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Definition

A derivation of an algebra A is a linear map δ : A→ A satisfying the
Leibniz rule

δ(xy) = δ(x)y + xδ(y) for all x , y ∈ A.

Some properties of derivations of C ∗-algebras

If A is a C ∗-algebra, then every derivation δ of A satisfies the following
properties:

δ is completely bounded and its cb-norm coincides with its operator
norm (i.e. ‖δ‖cb = ‖δ‖).

δ preserves the (closed two-sided) ideals of A (i.e. δ(I ) ⊆ I for every
ideal I of A).

δ vanishes on the centre of A (i.e. δ(z) = 0 for all z ∈ Z (A)). In
particular, commutative C ∗-algebras don’t admit non-zero derivations.

δ extends uniquely and under preservation of the norm to a derivation
of M(A) (the multiplier algebra of A).

Ilja Gogić (University of Zagreb) Derivations of C∗-algebras GPOTS 2014 2 / 15



Definition

A derivation of an algebra A is a linear map δ : A→ A satisfying the
Leibniz rule

δ(xy) = δ(x)y + xδ(y) for all x , y ∈ A.

Some properties of derivations of C ∗-algebras

If A is a C ∗-algebra, then every derivation δ of A satisfies the following
properties:

δ is completely bounded and its cb-norm coincides with its operator
norm (i.e. ‖δ‖cb = ‖δ‖).

δ preserves the (closed two-sided) ideals of A (i.e. δ(I ) ⊆ I for every
ideal I of A).

δ vanishes on the centre of A (i.e. δ(z) = 0 for all z ∈ Z (A)). In
particular, commutative C ∗-algebras don’t admit non-zero derivations.

δ extends uniquely and under preservation of the norm to a derivation
of M(A) (the multiplier algebra of A).
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If A is a C ∗-subalgebra of a C ∗-algebra B, then each element a ∈ B which
derives A (i.e. ax − xa ∈ A, for all x ∈ A) implements a derivation
δa : A→ A given by

δa(x) := ax − xa.

A derivation δ of A is said to be an inner derivation if there exists a
multiplier a ∈ M(A) such that δ = δa.

Main problem

Which C ∗-algebras admit only inner derivations?

Some classes of C ∗-algebras which admit only inner derivations:

von Neumann algebras (Kadison-Sakai, 1966).

simple C ∗-algebras (Sakai, 1968).

AW ∗-algebras (Olesen, 1974).

homogeneous C ∗-algebras (Sproston, 1976; G., 2013).

σ-unital continuous-trace C ∗-algebras
(Akemann-Elliott-Pedersen-Tomiyama, 1976).
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Moreover, the separable case was completely solved in 1979:

Theorem (Akemann, Elliott, Pedersen and Tomiyama, 1979)

Let A be a separable C ∗-algebra, Then A admits only inner derivations if
and only if A = A1 ⊕ A2, where A1 is a continuous-trace C ∗-algebra, and
A2 is a direct sum of simple C ∗-algebras.

On the other hand, for inseparable C ∗-algebras the problem of innerness of
derivations remains widely open, even for the simplest cases such as
subhomogeneous C ∗-algebras (i.e. C ∗-algebras which have
finite-dimensional irreducible representations of bounded degree).
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If I and J are two essential ideals of A such that J ⊆ I , then there is an
embedding M(I ) ↪→ M(J).

In this way, we obtain a directed system of C ∗-algebras with isometric
connecting morphisms, where I runs through the directed set Idess(A) of
all essential ideals of A.

Definition

The local multiplier algebra of A is the direct limit C ∗-algebra

Mloc(A) := (C ∗−) lim
−→
{M(I ) : I ∈ Idess(A)}.

Iterating the construction of Mloc(A), one obtains the following tower of
C ∗-algebras which, a priori, does not have the largest element:

A ⊆ Mloc(A) ⊆ M
(2)
loc (A) ⊆ · · · ⊆ M

(n)
loc (A) ⊆ · · · ,

where M
(2)
loc (A) = Mloc(Mloc(A)), M

(3)
loc (A) = Mloc(M

(2)
loc (A)), etc.
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Example

If A is simple, then obviously Mloc(A) = M(A).

