
Topologically finitely generated Hilbert
C (X )-modules

Ilja Gogić
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C ∗-algebras

Definition

A C ∗-algebra is a (complex) Banach ∗-algebra A whose norm ‖ · ‖
satisfies the C ∗-identity. More precisely:

A is a Banach algebra over the field C.

A is equipped with an involution, i.e. a map ∗ : A→ A, a 7→ a∗

satisfying the properties:

(αa + βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a,

for all a, b ∈ A and α, β ∈ C.

Norm ‖ · ‖ satisfies the C ∗-identity, i.e.

‖a∗a‖ = ‖a‖2

for all a ∈ A.
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Remark

The C ∗-identity is a very strong requirement. For instance, together with
the spectral radius formula, it implies that the C ∗-norm is uniquely
determined by the algebraic structure: For all a ∈ A we have

‖a‖2 = ‖a∗a‖ = sup{|λ| : λ ∈ σ(a∗a)},

where
σ(x) := {λ ∈ C : λ1− a is not invertible}

is the spectrum of an element x ∈ A.

In the category of C ∗-algebras, the natural morphisms are the
∗-homomorphisms, i.e. the algebra homomorphisms which preserve the
involution. They are automatically contractive.
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Example

Let X be a CH (compact Hausdorff) space and let C (X ) be the set of all
continuous complex-valued functions on X . Then C (X ) becomes a
C ∗-algebra with respect to the pointwise operations, involution
f ∗(x) := f (x), and max-norm ‖f ‖∞ := sup{|f (x)| : x ∈ X}. Obviously,
C (X ) is a unital commutative C ∗-algebra.

In fact, all unital commutative C ∗-algebras arise in this fashion:

Theorem (Gelfand-Naimark, 1943)

The (contravariant) functor X  C (X ) defines an equivalence of
categories of CH spaces and unital commutative C ∗-algebras.

In other words: By passing from the space X the function algebra C (X ),
no information is lost. In fact, X can be recovered from C (X ). Thus,
topological properties of X can be translated into algebraic properties of
C (X ), and vice versa, so the theory of C ∗-algebras is often thought of as
noncommutative topology.
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Basic examples

The set B(H) of bounded linear operators on a Hilbert space H
becomes a C ∗-algebra with respect to the standard operations, usual
adjoint and operator norm. In particular, the complex matrix algebras
Mn(C) are C ∗-algebras.

In fact, every C ∗-algebra can be isometrically embedded as a
norm-closed self-adjoint subalgebra of B(H) for some Hilbert space H
(Gelfand-Naimark theorem).

To every locally compact group G , one can associate a C ∗-algebra
C ∗(G ). Everything about the representation theory of G is encoded
in C ∗(G ).

The category of C ∗-algebras is closed under the formation of direct
products, direct sums, extensions, direct limits, pullbacks, pushouts,
(some) tensor products, etc.
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Hilbert C ∗-modules

Hilbert C ∗-modules form a category in between Banach spaces (they
have a little extra geometrical structure) and Hilbert spaces (they are
not as well behaving as these).

A Hilbert C ∗-module obeys the same axioms as an ordinary Hilbert
space, except that the inner product takes values in a more general
C ∗-algebras than C.

Hilbert C ∗-modules were first introduced in the work of I. Kaplansky
in 1953, who developed the theory for unital commutative
C ∗-algebras. In the 1970s the theory was extended to
non-commutative C ∗-algebras independently by W. Paschke and M.
Rieffel.

Hilbert C ∗-modules appear naturally in many areas of C ∗-algebra
theory, such as KK-theory, Morita equivalence of C ∗-algebras, and
completely positive operators.
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Definition

Let A be a C ∗-algebra. A (left) Hilbert A-module is a left A-module V ,
equipped with an A-valued inner product 〈·, ·〉 which is A-linear in the first
and conjugate linear in the second variable, such that V is a Banach space
with the norm

‖v‖ :=
√
‖〈v , v〉‖A.

Example

Every C ∗-algebra A becomes a Hilbert A-module with respect to the inner
product

〈a, b〉 := ab∗.

Example

Similarly, the direct sum An of n-copies of A becomes a A-Hilbert module
with respect to the pointwise operations and the inner product

〈a1 ⊕ · · · ⊕ an, b1 ⊕ · · · ⊕ bn〉 :=
n∑

k=1

akb∗k .
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Example

More generally, let

HA := {(ak) ∈
∞∏
1

A :
∞∑
k=1

aka∗k is norm convergent}.

Then the pointwise operations and the inner product

〈(ak), (bk)〉 :=
∞∑
k=1

akb∗k

turn HA into a Hilbert A-module; it is known as a standard Hilbert
A-module.
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When a C ∗-algebra A is unital and commutative, A = C (X ), there exists a
categorical equivalence between Hilbert A-modules and (F) Hilbert
bundles over X . (F) Hilbert bundles provide a natural generalization of
standard vector bundles from topology.

Definition

An (F) Hilbert bundle is a triple E := (p,E ,X ) where E and X are
topological spaces with a continuous open surjection p : E → X , together
with operations and norms making each fibre Ex := p−1(x) (x ∈ X ) into a
complex Hilbert space, such that the following conditions are satisfied:

The maps C× E → E , E ×X E → E and E ×X E → C given in each
fibre by scalar multiplication, addition, and the inner product,
respectively, are continuous. Here E ×X E denotes the Whitney sum

{(e, f ) ∈ E × E : p(e) = p(f )}.

If x ∈ X and if (eα) is a net in E such that ‖eα‖ → 0 and p(eα)→ x
in X , then eα → 0x in E (where 0x is the zero-element of Ex).
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As usual, we say that p is the projection, E is the bundle space and X is
the base space of E .

