*-algebras of type I are injective.

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{
m loc}(A) = \left(\bigcup_{I \in {
m Id}_{
m ess}(A)} \{ x \in I(A) : xI + Ix \subseteq I \} \right)^{=1}$$

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{ x \in I(A) : xI + Ix \subseteq I \} \right)^{-1}$$

Using this result and the fact that $I(M_{loc}(A)) = I(A)$, we obtain the following sequence of inclusions of C*-algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M^{(2)}_{\mathrm{loc}}(A) \subseteq \cdots \subseteq \overline{A} \subseteq I(A).$$

where A is the regular monotone completion of A.

Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I(A), $M_{loc}(A)$ is the norm closure of the set of all $x \in I(A)$ which act as a multiplier on some $I \in Id_{ess}(A)$, i.e.

$$M_{\mathrm{loc}}(A) = \left(\bigcup_{I \in \mathrm{Id}_{\mathrm{ess}}(A)} \{ x \in I(A) : xI + Ix \subseteq I \} \right)^{\frac{1}{2}}$$

Using this result and the fact that $I(M_{loc}(A)) = I(A)$, we obtain the following sequence of inclusions of C^{*}-algebras:

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M^{(2)}_{\mathrm{loc}}(A) \subseteq \cdots \subseteq \overline{A} \subseteq I(A).$$

where A is the regular monotone completion of A.

Difficult problem

When is
$$M_{
m loc}(A)=I(A)$$
, or at least $M_{
m loc}(A)=\overline{A}$?

Ilja Gogić (University of Zagreb)

Back to Pedersen's questions, we have the following partial answers:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C*-algebra such that Prim(A) (= the primitive ideal space of A) contains a dense G_{δ} subset of closed points, then $M_{loc}^{(2)}(A) = M_{loc}(A)$. Moreover, in this case $M_{loc}(A)$ has only inner derivations.

Back to Pedersen's questions, we have the following partial answers:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C*-algebra such that Prim(A) (= the primitive ideal space of A) contains a dense G_{δ} subset of closed points, then $M_{loc}^{(2)}(A) = M_{loc}(A)$. Moreover, in this case $M_{loc}(A)$ has only inner derivations.

Theorem (G., 2013)

If all irreducible representations of a C*-algebra A are finite-dimensional, then $M_{loc}(A)$ is a finite or countable direct product of C*-algebras of the form $C(X_n) \otimes \mathbb{M}_n$, where each space X_n is Stonean. In particular, $M_{loc}(A)$ is an AW*-algebra of type I in this case, so $M_{loc}(A) = M_{loc}^{(2)}(A) = I(A)$ and $M_{loc}(A)$ admits only inner derivations. We also have the following criterion for innerness of derivations of certain class of C^* -algebras

Theorem (G., 2013)

Let A be a unital C*-algebra in which every Glimm ideal (i.e. an ideal of the form mA, where m is a maximal ideal of the centre of A) is prime. Then a derivation δ of A is inner if and only if δ can be approximated by elementary operators in the cb-norm, i.e. for each $\varepsilon > 0$ there exists a natural number n and elements a_1, \ldots, a_n and b_1, \ldots, b_n of A such that for $\phi(x) := \sum_{i=1}^n a_i x b_i$ we have $\|\delta - \phi\|_{cb} < \varepsilon$. We also have the following criterion for innerness of derivations of certain class of C^* -algebras

Theorem (G., 2013)

Let A be a unital C*-algebra in which every Glimm ideal (i.e. an ideal of the form mA, where m is a maximal ideal of the centre of A) is prime. Then a derivation δ of A is inner if and only if δ can be approximated by elementary operators in the cb-norm, i.e. for each $\varepsilon > 0$ there exists a natural number n and elements a_1, \ldots, a_n and b_1, \ldots, b_n of A such that for $\phi(x) := \sum_{i=1}^n a_i x b_i$ we have $\|\delta - \phi\|_{cb} < \varepsilon$.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes all prime C^* -algebras, C^* -algebras with Hausdorff primitive spectrum, quotients of AW^* -algebras, and local multiplier algebras. We also have the following criterion for innerness of derivations of certain class of C^* -algebras

Theorem (G., 2013)

Let A be a unital C*-algebra in which every Glimm ideal (i.e. an ideal of the form mA, where m is a maximal ideal of the centre of A) is prime. Then a derivation δ of A is inner if and only if δ can be approximated by elementary operators in the cb-norm, i.e. for each $\varepsilon > 0$ there exists a natural number n and elements a_1, \ldots, a_n and b_1, \ldots, b_n of A such that for $\phi(x) := \sum_{i=1}^n a_i x b_i$ we have $\|\delta - \phi\|_{cb} < \varepsilon$.