Example

If A is an AW ∗-algebra, then Mloc(A) = A.

Example

If A = C0(X ) is a commutative C ∗-algebra, then Mloc(A) is a
commutative AW ∗-algebra whose maximal ideal space can be identified
with the inverse limit lim

←−
βU of Stone-Čech compactifications βU of dense

open subsets U of X .
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The concept of the local multiplier algebra was introduced by G. Pedersen
in 1978 (he called it the ”C ∗-algebra of essential multipliers”).

Every derivation of a C ∗-algebra A extends uniquely and under
preservation of the norm to a derivation of Mloc(A).

Theorem (Pedersen, 1978)

Every derivation δ of a separable C ∗-algebra A is implemented by a local
multiplier (i.e. δ becomes inner when extended to a derivation of Mloc(A)).

Moreover, it suffices to assume that every essential closed ideal of A is
σ-unital. In particular, Pedersen’s result entails Sakai’s theorem that every
derivation of a simple unital C ∗-algebra is inner.
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Since Mloc(A) = M(A) if A is simple, and Mloc(A) = A if A is an
AW ∗-algebra, only an affirmative answer in the inseparable case would
cover, extend and unify the results that all derivations of simple
C ∗-algebras and AW ∗-algebras are inner.

This led Pedersen to ask:

Problem of innerness of derivations of Mloc(A)

If A is an arbitrary C ∗-algebra, is every derivation of Mloc(A) inner?

Stability problem of Mloc(A)

Is M
(2)
loc (A) = Mloc(A) for every C ∗-algebra A?
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There is another important characterisation of Mloc(A), which was first
obtained by Frank and Paulsen in 2003.

For a C ∗-algebra A, let us denote by I (A) its injective envelope as
introduced by Hamana in 1979.

I (A) is not an injective object in the category of C ∗-algebras and
∗-homomorphisms, but in the category of operator spaces and complete
positive maps, i.e. for every inclusion E ⊆ F of operator systems, each
completely positive map φ : E → I (A) has a completely positive extension
φ̃ : F → I (A).

However, it turns out that (nevertheless) I (A) is a C ∗-algebra canonically
containing A as a C ∗-subalgebra. Moreover, I (A) is monotone complete,
so in particular, I (A) is an AW ∗-algebra.

Theorem (Hamana, 1981)

All AW ∗-algebras of type I are injective.

Ilja Gogić (University of Zagreb) Derivations of C∗-algebras GPOTS 2014 9 / 15



There is another important characterisation of Mloc(A), which was first
obtained by Frank and Paulsen in 2003.

For a C ∗-algebra A, let us denote by I (A) its injective envelope as
introduced by Hamana in 1979.

I (A) is not an injective object in the category of C ∗-algebras and
∗-homomorphisms, but in the category of operator spaces and complete
positive maps, i.e. for every inclusion E ⊆ F of operator systems, each
completely positive map φ : E → I (A) has a completely positive extension
φ̃ : F → I (A).

However, it turns out that (nevertheless) I (A) is a C ∗-algebra canonically
containing A as a C ∗-subalgebra. Moreover, I (A) is monotone complete,
so in particular, I (A) is an AW ∗-algebra.

Theorem (Hamana, 1981)

All AW ∗-algebras of type I are injective.
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Theorem (Frank and Paulsen, 2003)

Under this embedding of A into I (A), Mloc(A) is the norm closure of the
set of all x ∈ I (A) which act as a multiplier on some I ∈ Idess(A), i.e.

Mloc(A) =

 ⋃
I∈Idess(A)

{x ∈ I (A) : xI + Ix ⊆ I}

=

Using this result and the fact that I (Mloc(A)) = I (A), we obtain the
following sequence of inclusions of C ∗-algebras:

A ⊆ Mloc(A) ⊆ M
(2)
loc (A) ⊆ · · · ⊆ A ⊆ I (A).

where A is the regular monotone completion of A.