Example

The simplest example of an (F) Hilbert bundle is the product bundle over
X with fibre H, ε(X ,H) := (proj1,X × H,H), where H is a Hilbert space.

Example

Every locally trivial complex vector bundle E over a (para)compact
Hausdorff space becomes an (F) Hilbert bundle for a choice of a
Riemannian metric on E . In fact, an (F) Hilbert bundle structure on E is
essentially unique.
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By a section of an (F) Hilbert bundle E = (p,E ,X ) we mean a map
s : X → E such that

p(s(x)) = x (x ∈ X ).

By Γ(E) we denote the set of all continuous of sections of E .

If X is compact, then Γ(E) becomes a Hilbert C (X )-module with respect
to the action

(ϕs)(x) := ϕ(x)s(x)

and inner product
〈s, u〉(x) := 〈s(x), u(x)〉x ,

where 〈·, ·〉x denotes the inner product on fibre Ex .

In fact, all Hilbert C (X )-modules arise in this fashion:

Theorem

To every Hilbert C (X )-module V one can associate a natural (F) Hilbert
bundle EV such that V ∼= Γ(EV ).
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Homogeneous and subhomogeneous Hilbert C (X )-modules

An (F) Hilbert bundle E = (p,E ,X ) is said to be:

Trivial if E ∼= ε(X ,H) for some Hilbert space H.

Locally trivial if there exists a Hilbert space H and an open cover U
of X such that for each U ∈ U we have E|U ∼= ε(U,H).

n-homogeneous, if all fibres of E have the same finite dimension n.

Theorem

Every n-homogeneous (F) Hilbert bundle is automatically locally trivial.

Hence, the category of n-homogeneous (F) Hilbert bundles over CH spaces
is equivalent to the category of n-dimensional (locally trivial) complex
vector bundles.
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If all fibres of an (F) Hilbert bundle E are finite dimensional with

n := sup
x∈X

dim Ex <∞,

then we say that E is n-subhomogeneous.

In this case every restriction bundle of E over a set where dim Ex is
constant is locally trivial, by the previous Theorem.

If in addition every base space of such restriction bundle admits a finite
trivializing open cover, then we say that E is n-subhomogeneous of
finite type.
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Algebraically finitely generated Hilbert C (X )-modules

A Hilbert A-module V is said to be algebraically finitely generated
(A.F.G.) if there exists a finite subset of V whose A-linear span equals V .

Theorem

Every A.F.G. Hilbert module over a unital C ∗-algebra is automatically
projective.

In particular, when A = C (X ), we get a Hilbert module version of the
celebrated Serre-Swan theorem:

Theorem

Let V be a Hilbert C (X )-module, where X is a compact Hausdorff space,
and let E := EV . Then V is A.F.G. if and only if there exists a finite
clopen partition X = X1 t · · · t Xk such that each restriction bundle E|Xi

is homogeneous.
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Topologically finitely generated Hilbert C (X )-modules

A Hilbert A-module V is said to be topologically finitely generated
(T.F.G.) if there exists a finite subset of V whose A-linear span is dense V .

The main difference between A.F.G. and T.F.G. Hilbert C (X )-modules is
the fact that T.F.G. Hilbert C (X )-modules are not generally projective.
Hence, the dimension of the fibres of the canonical (F) Hilbert bundle may
vary, even if X is connected.

Example

let X be the unit interval [0, 1] and let V := C0((0, 1]). Then V becomes
a Hilbert C ([0, 1])-module with respect to the standard action and inner
product 〈f , g〉 = f ∗g . Note that V is topologically singly generated (for
instance, the identity function f (x) = x is such generator, by the
Weierstrass approximation theorem). On the other hand, each fibre Ex of
EV is one-dimensional, except E0, which is zero.
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However, this phenomenon is the only major difference between A.F.G.
and T.F.G. Hilbert C (X )-modules (at least when X is metrizable):

Theorem (I.G. 2012)

Let X be a compact metrizable space and let V be a Hilbert C (X )-module
with the canonical (F) Hilbert bundle EV . Then V is T.F.G. if and only if
EV is subhomogeneous of finite type.

Here are some further characterizations of T.F.G. Hilbert C (X )-modules:

Theorem (I.G. 2012)

For a Hilbert C (X )-module V , where X is a compact metrizable space,
the following conditions are equivalent:

(a) V is T.F.G.

(b) V is weakly A.F.G., i.e. there exists K ∈ N such that every A.F.G.
submodule of V can be generated with k ≤ K generators.

(c) There exists N ∈ N such that for every Banach C (X )-module W ,

each tensor in the C (X )-projective tensor product V
π
⊗C(X ) W is of

(finite) rank at most N.

Ilja Gogić (University of Zagreb) T.F.G. Hilbert C(X )-modules DANS14 16 / 16



However, this phenomenon is the only major difference between A.F.G.
and T.F.G. Hilbert C (X )-modules (at least when X is metrizable):

Theorem (I.G. 2012)

Let X be a compact metrizable space and let V be a Hilbert C (X )-module
with the canonical (F) Hilbert bundle EV . Then V is T.F.G. if and only if
EV is subhomogeneous of finite type.

Here are some further characterizations of T.F.G. Hilbert C (X )-modules:

Theorem (I.G. 2012)

For a Hilbert C (X )-module V , where X is a compact metrizable space,
the following conditions are equivalent:

(a) V is T.F.G.

(b) V is weakly A.F.G., i.e. there exists K ∈ N such that every A.F.G.
submodule of V can be generated with k ≤ K generators.

(c) There exists N ∈ N such that for every Banach C (X )-module W ,

each tensor in the C (X )-projective tensor product V
π
⊗C(X ) W is of

(finite) rank at most N.
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