The class of C^* -algebras in which every Glimm ideal is prime is fairly large. It includes all prime C^* -algebras, C^* -algebras with Hausdorff primitive spectrum, quotients of AW^* -algebras, and local multiplier algebras.

In particular, if there exists a C^* -algebra A such that $M_{\text{loc}}(A)$ admits an outer derivation δ , then δ cannot be approximated by elementary operators in the cb-norm.

13 / 15

• The first class of examples of C^* -algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{loc}^{(2)}(A) \neq M_{loc}(A)$.

- The first class of examples of C^* -algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{loc}^{(2)}(A) \neq M_{loc}(A)$.
- Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C*-algebra $C([0,1]) \otimes \mathbb{K}$ also fails to satisfy $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$.

- The first class of examples of C^* -algebras for which the stability problem of local multiplier algebras has a negative answer was given by Ara and Mathieu (2006): There exist unital separable primitive AF-algebras A such that $M_{loc}^{(2)}(A) \neq M_{loc}(A)$.
- Soon after, Argerami, Farenick and Massey (2009) showed that a relatively well-behaved C*-algebra C([0,1]) ⊗ K also fails to satisfy M⁽²⁾_{loc}(A) = M_{loc}(A).
- Moreover, Ara and Mathieu (2011) showed that whenever X is a perfect, second countable locally compact Hausdorff space, and $A = C_0(X) \otimes B$ for some non-unital separable simple C*-algebra B, then $M_{\text{loc}}^{(2)}(A) \neq M_{\text{loc}}(A)$.

This leads to the following two restatements of the stability problem of $M_{loc}(A)$:

Problem

When is $M_{\text{loc}}^{(2)}(A) = M_{\text{loc}}(A)$?

This leads to the following two restatements of the stability problem of $M_{loc}(A)$:

Problem

When is
$$M^{(2)}_{\mathrm{loc}}(A) = M_{\mathrm{loc}}(A)$$
?

Problem

Whether for each positive integer *n* there exists a C^* -algebra *A* such that $M_{loc}^{(n)}(A) \neq M_{loc}^{(n+1)}(A)$?

This leads to the following two restatements of the stability problem of $M_{loc}(A)$:

Problem

When is
$$M^{(2)}_{\mathrm{loc}}(A) = M_{\mathrm{loc}}(A)$$
?

Problem

Whether for each positive integer *n* there exists a C^* -algebra *A* such that $M_{loc}^{(n)}(A) \neq M_{loc}^{(n+1)}(A)$?

Besides the C*-algebras A which satisfy $M_{loc}^{(2)}(A) = M_{loc}(A)$, we know that $M_{loc}^{(3)}(A) = M_{loc}^{(2)}(A)$ for a certain class of type I C*-algebras, such as:

- separable C*-algebras of type I (Somerset, 2000);
- (not necessarily separable) spatial Fell algebras (Argerami, Farenick and Massey, 2010).

Moreover, in these two cases $M_{loc}^{(2)}(A)$ is a type $I AW^*$ -algebra.

Problem

Is $M_{loc}^{(2)}(A)$ an AW^* -algebra of type I whenever A is a C*-algebra of type I?

Problem

Is $M_{loc}^{(2)}(A)$ an AW^* -algebra of type I whenever A is a C*-algebra of type I?

Summary

- We have no example in which $M_{loc}^{(2)}(A) = M_{loc}(A)$ and we do not know that every derivation of $M_{loc}(A)$ is inner.
- We have no example in which M⁽²⁾_{loc}(A) ≠ M_{loc}(A) and we know every derivation of M_{loc}(A) is inner.
- We have no example in which $M^{(3)}_{loc}(A) \neq M^{(2)}_{loc}(A)$.