Difficult problem

When is Mloc(A) = I (A), or at least Mloc(A) = A?
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Back to Pedersen’s questions, we have the following partial answers:

Theorem (Somerset, 2000; Ara and Mathieu, 2011)

If A is a unital (or more generally quasi-central), separable C ∗-algebra such
that Prim(A)(= the primitive ideal space of A) contains a dense Gδ subset

of closed points, then M
(2)
loc (A) = Mloc(A). Moreover, in this case Mloc(A)

has only inner derivations.

Theorem (G., 2013)

If all irreducible representations of a C ∗-algebra A are finite-dimensional,
then Mloc(A) is a finite or countable direct product of C ∗-algebras of the
form C (Xn)⊗Mn, where each space Xn is Stonean. In particular, Mloc(A)

is an AW ∗-algebra of type I in this case, so Mloc(A) = M
(2)
loc (A) = I (A)

and Mloc(A) admits only inner derivations.
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We also have the following criterion for innerness of derivations of certain
class of C ∗-algebras

Theorem (G., 2013)

Let A be a unital C ∗-algebra in which every Glimm ideal (i.e. an ideal of
the form mA, where m is a maximal ideal of the centre of A) is prime.
Then a derivation δ of A is inner if and only if δ can be approximated by
elementary operators in the cb-norm, i.e. for each ε > 0 there exists a
natural number n and elements a1, . . . , an and b1, . . . , bn of A such that
for φ(x) :=

∑n
i=1 aixbi we have ‖δ − φ‖cb < ε.

The class of C ∗-algebras in which every Glimm ideal is prime is fairly large.
It includes all prime C ∗-algebras, C ∗-algebras with Hausdorff primitive
spectrum, quotients of AW ∗-algebras, and local multiplier algebras.

In particular, if there exists a C ∗-algebra A such that Mloc(A) admits an
outer derivation δ, then δ cannot be approximated by elementary operators
in the cb-norm.
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On the other hand, the stability problem of Mloc(A) has a negative
solution:

The first class of examples of C ∗-algebras for which the stability
problem of local multiplier algebras has a negative answer was given
by Ara and Mathieu (2006): There exist unital separable primitive

AF -algebras A such that M
(2)
loc (A) 6= Mloc(A).

Soon after, Argerami, Farenick and Massey (2009) showed that a
relatively well-behaved C ∗-algebra C ([0, 1])⊗K also fails to satisfy

M
(2)
loc (A) = Mloc(A).

Moreover, Ara and Mathieu (2011) showed that whenever X is a
perfect, second countable locally compact Hausdorff space, and
A = C0(X )⊗ B for some non-unital separable simple C ∗-algebra B,

then M
(2)
loc (A) 6= Mloc(A).
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This leads to the following two restatements of the stability problem of
Mloc(A):

Problem

When is M
(2)
loc (A) = Mloc(A)?

Problem

Whether for each positive integer n there exists a C ∗-algebra A such that

M
(n)
loc (A) 6= M

(n+1)
loc (A)?

Besides the C ∗-algebras A which satisfy M
(2)
loc (A) = Mloc(A), we know that

M
(3)
loc (A) = M

(2)
loc (A) for a certain class of type I C ∗-algebras, such as:

separable C ∗-algebras of type I (Somerset, 2000);

(not necessarily separable) spatial Fell algebras (Argerami, Farenick
and Massey, 2010).

Moreover, in these two cases M
(2)
loc (A) is a type I AW ∗-algebra.
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Problem

Is M
(2)
loc (A) an AW ∗-algebra of type I whenever A is a C ∗-algebra of type I ?

Summary

We have no example in which M
(2)
loc (A) = Mloc(A) and we do not

know that every derivation of Mloc(A) is inner.

We have no example in which M
(2)
loc (A) 6= Mloc(A) and we know every

derivation of Mloc(A) is inner.

We have no example in which M
(3)
loc (A) 6= M

(2)
loc (A).
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